1
|
Rushendran R, Singh S A, Begum RF, Chitra V, Ali N, Prajapati BG. Bioinformatics Exploration of the Therapeutic Potential of Lotus Seed Compounds in Multiple Sclerosis: A Network Analysis of c-Jun Pathway. Drug Dev Res 2025; 86:e70038. [PMID: 39756059 DOI: 10.1002/ddr.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025]
Abstract
The central nervous system is affected by multiple sclerosis (MS), a chronic autoimmune illness characterized by axonal destruction, demyelination, and inflammation. This article summarizes the state of the field, highlighting its complexity and significant influence on people's quality of life. The research employs a network pharmacological approach, integrating systems biology, bioinformatics, and pharmacology to identify biomarkers associated with MS. Utilizing Nelumbo Nucifera (Lotus) seeds, the study involves toxicity assessments, biomolecule screening, and target prediction. Advanced computational methodologies are employed, including molecular docking and dynamic simulations, to assess potential therapeutic interactions. Biomolecule screening identifies eight active compounds from Lotus seeds, including Anonaine and Liriodenine. Target prediction reveals 264 common targets with MS-related genes. Protein-protein interaction analysis establishes a complex network, identifying central targets like SRC and AKT1. Bioinformatics enrichment analysis uncovers potential therapeutic candidates and pathways. A Biomolecule-Target-Pathway network diagram visualizes interactions, with Anonaine and Liriodenine exhibiting strong binding affinities in molecular docking studies. Molecular dynamics simulations provide insights into dynamic interactions. In conclusion, through advanced computational techniques, it unveils molecular interactions, potential therapies, and pathways, bridging predictions with practical applications. Anonaine and Liriodenine show promise in curbing MS biomarkers.
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Chennai, India
| | - Ankul Singh S
- Department of Pharmacology, Dr. M.G.R Educational and Research Institute, Faculty of Pharmacy, Chennai, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Chennai, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bhupendra G Prajapati
- Department of Pharmaceutics, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, India
- Department of Industrial Pharmacy, Faculty of Pharmacy, Sanam Chandra Palace Campus, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Su J, Wang X, Li S, Wu X, Li M, Du F, Deng S, Shen J, Zhao Y, Xiao Z, Chen Y. Synthesis and antitumor evaluation of glycyrrhetinic acid-dithiocarbamate hybrids. Arch Pharm (Weinheim) 2025; 358:e2400421. [PMID: 39526492 DOI: 10.1002/ardp.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glycyrrhetinic acid (GA) is a naturally occurring triterpene compound. The aim of this study was to employ the pharmacophore hybrid strategy to merge GA with various dithiocarbamates and obtain novel compounds with better antitumor activities. We present a two-step synthetic protocol wherein the GA derivative underwent reaction with carbon disulfide and various secondary amines in a one-pot manner under mild conditions, facilitating the preparation of a series of structurally novel GA-dithiocarbamate derivatives. Bioassay screening revealed that the representative compound 3c demonstrated the capacity to reduce the mitochondrial membrane potential in Hep3B and Huh-7 cells, induce nuclear apoptosis, inhibit invasion and migration, and prompt both early and late apoptosis. Furthermore, our research findings indicated that this apoptotic phenomenon may be associated with the expression of Bcl-2, Bax, Bak, PARP, and cleaved-PARP proteins. Utilizing network pharmacology for predicting core targets and signaling pathways of compound 3c for hepatocellular carcinoma (HCC) treatment involved employing molecular docking models to demonstrate high affinity between compound and target protein. In conjunction with Western blot analysis, compound 3c may impact HCC through the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sha Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
3
|
Zhu J, Huang Y, Ye C, Deng X, Zou Y, Yuan E, Chen Q. The Effect Components and Mechanisms of Action of Cimicifugae Rhizoma in the Treatment of Acute Pneumonia. J Inflamm Res 2024; 17:11757-11787. [PMID: 39749001 PMCID: PMC11694570 DOI: 10.2147/jir.s489691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025] Open
Abstract
Objective The main objective of this study was to elucidate the effector material basis of Cimicifugae Rhizoma (CR) for the treatment of acute pneumonia (AP) and to explore the potential mechanisms underlying the anti-AP effects of these active components in a lipopolysaccharide (LPS)-induced inflammation model of lung epithelial cells. Methods Chemical components were identified using ultra-performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-TOF-MS), and a CR component library was subsequently established based on a combination of databases and available literature. Bioinformatics techniques were used to construct "component-target" and "protein-protein interaction (PPI)" networks, and the potential active components and core targets screened according to degree value, followed by molecular docking and in vitro experiments for verification. Inflammation was induced in normal human lung epithelial cells using lipopolysaccharide (LPS) to mimic the occurrence of AP. Results In total, 122 CR components were identified. The therapeutic effects of potential active components against AP were associated with 147 targets involving 165 signaling pathways. Molecular docking experiments revealed the strong affinity of N-cis- feruloyltyramine, ferulic acid, cimifugin, and isoferulic acid for core AP-associated targets. In vitro cellular experiments showed that the above compounds and CR alcoholic extracts inhibited the expression of inflammatory factors in the following order: isoferulic acid > cimifugin > CR alcoholic extract > N-cis-feruloyltyramine > ferulic acid. Conclusion N-cis- feruloyltyramine, ferulic acid, cimifugin, and isoferulic acid were the effector components of CR with activity against AP. These compounds potentially co-regulate the IL-6/JAK/STAT3 and TLR4/IL-1β-IRAK pathways through the inhibition of cytokines such as IL-6, TNF-α, and IL-1β, and downregulation of P-STAT3, TLR4, PIK3CA, and NF-κB involved in TLR4/IL-1β-IRAK/NF-κB and PI3K-Akt signaling pathways to exert therapeutic effects on AP.
Collapse
Affiliation(s)
- Jing Zhu
- Research Center for Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Yiming Huang
- Research Center for Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Chao Ye
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Xiaoxia Deng
- Research Center for Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Yuxuan Zou
- Research Center for Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - En Yuan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Qi Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| |
Collapse
|
4
|
Zhan J, Xu X, Zhu Y, Liu L, Chen H, Zhan L. Shuxuening injection for treating acute ischemic stroke: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1407669. [PMID: 39508047 PMCID: PMC11538198 DOI: 10.3389/fphar.2024.1407669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background: Using Shuxuening injection (SXNI) for acute ischemic stroke (AIS) is popular in China, but its efficacy and safety remain controversial. Purpose: This study aims to assess the efficacy and safety of SXNI as an add-on therapy for AIS. Study design: Systematic review and meta-analysis. Methods: We searched for randomized controlled trials (RCTs) on SXNI for AIS in seven databases and two clinical trial registration platforms from their inception to January 2023. We used the Cochrane risk of bias tool to assess the methodological quality of the included studies and performed the meta-analysis with R software. The primary outcome was clinical efficacy, assessed by the clinical effective rate (CER). The secondary outcomes were neurological function, activities of daily living (ADL), and adverse events (AEs). Results: In total, 116 studies with 12,401 participants were included in this review. Fifteen (12.9%) studies were judged to be of moderate to high quality. SXNI plus conventional treatments (CTs) improved the CER compared with CTs alone (risk ratio [RR]: 1.21, 95% confidence interval [CI]: 1.17-1.25, p < 0.0001) or CTs plus other injections (RR: 1.18, 95% CI: 1.15-1.21, p < 0.0001). SXNI plus CTs reduced the National Institute of Health Stroke Scale score compared with CTs alone (mean difference [MD]: -4.00, 95% CI: -5.22 to -2.78, p < 0.0001) or CTs plus other injections (MD: -2.28, 95% CI: -3.41 to -1.16, p < 0.0001). SXNI plus CTs also decreased the Chinese Stroke Scale score compared with CTs alone (MD: -5.01, 95% CI: -7.38 to -2.65, p < 0.0001) or CTs plus other injections (MD: -4.31, 95% CI: -5.75 to -2.88, p < 0.0001). SXNI plus CTs was superior for increasing the Barthel index score compared with CTs alone (MD: 11.58, 95% CI: 8.27-14.90, p < 0.0001) or CTs plus other injections (MD: 5.43, 95% CI: 0.48-10.39, p = 0.0317). The level of evidence for each outcome was assessed as low to very low. The most common AEs of SXNI were cardiovascular system events, and all these AEs were mild. Conclusion: SXNI combined with CTs maybe better than CTs alone or CTs plus other injections for improving the clinical efficacy, neurological function, and ADL of AIS patients, with relatively reliable safety. However, due to the low quality of the included studies, more rigorously designed RCTs with large sample sizes should be conducted in the future. Systematic Review Registration www.crd.york.ac.uk, identifier (CRD42023418565).
Collapse
Affiliation(s)
- Jie Zhan
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowen Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanzhen Zhu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Liu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxia Chen
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lechang Zhan
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Zhu C, Liu J, Lin J, Xu J, Yu E. Investigating the effects of Ginkgo biloba leaf extract on cognitive function in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14914. [PMID: 39238068 PMCID: PMC11377177 DOI: 10.1111/cns.14914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disorder with limited treatment options. This study aimed to investigate the therapeutic effects of Ginkgo biloba leaf extract (GBE) on AD and explore its potential mechanisms of action. METHODS Key chemical components of GBE, including quercetin, luteolin, and kaempferol, were identified using network pharmacology methods. Bioinformatics analysis revealed their potential roles in AD through modulation of the PI3K/AKT/NF-κB signaling pathway. RESULTS Mouse experiments demonstrated that GBE improved cognitive function, enhanced neuronal morphology, and reduced serum inflammatory factors. Additionally, GBE modulated the expression of relevant proteins and mRNA. CONCLUSION GBE shows promise as a potential treatment for AD. Its beneficial effects on cognitive function, neuronal morphology, and inflammation may be attributed to its modulation of the PI3K/AKT/NF-κB signaling pathway. These findings provide experimental evidence for the application of Ginkgo biloba leaf in AD treatment and highlight its potential mechanisms of action.
Collapse
Affiliation(s)
- Cheng Zhu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jie Liu
- The Second People's Hospital of Chuzhou Sleep Disorders Department, Chuzhou, China
| | - Jixin Lin
- Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaxi Xu
- General Psychiatric Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Enyan Yu
- Clinical Psychology Department, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
6
|
Zhang X, Hu Q, Peng H, Huang J, Sang W, Guan J, Huang Z, Jiang B, Sun D. Therapeutic potential of flavopiridol in diabetic retinopathy: Targeting DDX58. Int Immunopharmacol 2024; 137:112504. [PMID: 38897127 DOI: 10.1016/j.intimp.2024.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Diabetic retinopathy (DR), a common complication of diabetes, is characterized by inflammation and neovascularization, and is intricately regulated by the ubiquitin-proteasome system (UPS). Despite advancements, identifying ubiquitin-related genes and drugs specifically targeting DR remains a significant challenge. In this study, bioinformatics analyses and the Connectivity Map (CMAP) database were utilized to explore the therapeutic potential of genes and drugs for DR. Through these methodologies, flavopiridol was identified as a promising therapeutic candidate. To evaluate flavopiridol's therapeutic potential in DR, an in vitro model using Human Umbilical Vein Endothelial Cells (HUVECs) induced by high glucose (HG) conditions was established. Additionally, in vivo models using mice with streptozotocin (STZ)-induced DR and oxygen-induced retinopathy (OIR) were employed. The current study reveals that flavopiridol possesses robust anti-inflammatory and anti-neovascularization properties. To further elucidate the molecular mechanisms of flavopiridol, experimental validation and molecular docking techniques were employed. These efforts identified DDX58 as a predictive target for flavopiridol. Notably, our research demonstrated that flavopiridol modulates the DDX58/NLRP3 signaling pathway, thereby exerting its therapeutic effects in suppressing inflammation and neovascularization in DR. This study unveils groundbreaking therapeutic agents and innovative targets for DR, and establishes a progressive theoretical framework for the application of ubiquitin-related therapies in DR.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongsong Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiayang Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wei Sang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jitian Guan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
7
|
Gan J, Ji X, Jin X, Zhou M, Yang C, Chen Z, Yin C, Dong Z. Silybin protected from avermectin-induced carp (Cyprinus carpio) nephrotoxicity by regulating PPAR-γ-involved inflammation, oxidative stress, ferroptosis and autophagy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107011. [PMID: 38917644 DOI: 10.1016/j.aquatox.2024.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Avermectin, a widely used deworming drug, poses a significant threat to fisheries. Silybin is recognized for its antioxidant and anti-inflammatory properties. The kidney, being crucial for fish survival, plays a vital role in maintaining ion balance, nitrogen metabolism, and hormone regulation. While residual avermectin in water could pose a risk to carp (Cyprinus carpio), it remains unclear whether silybin can alleviate the renal tissue toxicity induced by avermectin in this species. In current study, we developed a model of long-term exposure of carp to avermectin to investigate the potential protective effect of silybin against avermectin-induced nephrotoxicity. The results indicated that avermectin induced renal inflammation, oxidative stress, ferroptosis, and autophagy in carp. Silybin suppressed the mRNA transcript levels of pro-inflammatory factors, increased catalase (CAT) activity, reduced glutathione (GSH) activity, diminished reactive oxygen species (ROS) accumulation in renal tissues, and promoted the activation of the Nrf2-Keap1 signaling pathway. Furthermore, the transcript levels of ferroptosis-associated proteins, including gpx4 and slc7a11, were significantly reduced, while those of cox2, ftl, and ncoa4 were elevated. The transcript levels of autophagy-related genes, including p62 and atg5, were also regulated. Network pharmacological analysis revealed that silybin inhibited ROS accumulation and mitigated avermectin-induced renal inflammation, oxidative stress, ferroptosis, and autophagy in carp through the involvement of PPAR-γ. Silybin exerted its anti-inflammatory effect through the NF-κB pathway and antioxidant effect through the Nrf2-Keap1 pathway, induced renal cell iron efflux through the SLC7A11/GSH/GPX4, and suppressed autophagy initiation via the PI3K/AKT pathway. This study provides evidence of the protective effect of silybin against avermectin-induced nephrotoxicity in carp, highlighting its potential as a therapeutic agent to alleviate the adverse effects of avermectin exposure in fish.
Collapse
Affiliation(s)
- Jiajie Gan
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaomeng Ji
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaohui Jin
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengyuan Zhou
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenbeibei Yang
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ziyun Chen
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chaoyang Yin
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
8
|
Li G, Zhao Y, Ma W, Gao Y, Zhao C. Systems-level computational modeling in ischemic stroke: from cells to patients. Front Physiol 2024; 15:1394740. [PMID: 39015225 PMCID: PMC11250596 DOI: 10.3389/fphys.2024.1394740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ischemic stroke, a significant threat to human life and health, refers to a class of conditions where brain tissue damage is induced following decreased cerebral blood flow. The incidence of ischemic stroke has been steadily increasing globally, and its disease mechanisms are highly complex and involve a multitude of biological mechanisms at various scales from genes all the way to the human body system that can affect the stroke onset, progression, treatment, and prognosis. To complement conventional experimental research methods, computational systems biology modeling can integrate and describe the pathogenic mechanisms of ischemic stroke across multiple biological scales and help identify emergent modulatory principles that drive disease progression and recovery. In addition, by running virtual experiments and trials in computers, these models can efficiently predict and evaluate outcomes of different treatment methods and thereby assist clinical decision-making. In this review, we summarize the current research and application of systems-level computational modeling in the field of ischemic stroke from the multiscale mechanism-based, physics-based and omics-based perspectives and discuss how modeling-driven research frameworks can deliver insights for future stroke research and drug development.
Collapse
Affiliation(s)
- Geli Li
- Gusu School, Nanjing Medical University, Suzhou, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yanyong Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wen Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yuan Gao
- QSPMed Technologies, Nanjing, China
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Zhang D, Qin H, Chen W, Xiang J, Jiang M, Zhang L, Zhou K, Hu Y. Utilizing network pharmacology, molecular docking, and animal models to explore the therapeutic potential of the WenYang FuYuan recipe for cerebral ischemia-reperfusion injury through AGE-RAGE and NF-κB/p38MAPK signaling pathway modulation. Exp Gerontol 2024; 191:112448. [PMID: 38697555 DOI: 10.1016/j.exger.2024.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Stroke is a debilitating condition with high morbidity, disability, and mortality that significantly affects the quality of life of patients. In China, the WenYang FuYuan recipe is widely used to treat ischemic stroke. However, the underlying mechanism remains unknown, so exploring the potential mechanism of action of this formula is of great practical significance for stroke treatment. OBJECTIVE This study employed network pharmacology, molecular docking, and in vivo experiments to clarify the active ingredients, potential targets, and molecular mechanisms of the WenYang FuYuan recipe in cerebral ischemia-reperfusion injury, with a view to providing a solid scientific foundation for the subsequent study of this recipe. MATERIALS AND METHODS Active ingredients of the WenYang FuYuan recipe were screened using the traditional Chinese medicine systems pharmacology database and analysis platform. Network pharmacology approaches were used to explore the potential targets and mechanisms of action of the WenYang FuYuan recipe for the treatment of cerebral ischemia-reperfusion injury. The Middle Cerebral Artery Occlusion/Reperfusion 2 h Sprague Dawley rat model was prepared, and TTC staining and modified neurological severity score were applied to examine the neurological deficits in rats. HE staining and Nissl staining were applied to examine the pathological changes in rats. Immunofluorescence labeling and Elisa assay were applied to examine the expression levels of certain proteins and associated factors, while qRT-PCR and Western blotting were applied to examine the expression levels of linked proteins and mRNAs in disease-related signaling pathways. RESULTS We identified 62 key active ingredients in the WenYang FuYuan recipe, with 222 highly significant I/R targets, forming 138 pairs of medication components and component-targets, with the top five being Quercetin, Kaempferol, Luteolin, β-sitosterol, and Stigmasterol. The key targets included TP53, RELA, TNF, STAT1, and MAPK14 (p38MAPK). Targets related to cerebral ischemia-reperfusion injury were enriched in chemical responses, enzyme binding, endomembrane system, while enriched pathways included lipid and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling in diabetic complications. In addition, the main five active ingredients and targets in the WenYang FuYuan recipe showed high binding affinity (e.g. Stigmasterol and MAPK14, total energy <-10.5 Kcal/mol). In animal experiments, the WenYang FuYuan recipe reduced brain tissue damage, increased the number of surviving neurons, and down-regulated S100β and RAGE protein expression. Moreover, the relative expression levels of key targets such as TP53, RELA and p38MAPK mRNA were significantly down-regulated in the WenYang FuYuan recipe group, and serum IL-6 and TNF-a factor levels were reduced. After WenYang FuYuan recipe treatment, the AGE-RAGE signaling pathway and downstream NF-kB/p38MAPK signaling pathway-related proteins were significantly modulated. CONCLUSION This study utilized network pharmacology, molecular docking, and animal experiments to identify the potential mechanism of the WenYang FuYuan recipe, which may be associated with the regulation of the AGE-RAGE signaling pathway and the inhibition of target proteins and mRNAs in the downstream NF-kB/p38MAPK pathway.
Collapse
Affiliation(s)
- Ding Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Hongling Qin
- Guangxi University of Chinese Medicine First Affiliated Hospital, Nanning, China
| | - Wei Chen
- Guangxi University of Chinese Medicine First Affiliated Hospital, Nanning, China
| | - Junjun Xiang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Minghe Jiang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ling Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Keqing Zhou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Yueqiang Hu
- Guangxi University of Chinese Medicine First Affiliated Hospital, Nanning, China.
| |
Collapse
|
10
|
Cheng F, Zhang J, Yang P, Chen Z, Fu Y, Mi J, Xie X, Liu S, Sheng Y. Exploring the neuroprotection of the combination of astragaloside A, chlorogenic acid and scutellarin in treating chronic cerebral ischemia via network analysis and experimental validation. Heliyon 2024; 10:e29162. [PMID: 38655299 PMCID: PMC11036006 DOI: 10.1016/j.heliyon.2024.e29162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic cerebral ischemia (CCI) primarily causes cognitive dysfunction and other neurological impairments, yet there remains a lack of ideal therapeutic medications. The preparation combination of Astragalus membranaceus (Fisch.) Bunge and Erigeron breviscapus (Vant.) Hand.-Mazz have been utilized to ameliorate neurological dysfunction following cerebral ischemia, but material basis of its synergy remains unclear. The principal active ingredients and their optimal proportions in this combination have been identified through the oxygen and glucose deprivation (OGD) cell model, including astragaloside A, chlorogenic acid and scutellarin (ACS), and its efficacy in enhancing the survival of OGD PC12 cells surpasses that of the combination preparation. Nevertheless, mechanism of ACS against CCI remains elusive. In this study, 63 potential targets of ACS against CCI injury were obtained by network pharmacology, among which AKT1, CASP3 and TNF are the core targets. Subsequent analysis utilizing KEGG and GO suggested that PI3K/AKT pathway may play a crucial role for ACS in ameliorating CCI injury. Then, a right unilateral common carotid artery occlusion (rUCCAO) mouse model and an OGD PC12 cell model were established to replicate the pathological processes of CCI in vivo and in vitro. These models were utilized to explore the anti-CCI effects of ACS and its regulatory mechanisms, particularly focusing on PI3K/AKT pathway. The results showed that ACS facilitated the restoration of cerebral blood flow in CCI mice, enhanced the function of the central cholinergic nervous system, protected against ischemic nerve cell and mitochondrial damage, and improved cognitive function and other neurological impairments. Additionally, ACS upregulated the expression of p-PI3K, p-AKT, p-GSK3β and Bcl-2, and diminished the expression of Cyto-c, cleaved Caspase-3 and Bax significantly. However, the PI3K inhibitor (LY294002) partially reversed the downregulation of Bax, Cyto-c and cleaved Caspase-3 expression as well as the upregulation of p-AKT/AKT, p-GSK3β/GSK3β, and Bcl-2/Bax ratios. These findings suggest that ACS against neuronal damage in cerebral ischemia may be closely related to the activation of PI3K/AKT pathway. These results declared first time ACS may become an ideal candidate drug against CCI due to its neuroprotective effects, which are mediated by the activated PI3K/AKT pathway mitigates mitochondrial damage and prevents cell apoptosis.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Jie Zhang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Pan Yang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Zufei Chen
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Yinghao Fu
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Jiajia Mi
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Xingliang Xie
- The Second Class Laboratory of Traditional Chinese Medicine Pharmaceutics, National Administration of Traditional Chinese Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Sha Liu
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Yanmei Sheng
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
- The Second Class Laboratory of Traditional Chinese Medicine Pharmaceutics, National Administration of Traditional Chinese Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| |
Collapse
|
11
|
Wang J, Guo Y, Zhou H, Hua Y, Wan H, Yang J. Investigating the Mechanistic of Danhong Injection in Brain Damage Caused by Cardiac I/R Injury via Bioinformatics, Computer Simulation, and Experimental Validation. ACS OMEGA 2024; 9:18341-18357. [PMID: 38680343 PMCID: PMC11044240 DOI: 10.1021/acsomega.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Cardiac ischemia-reperfusion (I/R) injury has negative effects on the brain and can even lead to the occurrence of ischemic stroke. Clinical evidence shows that Danhong injection (DHI) protects the heart and brain following ischemic events. This study investigated the mechanisms and key active compounds underlying the therapeutic effect of DHI against brain damage induced by cardiac I/R injury. METHODS The gene expression omnibus database provided GSE66360 and GSE22255 data sets. The R programming language was used to identify the common differentially expressed genes (cDEGs). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed, and protein-protein interaction network was constructed. Active compounds of DHI were collected from the Traditional Chinese Medicine Systems Pharmacology database. Molecular docking and molecular dynamics simulations were performed. The MMPBSA method was used to calculate the binding-free energy. The pkCSM server and DruLiTo software were used for Absorption, Distribution, metabolism, excretion, and toxicity (ADMET) analysis and drug-likeness analysis. Finally, in vitro experiments were conducted to validate the results. RESULTS A total of 27 cDEGs had been identified. The PPI and enrichment results indicated that TNF-α was considered to be the core target. A total of 80 active compounds were retrieved. The molecular docking results indicated that tanshinone I (TSI), tanshinone IIA (TSIIA), and hydroxyl safflower yellow A (HSYA) were selected as core active compounds. Molecular dynamics verification revealed that the conformations were relatively stable without significant fluctuations. MMPBSA analysis revealed that the binding energies of TSI, TSIIA, and HSYA with TNF-α were -36.01, -21.71, and -14.80 kcal/mol, respectively. LEU57 residue of TNF-α has the highest contribution. TSI and TSIIA passed both the ADMET analysis and drug-likeness screening, whereas HSYA did not. Experimental verification confirmed that DHI and TSIIA reduced the expression of TNF-α, NLRP3, and IL-1β in the injured H9C2 and rat brain microvascular endothelial cells. CONCLUSION TNF-α can be considered to be a key target for BD-CI/R. TSIIA in DHI exerts a significant inhibitory effect on the inflammatory damage of BD-CI/R, providing new insights for future drug development.
Collapse
Affiliation(s)
- Jinfu Wang
- School
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Yan Guo
- Hangzhou
TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Huifen Zhou
- School
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou, Zhejiang 310053, China
| | - Yanjie Hua
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- School
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou, Zhejiang 310053, China
| | - Jiehong Yang
- School
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
12
|
Zhang J, Luo L, Guo Y, Liu A, Zhang M, Jiang W, Li X, Liu Q, Yu J. Pharmacological effects and target analysis of Guipi wan in the treatment of cerebral ischemia-reperfusion injury. Front Pharmacol 2024; 15:1346226. [PMID: 38515838 PMCID: PMC10955136 DOI: 10.3389/fphar.2024.1346226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Guipi wan (GPW) is a traditional Chinese medicine commonly used in clinical practice, typically to treat neurological diseases such as neurasthenia and traumatic brain injury. It may have positive effects on cerebral ischemia‒reperfusion injury (cI/R). This study aimed to assess the effects of GPW in a mouse model of cI/R and find its possible targets. C57BL/6J mice were used to establish the cI/R model, and the laser speckle doppler was used to determine the success of the model. GPW was administered intragastrically for 7 days, brain tissue sections were stained with TTC, HE, and TUNEL, Western blot assay was performed to detect the effect of apoptosis-related proteins. Furthermore, we screened active ingredients from the TCM Database and constructed a compound‒target network using the Cytoscape 3.8.0 software. Moreover, we employed protein‒protein interaction and component‒target‒pathway network analyses to determine the potential components of GPW and its target genes, the key target was verified through molecular docking. Finally, we detected the influence of the downstream signaling pathway of the target through Western blot. The results showed that GPW decreased the cerebral infarction area, neurological function scores, and neuronal apoptosis in mice by regulating PI3K/AKT signaling pathway. Network analysis indicated that gamma-aminobutyric acid B receptor 1 (GABBR1) might be a potential target for the treatment of cI/R. Molecular docking indicated that 9 active components in GPW could bind to GABBR1 with desirable binding energy. This study represented the demonstratable effect of GPW in the treatment of cI/R injury and suggested GABBR1 as a potential target using network analysis.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Department of Pharmacy, Eighth Hospital of Xi’an City, Xi’an, China
| | - Li Luo
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Yanyan Guo
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - An Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | | | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Xi Li
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Qingqing Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Jiaoyan Yu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| |
Collapse
|
13
|
Hu W, Xie N, Zhu H, Jiang Y, Ding S, Ye S, Zhang S, Wang F, Qu F, Zhou J. The effective compounds and mechanisms of Cang-Fu-Dao-Tan Formula in treating polycystic ovary syndrome based on UPLC/Q-TOF-MS/MS, network pharmacology and molecular experiments. J Pharm Biomed Anal 2024; 239:115867. [PMID: 38061171 DOI: 10.1016/j.jpba.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), as a common endocrine disease in reproductive-age women, which is characterized by both reproductive and metabolic disorders. Cang-Fu-Dao-Tan Formula (CFDTF) is an effective and relatively safe treatment for PCOS. However, the underlying mechanism is poorly understood. PURPOSE To explore the effective compounds and mechanisms of CFDTF in treating PCOS based on UPLC/Q-TOF-MS/MS, network pharmacology and molecular experiments. METHODS The UPLC/Q-TOF-MS/MS and TCMSP, SwissTargetPrediction databases were used to identify the active ingredients of CFDTF. Then GeneCards, Disgenet, Drugbank databases were used to obtain the PCOS related targets. Based above, the Drug-component-target (D-C-T) network and protein-protein-interaction (PPI) network were built to analysis the key targets. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were performed to find the potential mechanisms. Finally, molecular docking analysis, molecular dynamics (MD) simulations and molecular experiments were used to confirm the interactions among the active compounds, targets and explore the potential mechanisms. RESULTS A total of 20 compounds were identified by UPLC/Q-TOF-MS/MS, and 136 active compounds by TCMSP from CFDTF. After removing the duplicate results, there were 370 targets related to both CFDTF and PCOS, among which, MAPK3, AKT1, RELA, EGF, TP53 and MYC were proved to have high interactions with the components. The mechanisms of CFDTF against PCOS were related to PI3K-Akt, mTOR, MAPK signaling pathways, and the in vitro experiments proved that the CFDTF positively regulated the cell proliferation and inhibited the apoptosis levels in PCOS cell model. CONCLUSIONS The combination of UPLC/Q-TOF-MS/MS, systematic network pharmacology and molecular experiments identified that the quercetin, hesperidin, and glycyrrhizin disaccharide are the TOP 3 effective compounds of CFDTF in treating PCOS and the potential mechanisms may involve in regulating proliferation and apoptosis of granulosa cells.
Collapse
Affiliation(s)
- Weihuan Hu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Ningning Xie
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Hanyue Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yiting Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Sijia Ding
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Shaoyan Ye
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Siwen Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Jue Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
14
|
Li X, Zhang Z, Zhang X, Yin Y, Yuan X, You X, Wu J. Echinacoside Prevents Sepsis-Induced Myocardial Damage via Targeting SOD2. J Med Food 2024; 27:123-133. [PMID: 38100058 DOI: 10.1089/jmf.2023.k.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Echinacoside (ECH) is a prominent naturally occurring bioactive compound with effects of alleviating myocardial damage. We aimed to explore the beneficial effects of ECH against sepsis-induced myocardial damage and elucidate the potential mechanism. Echocardiography and Masson staining demonstrated that ECH alleviates cardiac function and fibrosis in the cecal ligation and puncture (CLP) model. Transcriptome profiling and network pharmacology analysis showed that there are 51 overlapping targets between sepsis-induced myocardial damage and ECH. Subsequently, chemical carcinogenesis-reactive oxygen species (ROS) were enriched in multiple targets. Wherein, SOD2 may be the potential target of ECH on sepsis-induced myocardial damage. Polymerase chain reaction results showed that ECH administration could markedly increase the expression of SOD2 and reduce the release of ROS. Combined with injecting the inhibitor of SOD2, the beneficial effect of ECH on mortality, cardiac function, and fibrosis was eliminated, and release of ROS was increased after inhibiting SOD2. ECH significantly alleviated myocardial damage in septic mice, and the therapeutic mechanism of ECH is achieved by upregulating SOD2 which decreased the release of ROS.
Collapse
Affiliation(s)
- Xin Li
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Zuojing Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaoxuan Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yibo Yin
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinru Yuan
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xingji You
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology (USST), Shanghai, China
| |
Collapse
|
15
|
Tian J, Fu W, Xie Z, Zhao Y, Yang H, Zhao J. Methionine enkephalin (MENK) protected macrophages from ferroptosis by downregulating HMOX1 and ferritin. Proteome Sci 2024; 22:2. [PMID: 38245706 PMCID: PMC10799539 DOI: 10.1186/s12953-024-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVE The aim of this work was to investigate the immunological effect of MENK by analyzing the protein spectrum and bioinformatics of macrophage RAW264.7, and to explore the relationship between macrophage and ferroptosis. RESULT We employed proteomic analysis to identify differentially expressed proteins (DEPs) between macrophages and macrophages intervened by MENK. A total of 208 DEPs were identified. Among these, 96 proteins had upregulated expression and 112 proteins had downregulated expression. Proteomic analysis revealed a significant enrichment of DEPs associated with iron metabolism. The identification of hub genes was conducted using KEGG pathway diagrams and protein-protein interaction (PPI) analysis. The hub genes identified in this study include HMOX1 and Ferritin (FTH and FTL). A correlation was established between HMOX1, FTH, and FTL in the GO and KEGG databases. The results of PCR, WB and immunofluorescence showed that MENK downregulated the level of HMOX1 and FTH. CONCLUSION MENK had the potential to become an adjuvant chemotherapy drug by regulating iron metabolism in macrophages, reducing levels of HMOX1 and ferritin. We proposed an innovative research direction on the therapeutic potential of MENK, focusing on the relationship between ferroptosis and macrophage activity.
Collapse
Affiliation(s)
- Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China.
| | - Wenrui Fu
- Graduate College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Zifeng Xie
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yuanlong Zhao
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Haochen Yang
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Jiafan Zhao
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| |
Collapse
|
16
|
Liu Y, Xiang R, Lu W, Qin X. Symptom-oriented network pharmacology revealed the mechanism of HuangQi-DanShen herb pair against cerebral ischemia coupled with comprehensive chemical characterization. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116845. [PMID: 37437791 DOI: 10.1016/j.jep.2023.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the clinical practice of traditional Chinese medicine, HuangQi-DanShen (HD) is an important drug pair for the treatment of cerebral ischemia (CI). AIM OF THE STUDY Elucidate the mechanism of HD against CI based on symptom-oriented network pharmacology coupled with comprehensive chemical characterization. MATERIALS AND METHODS UHPLC-Q-Exactive Orbitrap-MS technology was firstly used to obtain the chemical profile of HD constituents. A comprehensive strategy combining in-house library, diagnostic ions, Compound Discover software and network databases was then established to identify its chemical constitutes. Symptomatic treatment is a treatment aimed at relieving or eliminating symptoms which is often characterized as a stop-gap measure due to its inability to cure the disease fundamentally. Nevertheless, symptomatic treatment is an indispensable part of clinical practice and has an important place in medical therapeutics. Therefore, network pharmacology technique were used to elucidate molecular mechanisms from the symptoms of CI. Finally, some literatures were further mined to support our conclusions. RESULTS A total of 190 ingredients were identified in HD. Symptom-oriented network pharmacology analysis indicated that compounds of HD relieved "blood" through the regulation of ADORA2A, ADORA1, PTPN11, MMP9 and EGFR, relieved "qi" via the regulation of ADORA2A, EGFR, MMP9 and CA2. The therapeutic effect of HD on "faint" was linked to PTPN11 and MMP9, while the regulation of "dyskinesia" was related to ADORA2A and EGFR, and ADORA1, PTPN11 and MMP9 were associated withe its effect on "speech disorder". ADORA1, ADORA2A and MMP9 were key to the HD component in treating "visual disturbance". CONCLUSION The approach of symptom-oriented network pharmacology coupled with comprehensive chemical characterization proposed a further orientation for exploring the mechanisms of HD against CI.
Collapse
Affiliation(s)
- Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Ruoxin Xiang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Wentian Lu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| |
Collapse
|
17
|
Xi W, Zhao X, Wang B, Zhu Y, Li H. A Review of the Mechanism of Bailing for Diabetic Nephropathy Based on ChatGPT and Network Pharmacology. Int J Clin Pract 2024; 2024. [DOI: 10.1155/2024/1432594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/20/2024] [Indexed: 01/04/2025] Open
Abstract
Diabetes nephropathy (DN) is increasingly recognized as a critical complication in individuals with diabetes and a significant contributor to end‐stage renal disease (ESRD). Bailing capsules, which contain fermented cordyceps mycelium, are commonly utilized in treating various kidney disorders, including DN in clinical practice. This review aims to comprehensively detail the pharmacologically active components of Bailing, its mechanisms of action, and its clinical usage. By employing network pharmacology, we delve into the possible pathways Bailing impacts DN treatment. Current studies suggest that Bailing’s efficacy in DN primarily involves mechanisms related to lipid and atherosclerosis, cancer pathways, and small‐cell lung cancer. Key active ingredients in Bailing that contribute to its therapeutic effects include arachidonic acid, linalyl acetate, β‐sitosterol, and CLR. Furthermore, for literature selection in this review, we integrated GPT‐4 with bias analysis coprocessing. This evaluation provides a foundational understanding and direction for future research into the use of Bailing as a novel treatment for DN.
Collapse
|
18
|
Chen Y, Liu Z, Yu Q, Qu X, Liu H. Integrating network pharmacology and experimental verification to explore the mechanism of Tripterygium wilfordii in ankylosing spondylitis. Medicine (Baltimore) 2023; 102:e36580. [PMID: 38115356 PMCID: PMC10727665 DOI: 10.1097/md.0000000000036580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVE This study aimed to validate the mechanism of triptolide in treating ankylosing spondylitis (AS) through network pharmacology, molecular docking, and in vitro experiments. METHODS We gathered AS-related genes using databases including DrugBank, OMIM, GeneCards, TTD and DisGeNET. TCMSP database was used to collect Tripterygium wilfordii (TWHF)-related data. Additionally, the potential targets of TWHF in treating AS were predicted by consulting databases such as Venny, String, Cytoscape, and Cytohubba. Subsequently, a protein-protein interaction network was created and the gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed by metascape database. After selecting the most active ingredient of TWHF, molecular docking was performed to confirm the predicted results. Furthermore, we explore the potential mechanism of the most active ingredient of TWHF in the treatment of AS in vitro. RESULT By integrating the results of network pharmacological analysis, 62 genes were found to be strongly associated with AS, such as STAT3, TNF, MMP9, VEGFA, CXCL8, PTGS2, etc. Triptolide (TP) is one of the most active ingredients in TWHF. The enrichment analysis indicated that 292 biological processes and 132 signaling pathways were involved, with the T helper 17 cells cell differentiation pathway as the key pathway. TP was selected for molecular docking and in vitro experiments. The molecular docking results indicated that TP had excellent affinity with 6 key targets. Further, flow cytometry, cell counting assay, and ELISA demonstrated that the serum level of IL-17 was higher in AS patients compared to XXX, and 25 μg/mL TP was the optimal intervention concentration. RT-qPCR and Western blotting further verified that TP could inhibit the activation of RORγt and the JAK2/STAT3 signaling pathway. CONCLUSION In conclusion, based on network pharmacology, molecular docking, and experimental verification in vitro, we proposed that the TP can inhibit the activation of RORγt and the JAK2/STAT3 signaling pathway and inhibit the differentiation of T helper 17 cells cells. The article provide a theoretical basis for further development and utilization of TWHF in AS management.
Collapse
Affiliation(s)
- Yuening Chen
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhaoyi Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Qing Yu
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinning Qu
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxiao Liu
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Liu X, Huang M, Wang L, Li J, Wu W, Wang Q. Network pharmacology and experimental validation methods to reveal the active compounds and hub targets of Curculigo orchioides Gaertn in rheumatoid arthritis. J Orthop Surg Res 2023; 18:861. [PMID: 37957674 PMCID: PMC10644664 DOI: 10.1186/s13018-023-04352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease that can lead to joint destruction and deformity. Curculigo orchioides Gaertn (CO) was previously revealed to play a significant role in RA treatment. However, the main active ingredients and molecular mechanisms of CO in regulating RA are still unclear. METHODS The active ingredients of CO were obtained from the Traditional Chinese Medicine Systems Pharmacology database and published literature. The targets corresponding to these compounds and the targets linked to RA were collected from public databases. The "ingredient-target" and "protein-protein interaction" networks were constructed to screen the main active ingredients and hub targets of CO in the treatment of RA. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment assays were used to elucidate the potential pharmacological mechanism of CO in RA. Molecular docking was performed to detect the binding between the main active ingredients and hub targets. Collagen-induced arthritis rats were used to validate the hub targets of CO against RA. RESULTS Network pharmacological topology analysis showed that caffeine, 2,4-dichloro-5-methoxy-3-methylphenol, curculigoside, orcinol glucoside, and orcin were the main active ingredients of CO, and matrix metalloproteinase 9 (MMP9), transcription factor AP-1 (JUN), prostaglandin-endoperoxide synthase 2 (PTGS2), brain-derived neurotrophic factor, and receptor-type tyrosine-protein phosphatase C were the hub targets of CO for RA treatment. Molecular docking revealed that curculigoside and orcinol glucoside had effective binding potential with MMP9, JUN, and PTGS2, respectively. In vivo experiments demonstrated that CO alleviated RA symptoms and inhibited the expression of MMP9, JUN, and PTGS2 proteins. CONCLUSIONS Our study demonstrates the main active ingredients and potential targets of CO against RA, laying an experimental foundation for the development and application of CO as an anti-RA drug.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Qizhi Road, Chongqing, 400021, China
| | - Mingchun Huang
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Qizhi Road, Chongqing, 400021, China
| | - Lijuan Wang
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Qizhi Road, Chongqing, 400021, China
| | - Jie Li
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Qizhi Road, Chongqing, 400021, China
| | - Weihui Wu
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Qizhi Road, Chongqing, 400021, China.
| | - Qin Wang
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Qizhi Road, Chongqing, 400021, China.
| |
Collapse
|
20
|
Wang Y, Pan Y, Luo Y, Wu J, Fang Z, Teng W, Guan Y, Li Y. Elucidation of the anti-lung cancer mechanism of Juan-Liu-San-Jie prescription based on network pharmacology and experimental validation. Heliyon 2023; 9:e18298. [PMID: 37560652 PMCID: PMC10407049 DOI: 10.1016/j.heliyon.2023.e18298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Lung cancer is a malignancy characterized by high morbidity and mortality, with lung adenocarcinoma being the most prevalent subtype. Our preliminary studies have demonstrated that the Juan-Liu-San-Jie (JLSJ) prescription, a Traditional Chinese Medicine prescription, possesses anti-lung adenocarcinoma cancer properties. However, the molecular mechanism underlying the therapeutic effects of the JLSJ prescription for lung adenocarcinoma remains incompletely elucidated. To address the knowledge gap, the present study employed network pharmacology to identify potential therapeutic targets. Specifically, the study utilized TCMSP, TCMID, and related references, as well as ChemMapper, to identify and predict the main active components and potential targets. Additionally, differentially expressed genes associated with the disease were obtained from the microarray dataset GSE19804 and GSE118370. The protein-protein Interaction network and Target-pathway network were then constructed. We also conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and subsequently presented the top 20 enriched pathways. The results indicated that the anti-lung cancer effects of JLSJ prescription may be attributed to its ability to mediate apoptosis of tumor cells, potentially through the PI3K/Akt signaling pathway. Then, a series of in vitro and in vivo experiments were conducted to validate the molecular mechanism predicted by network pharmacology. The findings of the in vivo study suggested that the JLSJ prescription could inhibit the growth of xenograft tumors of lung adenocarcinoma with fewer adverse effects. Also, the in vitro experiments corroborated that the JLSJ prescription could induce apoptosis of A549 cells. Furthermore, the upregulation of pro-apoptosis-related proteins and mRNAs, coupled with the downregulation of anti-apoptotic-related proteins and mRNAs, was observed. In conclusion, inducing apoptosis by inhibiting the PI3K/Akt signaling pathway was one of the underlying mechanisms by which the JLSJ prescription exerted its anti-lung adenocarcinoma effect.
Collapse
Affiliation(s)
- Yuli Wang
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanbin Pan
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingbin Luo
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianchun Wu
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhihong Fang
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjing Teng
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Guan
- Diagnostic Laboratory for Hematological Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Li
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Sun K, Zhang Y, Li Y, Yang P, Sun Y. Biochemical Targets and Molecular Mechanism of Matrine against Aging. Int J Mol Sci 2023; 24:10098. [PMID: 37373246 DOI: 10.3390/ijms241210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study is to explore the potential targets and molecular mechanism of matrine (MAT) against aging. Bioinformatic-based network pharmacology was used to investigate the aging-related targets and MAT-treated targets. A total of 193 potential genes of MAT against aging were obtained and then the top 10 key genes (cyclin D1, cyclin-dependent kinase 1, Cyclin A2, androgen receptor, Poly [ADP-ribose] polymerase-1 (PARP1), histone-lysine N-methyltransferase, albumin, mammalian target of rapamycin, histone deacetylase 2, and matrix metalloproteinase 9) were filtered by the molecular complex detection, maximal clique centrality (MMC) algorithm, and degree. The Metascape tool was used for analyzing biological processes and pathways of the top 10 key genes. The main biological processes were response to an inorganic substance and cellular response to chemical stress (including cellular response to oxidative stress). The major pathways were involved in cellular senescence and the cell cycle. After an analysis of major biological processes and pathways, it appears that PARP1/nicotinamide adenine dinucleotide (NAD+)-mediated cellular senescence may play an important role in MAT against aging. Molecular docking, molecular dynamics simulation, and in vivo study were used for further investigation. MAT could interact with the cavity of the PARP1 protein with the binding energy at -8.5 kcal/mol. Results from molecular dynamics simulations showed that the PARP1-MAT complex was more stable than PARP1 alone and that the binding-free energy of the PARP1-MAT complex was -15.962 kcal/mol. The in vivo study showed that MAT could significantly increase the NAD+ level of the liver of d-gal-induced aging mice. Therefore, MAT could interfere with aging through the PARP1/NAD+-mediated cellular senescence signaling pathway.
Collapse
Affiliation(s)
- Kaiyue Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingzi Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingliang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Pengyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingting Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
22
|
Ma P, Peng C, Peng Y, Fan L, Chen X, Li X. A mechanism of Sijunzi decoction on improving intestinal injury with spleen deficiency syndrome and the rationality of its compatibility. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116088. [PMID: 36649851 DOI: 10.1016/j.jep.2022.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sijunzi Decoction (SJZD) is a renowned formula for the treatment of spleen deficiency syndrome (SDS) in traditional Chinese medicine (TCM). Its non-polysaccharides (NPS) component, dominated by various compounds of SJZD, has shown the remarkable efficacy in SDS, especially in gastrointestinal injury. However, the principle of compatibility of SJZD and the micro-mechanism of effect on SDS are still unclear. AIM OF THE STUDY To elucidate the scientific implications of SJZD compatibility and its micro-mechanism in the treatment of SDS-induced intestinal injury. MATERIALS AND METHODS First, the chemical composition of NPS in SJZD and incomplete SJZD (iSJZD, including SJZD-R, SJZD-A, SJZD-P, SJZD-G) were comprehensively analyzed by UPLC-QTOF-MS, and comparing their chemical composition by multivariate statistical analysis to reveal the effect of a single herb on SJZD compatibility. Second, network pharmacology and molecular docking were used to uncover the micro-mechanisms of potential active compounds in SJZD for the treatment of SDS, and develop an active component combination (ACC) by accurate quantification. Subsequently, the action of the potential active compounds and ACC was verified through in vivo and in vitro. RESULTS A total of 112, 77, 93, 87, and 67 compounds were detected in NPS of SJZD, SJZD-R, SJZD-A, SJZD-P, and SJZD-G, respectively. Changes in the chemical components of SJZD_NPS and iSJZD_NPS revealed that RG and RAM, as well as RAM and Poria significantly affected the dissolution of each other's chemical components, and the co-decoction of four herbs promoted the dissolution of the active compounds and inhibited toxic compounds. Furthermore, network pharmacology showed that 274 compounds of 15 categories in SJZD_NPS acted on the 186 key targets to treat SDS by inhibiting inflammation, enhancing immunity, and regulating gastrointestinal function and metabolism. Finally, through in vitro experiments, six compounds among 18 potential compounds were verified to markedly repair intestinal epithelium injury by modulating the FAK/PI3K/Akt or LCK/Ras/PI3K/Akt signaling pathway. It is worth mentioning that ACC, composed of 11 compounds accurately quantified, demonstrated significant in vivo treatment effects on intestinal damage with SDS similar to NPS or SJZD. CONCLUSIONS This study elucidates the scientific evidence of the "Jun-Chen-Zuo-Shi" and "detoxification and synergistic" in the decocting process of SJZD. An ACC, the active component of SJZD, ameliorate SDS-induced intestinal injury by the FAK/PI3K/Akt signaling pathway, which provides a strategy for screening alternatives to effective combinations of TCMs.
Collapse
Affiliation(s)
- Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Li Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaonan Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
23
|
Xiao G, Hu Z, Jia C, Yang M, Li D, Xu A, Jiang J, Chen Z, Li Y, Li S, Chen W, Zhang J, Bi X. Deciphering the mechanisms of Yinlan Tiaozhi capsule in treating hyperlipidemia by combining network pharmacology, molecular docking and experimental verification. Sci Rep 2023; 13:6424. [PMID: 37076581 PMCID: PMC10115829 DOI: 10.1038/s41598-023-33673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023] Open
Abstract
Yinlan Tiaozhi capsule (YLTZC) has been widely used to treat hyperlipidemia (HLP). However, its material basis and underlying pharmacological effects remain unclean. The current study aimed to explore the mechanisms involved in the treatment of YLTZC on HLP based on network pharmacology, molecular docking, and experimental verification. Firstly, UPLC-Q-TOF-MS/MS was used to comprehensively analyze and identify the chemical constituents in YLTZC. A total of 66 compounds, mainly including flavonoids, saponins, coumarins, lactones, organic acids, and limonin were characterized and classified. Simultaneously, the mass fragmentation pattern of different types of representative compounds was further explored. By network pharmacology analysis, naringenin and ferulic acid may be the core constituents. The 52 potential targets of YLTZC, including ALB, IL-6, TNF, and VEGFA, were considered potential therapeutic targets. Molecular docking results showed that the core active constituents of YLTZC (naringenin and ferulic acid) have a strong affinity with the core targets of HLP. Lastly, animal experiments confirmed that naringenin and ferulic acid significantly upregulated the mRNA expression of ALB and downregulated the mRNA expression of IL-6, TNF, and VEGFA. In sum, the constituents of YLTZC, such as naringenin and ferulic acid, might treat HLP by regulating the mechanism of angiogenesis and inhibiting inflammatory responses. Furthermore, our data fills the gap in the material basis of YLTZC.
Collapse
Affiliation(s)
- Guanlin Xiao
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Zixuan Hu
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Canchao Jia
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Minjuan Yang
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Dongmei Li
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Aili Xu
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Jieyi Jiang
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhao Chen
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Yangxue Li
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Sumei Li
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Weitao Chen
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Jingnian Zhang
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Xiaoli Bi
- Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
24
|
Zhou Z, Dun L, Yang Q, Tao J, Yu P, Xu H, Zhao N, Zheng N, An H, Yi P. Tongqiao Huoxue decoction alleviates neurological impairment following ischemic stroke via the PTGS2/NF-kappa B axis. Brain Res 2023; 1805:148247. [PMID: 36669713 DOI: 10.1016/j.brainres.2023.148247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Traditional Chinese medicine has emerged as promising targets for ischemic stroke (IS) therapy, yet the mechanism remains elusive. The current study was performed with an aim to investigate the action and mechanism of Tongqiao Huoxue decoction (TQHXD) affecting the neurological impairment secondary to IS based on network pharmacology. Based on network pharmacology and bioinformatics analysis, target genes and pathways involved in the treatment of TQHXD against IS were predicted. Serum containing TQHXD was prepared through blood collection from C57BL/6 mice after intragastric administration of TQHXD. The main results exhibited that Prostaglandin-endoperoxide synthase 2 (PTGS2) exhibited an abundance in IS and enrichment in the NF-kappa B signaling pathway, holding the potential as targets related to TQHXD treatment for IS. TQHXD was found to rescue cell viability, inhibit apoptosis, and alleviate inflammation under oxygen and glucose deprivation and reoxygenation (OGD/R) exposure. Furthermore, our in vivo experiment validated the protective function of TQHXD in ischemic brain damage stimulated by middle cerebral artery occlusion (MCAO). This protective action of TQHXD could be attenuated by overexpressing nuclear factor (NF)-kappa B, which was dependent on PTGS2. Collectively, TQHXD was demonstrated to ameliorate IS-induced neurological impairment by blocking the NF-kappa B signaling pathway and down-regulating PTGS2.
Collapse
Affiliation(s)
- Zheyi Zhou
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Linglu Dun
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Qian Yang
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Jingrui Tao
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Peishan Yu
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Hong Xu
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Na Zhao
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Na Zheng
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Hongwei An
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China
| | - Ping Yi
- Department of Neurology Laboratory, Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou 545001, PR China.
| |
Collapse
|
25
|
Fu W, Xie Z, Bai M, Zhang Z, Zhao Y, Tian J. Proteomics analysis of methionine enkephalin upregulated macrophages against infection by the influenza-A virus. Proteome Sci 2023; 21:4. [PMID: 37041527 PMCID: PMC10088144 DOI: 10.1186/s12953-023-00205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 04/13/2023] Open
Abstract
Macrophages have a vital role in phagocytosis and antiviral effect against invading influenza viruses. Previously, we found that methionine enkephalin (MENK) inhibited influenza virus infection by upregulating the "antiviral state" of macrophages. To investigate the immunoregulatory mechanism of action of MENK on macrophages, we employed proteomic analysis to identify differentially expressed proteins (DEPs) between macrophages infected with the influenza-A virus and cells infected with the influenza-A virus after pretreatment with MENK. A total of 215 DEPs were identified: 164 proteins had upregulated expression and 51 proteins had downregulated expression. Proteomics analysis showed that DEPs were highly enriched in "cytokine-cytokine receptor interaction", "phagosome", and "complement and coagulation cascades pathway". Proteomics analysis revealed that MENK could be an immune modulator or prophylactic for the prevention and treatment of influenza. MENK promoted the polarization of M1 macrophages, activated inflammatory responses, and enhanced phagocytosis and killing function by upregulating opsonizing receptors.
Collapse
Affiliation(s)
- Wenrui Fu
- Graduate College, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zifeng Xie
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, China
| | - Mei Bai
- Department of Microbiology, Jinzhou Center for Disease Control and Prevention, Jinzhou, 121000, China
| | - Zhen Zhang
- Department of Microbiology, Jinzhou Center for Disease Control and Prevention, Jinzhou, 121000, China
| | - Yuanlong Zhao
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, China
| | - Jing Tian
- Department of Immunology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
26
|
Li Z, Zeng M, Geng K, Lai D, Xu Z, Zhou W. Chemical Constituents and Hypoglycemic Mechanisms of Dendrobium nobile in Treatment of Type 2 Diabetic Rats by UPLC-ESI-Q-Orbitrap, Network Pharmacology and In Vivo Experimental Verification. Molecules 2023; 28:molecules28062683. [PMID: 36985655 PMCID: PMC10057382 DOI: 10.3390/molecules28062683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
This study aimed to systematically explore the chemical constituents of D. nobile and its hypoglycemic effect by UPLC-ESI-Q-Orbitrap, network pharmacology and in vivo experiment. The chemical constituents of D. nobile were qualitatively analyzed, and the hypoglycemic compounds were quickly identified. Network pharmacological analysis and molecular docking technique were applied to assist in the elucidation of the hypoglycemic mechanisms of D. nobile. A type 2 diabetic mellitus (T2DM) rat model was established using the HFD and STZ method for in vivo experimental verification, and these T2DM rats were treated with D. nobile extract and D. nobile polysaccharide for two months by gavage. The results showed that a total of 39 chemical constituents of D. nobile, including alkaloids, bibenzyls, phenanthrenes and other types of compounds, were identified. D. nobile extract and D. nobile polysaccharide could significantly ameliorate the body weight, hyperglycemia, insulin resistance, dyslipidemia and morphological impairment of the liver and pancreas in the T2DM rats. α-Linolenic acid, dihydroconiferyl dihydro-p-coumarate, naringenin, trans-N-feruloyltyramine, gigantol, moscatilin, 4-O-methylpinosylvic acid, venlafaxine, nordendrobin and tristin were regarded as the key hypoglycemic compounds of D. nobile, along with the hypoglycemic effect on the PI3K-AKT signaling pathway, the insulin signaling pathway, the FOXO signaling pathway, the improvement of insulin resistance and the AGE-RAGE signaling pathway. The Western blotting experiment results confirmed that D. nobile activated the PI3K/AKT pathway and insulin signaling pathway, promoted glycogen synthesis via regulating the expression of glycogen synthase kinase 3 beta (GSK-3β) and glucose transporter 4 (GLUT4), and inhibited liver gluconeogenesis by regulating the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6pase) in the liver. The results suggested that the hypoglycemic mechanism of D. nobile might be associated with liver glycogen synthesis and gluconeogenesis, contributing to improving insulin resistance and abnormal glucose metabolism in the T2DM rats.
Collapse
Affiliation(s)
- Zhaoyang Li
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Meiling Zeng
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Keyong Geng
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Donna Lai
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: (D.L.); (Z.X.); (W.Z.)
| | - Zhi Xu
- Guizhou Miaoaitang Health Management Co., Ltd., Guiyang 550025, China
- Correspondence: (D.L.); (Z.X.); (W.Z.)
| | - Wei Zhou
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (D.L.); (Z.X.); (W.Z.)
| |
Collapse
|
27
|
Zhu J, Luo Y, Tong H, Zhong L, Gong Q, Wang Y, Yang M, Song Q. "Drying effect" of fructus aurantii components and the mechanism of action based on network pharmacology and in vitro pharmacodynamic validation. Front Pharmacol 2023; 14:1114010. [PMID: 36969872 PMCID: PMC10031011 DOI: 10.3389/fphar.2023.1114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Fructus aurantii (FA) is the dried, unripe fruit of the plant Citrus aurantium L. and its cultivated varieties. We investigated the drying effect of FA components and how this drying affect is achieved. Methods: We employed systems pharmacology to predict the components and targets of FA that produce its drying effect. These predictions were verified by computer simulation and animal experiments. In the latter, we measured the bodyweight, water consumption, urine output, fecal water content, rate of salivary secretion, and cross-sectional area of the long axis of the submandibular gland of mice. Immunohistochemistry was used to measure expression of aquaporin (AQP)5 in the submandibular gland, AQP2 in the kidney, and AQP3 in the colon. ELISA kits were used to measure the horizontal variation of cyclic adenosine monsophosphate (cAMP), cyclic guanosine monophosphate (cGMP) and interferon-γ. Results: Sixty-seven potentially active components of FA were screened out. FA could produce a drying effect after regulating 214 targets through 66 active components. A total of 870 gene ontology (GO) terms and 153 signaling pathways were identified. The hypoxia inducible factor-1 signaling pathway, phosphoinositide 3-kinase-protein kinase B (PI3K-AKT) signaling pathway, calcium signaling pathway, and Ras signaling pathway may have important roles in the drying effect of FA. Four components of FA were identified: sinensetin, tangeretin, 5-demethylnobiletin and chrysin. These four components could increase the serum level of interferon-γ and ratio of cyclic adenosine monophosphate:cyclic guanosine monophosphate in mice, and affect their water consumption, urine output, fecal water content and rate of salivary secretion. Conclusion: Four components of FA (tangeretin, sinensetin, chrysin, 5-Demethylmobiletin) were closely related to the Janus kinase-signal transducer and activator of transcription-3 (JAK-STAT3), PI3K-AKT, and the other signaling pathways. They can regulate the protein expression of JAK2, STAT3, PI3K, lymphocyte cell-specific protein-tyrosine kinase, vascular endothelial growth factor A, and protein kinase B1, affect water metabolism in the body and, finally, result in a drying effect.
Collapse
Affiliation(s)
- Jing Zhu
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yi Luo
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hengli Tong
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lingyun Zhong
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qianfeng Gong
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yaqi Wang
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ming Yang
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qing Song
- Ultrasound Diagnosis Department of Jiangxi Traditional Chinese Medicine Hospital, Nanchang, China
| |
Collapse
|
28
|
Li LD, Zhou Y, Shi SF. Edaravone combined with Shuxuening versus edaravone alone in the treatment of acute cerebral infarction: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e32929. [PMID: 36862906 PMCID: PMC9981379 DOI: 10.1097/md.0000000000032929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Shuxuening injection (SXN) is a traditional Chinese medicine used in the treatment of cardiovascular diseases. Whether it can provide better outcomes when combined with edaravone injection (ERI) for the treatment of acute cerebral infarction is not well determined. Therefore, we evaluated the efficacy of ERI combined with SXN versus that of ERI alone in patients with acute cerebral infarction. METHODS PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, and Wanfang electronic databases were searched up to July 2022. Randomized controlled trials comparing the outcomes of efficacy rate, neurologic impairment, inflammatory factors, and hemorheology were included. Odds ratio or standard mean difference (SMD) with corresponding 95% confidence intervals (CIs) were used to present the overall estimates. The quality of the included trials was evaluated by the Cochrane risk of bias tool. The study was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses. RESULTS Seventeen randomized controlled trials were included consisting of 1607 patients. Compared to ERI alone, treatment with ERI plus SXN had a greater effective rate than ER alone (odds ratio = 3.94; 95% CI: 2.85, 5.44; I2 = 0%, P < .00001), a lower National Institute of Health Stroke Scale (SMD= -1.39; 95% CI: -1.73, -1.05; I2 = 71%, P < .00001), lower neural function defect score (SMD= -0.75; 95% CI: -1.06,-0.43; I2 = 67%, P < .00001), and lower level of neuron-specific enolase (SMD= -2.10; 95% CI: -2.85, -1.35; I2 = 85%, P < .00001). ERI plus SXN treatment provided significant improvements in whole blood high shear viscosity (SMD = -0.87; 95% CI: -1.17, -0.57; I2 = 0%, P < .00001), and whole blood low shear viscosity (SMD = -1.50; 95% CI: -1.65, -1.36; I2 = 0%, P < .00001) compared to ERI alone. CONCLUSION ERI plus SXN showed better efficacy than ERI alone for patients with acute cerebral infarction. Our study provides evidence supporting the application of ERI plus SXN for acute cerebral infarction.
Collapse
Affiliation(s)
- Liang-Da Li
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang Province, China
- * Correspondence: Liang-Da Li, Department of Neurology, The People’ s Hospital Affiliated to Ningbo University, No. 251, Baizhang East Road, Yinzhou District, Ningbo, Zhejiang Province 315040, China (e-mail: )
| | - Yue Zhou
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang Province, China
| | - Shan-Fen Shi
- Department of Rheumatology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang Province, China
| |
Collapse
|
29
|
Chen Y, Xue Y, Wang X, Jiang D, Xu Q, Wang L, Zheng Y, Shi Y, Cao Y. Molecular mechanisms of the Guizhi decoction on osteoarthritis based on an integrated network pharmacology and RNA sequencing approach with experimental validation. Front Genet 2023; 14:1079631. [PMID: 36760992 PMCID: PMC9905689 DOI: 10.3389/fgene.2023.1079631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Our aim was to determine the potential pharmacological mechanisms of the Guizhi decoction (GZD) in the treatment of osteoarthritis (OA) through an integrated approach of network pharmacological analyses, RNA sequencing (RNA-seq), and experimental validation. Methods: The quality control and identification of bioactive compounds of the GZD were carried out by using ultra-performance liquid chromatography (UPLC), and their OA-related genes were identified through overlapping traditional Chinese medicine systems pharmacology database (TCMSP), DrugBank and SEA Search Server databases, and GeneCards. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were implemented after constructing the component-target network. RNA-seq was used to screen differentially expressed genes (DEGs) under intervention conditions with and without the GZD in vitro. The crossover signaling pathways between RNA-seq and network pharmacology were then analyzed. Accordingly, protein-protein interaction (PPI) networks, GO, and KEGG analysis were performed using the Cytoscape, STRING, or DAVID database. The OA rat model was established to further verify the pharmacological effects in vivo. Hematoxylin-eosin (H&E) and safranin O/fast green (S-O) staining were used to grade the histopathological features of the cartilage. We verified the mRNA and protein expressions of the key targets related to the TNF signaling pathways in vivo and in vitro by qPCR, Western blotting (WB), and immunofluorescence assay. In addition, we also detected inflammatory cytokines in the rat serum by Luminex liquid suspension chip, which included tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). Results: Eighteen compounds and 373 targets of the GZD were identified. A total of 2,356 OA-related genes were obtained from the GeneCards database. A total of three hub active ingredients of quercetin, kaempferol, and beta-sitosterol were determined, while 166 target genes associated with OA were finally overlapped. The RNA-seq analysis revealed 1,426 DEGs. In the KEGG intersection between network pharmacology and RNA-seq analysis, the closest screening relevant to GZD treatment was the TNF signaling pathway, of which TNF, IL-6, and IL-1β were classified as hub genes. In consistent, H&E and S-O staining of the rat model showed that GZD could attenuate cartilage degradation. When compared with the OA group in vivo and in vitro, the mRNA levels of TNF-α, IL-1β, IL-6, matrix metalloproteinase 3 (MMP3), and matrix metalloproteinase 9 (MMP9) were all downregulated in the GZD group (all p < 0.05). The expression levels of anabolic proteins (Col2α1 and SOX9) were all higher in the GZD group than in the OA group (p < 0.05), while the expression levels of the catabolic proteins (MMP9 and COX-2) and TNF-α in the GZD group were significantly lower than those in the OA group (p < 0.05). In addition, the expression levels of TNF, IL-6, and IL-1β were upregulated in the OA group, while the GZD group prevented such aberrations (p < 0.01). Conclusion: The present study reveals that the mechanism of the GZD against OA may be related to the regulation of the TNF signaling pathway and inhibition of inflammatory response.
Collapse
Affiliation(s)
- Yan Chen
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yan Xue
- Shanghai Sunshine Rehabilitation Centre, Shanghai Yangzhi Rehabilitation Hospital, Shanghai, China
| | - Xuezong Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ding Jiang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinguang Xu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuxin Zheng
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Shi
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Ying Shi, ; Yuelong Cao,
| | - Yuelong Cao
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Ying Shi, ; Yuelong Cao,
| |
Collapse
|
30
|
Hao DL, Li JM, Xie R, Huo HR, Xiong XJ, Sui F, Wang PQ. The role of traditional herbal medicine for ischemic stroke: from bench to clinic-A critical review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154609. [PMID: 36610141 DOI: 10.1016/j.phymed.2022.154609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a leading cause of death and severe long-term disability worldwide. Over the past few decades, considerable progress has been made in anti-ischemic therapies. However, IS remains a tremendous challenge, with favourable clinical outcomes being generally difficult to achieve from candidate drugs in preclinical phase testing. Traditional herbal medicine (THM) has been used to treat stroke for over 2,000 years in China. In modern times, THM as an alternative and complementary therapy have been prescribed in other Asian countries and have gained increasing attention for their therapeutic effects. These millennia of clinical experience allow THM to be a promising avenue for improving clinical efficacy and accelerating drug discovery. PURPOSE To summarise the clinical evidence and potential mechanisms of THMs in IS. METHODS A comprehensive literature search was conducted in seven electronic databases, including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database, from inception to 17 June 2022 to examine the efficacy and safety of THM for IS, and to investigate experimental studies regarding potential mechanisms. RESULTS THM is widely prescribed for IS alone or as adjuvant therapy. In clinical trials, THM is generally administered within 72 h of stroke onset and are continuously prescribed for over 3 months. Compared with Western medicine (WM), THM combined with routine WM can significantly improve neurological function defect scores, promote clinical total effective rate, and accelerate the recovery time of stroke with fewer adverse effects (AEs). These effects can be attributed to multiple mechanisms, mainly anti-inflammation, antioxidative stress, anti-apoptosis, brain blood barrier (BBB) modulation, inhibition of platelet activation and thrombus formation, and promotion of neurogenesis and angiogenesis. CONCLUSIONS THM may be a promising candidate for IS management to guide clinical applications and as a reference for drug development.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia-Meng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing-Jiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
31
|
Huajuan J, Xulong H, Bin X, Yue W, Yongfeng Z, Chaoxiang R, Jin P. Chinese herbal injection for cardio-cerebrovascular disease: Overview and challenges. Front Pharmacol 2023; 14:1038906. [PMID: 36909150 PMCID: PMC9998719 DOI: 10.3389/fphar.2023.1038906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Cardio-cerebrovascular diseases are the leading cause of death worldwide and there is currently no optimal treatment plan. Chinese herbal medicine injection (CHI) is obtained by combining traditional Chinese medicine (TCM) theory and modern production technology. It retains some characteristics of TCM while adding injection characteristics. CHI has played an important role in the treatment of critical diseases, especially cardio-cerebrovascular diseases, and has shown unique therapeutic advantages. TCMs that promote blood circulation and remove blood stasis, such as Salvia miltiorrhiza, Carthami flos, Panax notoginseng, and Chuanxiong rhizoma, account for a large proportion of CHIs of cardio-cerebrovascular disease. CHI is used to treat cardio-cerebrovascular diseases and has potential pharmacological activities such as anti-platelet aggregation, anti-inflammatory, anti-fibrosis, and anti-apoptosis. However, CHIs have changed the traditional method of administering TCMs, and the drugs directly enter the bloodstream, which may produce new pharmacological effects or adverse reactions. This article summarizes the clinical application, pharmacological effects, and mechanism of action of different varieties of CHIs commonly used in the treatment of cardio-cerebrovascular diseases, analyzes the causes of adverse reactions, and proposes suggestions for rational drug use and pharmaceutical care methods to provide a reference for the rational application of CHIs for cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Jiang Huajuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huang Xulong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Bin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhou Yongfeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren Chaoxiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei Jin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
32
|
Jalil V, Khan M, Haider SZ, Shamim S. Investigation of the Antibacterial, Anti-Biofilm, and Antioxidative Effect of Piper betle Leaf Extract against Bacillus gaemokensis MW067143 Isolated from Dental Caries, an In Vitro-In Silico Approach. Microorganisms 2022; 10:2485. [PMID: 36557738 PMCID: PMC9788100 DOI: 10.3390/microorganisms10122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
Among oral diseases, dental caries is one of the most frequent to affect human health. The current research work aimed to ascertain the antibacterial, anti-biofilm, and antioxidative potential of Piper betle leaf extract against bacteria isolated from dental caries. Analysis for the presence of phytochemical compounds revealed compounds, such as tannins, steroids, phenolic compounds, and alkaloids, which were also confirmed by TLC and FTIR. GC-MS analysis elucidated the presence of 20 phytocompounds, among which were some well-reported bioactive compounds. The chloroform extract of P. betle demonstrated good antibacterial activity (7 mm) and minimum inhibitory concentration (MIC) (100 mg mL-1) against Bacillus gaemokensis MW067143, which was the frequent biofilm producer among isolated bacterial strains. Fractions of the extract were isolated through column chromatography, after which the antibacterial activity was again evaluated. Spirost-8-en-11-one,3-hydroxy(3β,5α,14β,20β,22β,25R), an oxosteroid in nature, was observed to exhibit remarkable antibacterial potential (12 mm) against B. gaemokensis. Bacterial cells treated with P. betle extract had elevated SOD, APOX, POX, and GR activity, while its proteolytic activity against whole bacterial proteins was pronounced with the suppression of several proteins (50, 40, 15, and 10 kDa) in SDS-PAGE. Bacterial cells treated with P. betle extract demonstrated decreased growth, while the extract was also observed to exhibit inhibition of biofilm formation (70.11%) and demolition of established B. gaemokensis biofilms (57.98%). SEM analysis revealed significant changes to bacterial morphology post treatment with P. betle, with cellular disintegration being prominent. In silico network pharmacology analysis elucidated proteins like ESR1 and IL6 to be majorly involved in biological pathways of dental caries, which also interact with the protective ability of P. betle. Gene Ontology (GO) terms and KEGG pathways were also screened using enrichment analysis. Molecular docking demonstrated the highest binding affinity of Spirost-8-en-11-one,3-hydroxy-,(3β,5α,14β,20β,22β,25R) with bacterial proteins FabI (-12 kcal/mol), MurB (-17.1 kcal/mol), and FtsZ (-14.9 kcal/mol). Therefore, it is suggested that P. betle can serve a potentially therapeutic role and could be used in the preparation of herbal formulations for managing bacterial flora.
Collapse
Affiliation(s)
| | | | | | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Off-Bhobatian Chowk, Lahore 54000, Pakistan
| |
Collapse
|
33
|
Wu Y, Lin J, Ge Z. Glycolic acid copolymer in diagnosis and treatment of patients with ischemic stroke. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Zhang Y, Liu Q, Zhang T, Wang H, Fu Y, Wang W, Li D. The therapeutic role of Jingchuan tablet on ischaemic cerebral stroke via the HIF-1α/EPO/VEGFA signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2110-2123. [PMID: 36269045 PMCID: PMC9590438 DOI: 10.1080/13880209.2022.2134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/20/2022] [Accepted: 09/30/2022] [Indexed: 06/03/2023]
Abstract
CONTEXT Jingchuan tablet (JCT) is a Chinese medicine prescription for treating ischaemic cerebral stroke (ICS). However, its relevant mechanisms remain unclear. OBJECTIVE To unravel the intrinsic mechanisms of JCT anti-ICS. MATERIALS AND METHODS 'Hongjingtian', 'chuanxiong', 'yanhusuo', 'bingpian', 'cerebral infarction', 'cerebral ischemia' or 'stroke' were used as keywords, and then components, targets and underlying mechanisms of JCT anti-ICS were analysed in TCMSP, TTD, DrugBank, STRING and Metascape databases up to June 2020. Male Sprague-Dawley rats under permanent middle cerebral artery occlusion (pMCAO) model, randomly assigned as: model, sham, nimodipine (0.012 g/kg/d) and JCT (0.78, 1.56 and 3.12 g/kg/d) groups, received oral gavage administration for a week. Therapeutic effects were evaluated by detecting the proportion of cerebral infarction, neuronal apoptosis and neurological deficits. Bioactive components were detected by HPLC-MS. Molecular biology and computational docking were used to verify the underlying mechanisms. RESULTS Eighty-one components, 166 targets and HIF-1α/EPO/VEGFA pathway contributed to the anti-ICS effect of JCT. JCT treatment effectively reduced the proportion of cerebral infarction (33.13%), apoptosis rate (14.80%) and neurobehavioural score (2.00). JCT increased the protein levels of HIF-1α (0.84), EPO (0.64) and VEGFA (0.69), respectively (p < 0.05). Gallic acid, salidroside, chlorogenic acid, ethyl gallate, ferulic acid and tetrahydropalmatine detected by HPLC-MS showed good interaction and binding with HIF-1α/EPO/VEGFA. CONCLUSIONS Our study demonstrated the mechanisms of JCT anti-ICS associated with the activation of the HIF-1α/EPO/VEGFA pathway, which provided a pharmacological basis for expanding the clinical application and some scientific ideas for further research into the material basis JCT anti-ICS.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Qinghuan Liu
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Ting Zhang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Hong Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Yu Fu
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Wentong Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Dongdong Li
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| |
Collapse
|
35
|
Zhang W, Zhang L, Wang WJ, Ma S, Wang M, Yao M, Li R, Li WW, Zhao X, Hu D, Ding Y, Wang J. Network pharmacology and in vitro experimental verification to explore the mechanism of Sanhua decoction in the treatment of ischaemic stroke. PHARMACEUTICAL BIOLOGY 2022; 60:119-130. [PMID: 34985385 PMCID: PMC8741256 DOI: 10.1080/13880209.2021.2019281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Stroke is an illness with high morbidity, disability and mortality that presents a major clinical challenge. Sanhua decoction (SHD) has been widely used to treat ischaemic stroke in the clinic. However, the potential mechanism of SHD remains unknown. OBJECTIVE To elucidate the multitarget mechanism of SHD in ischaemic stroke through network pharmacology and bioinformatics analyses. MATERIALS AND METHODS Network pharmacology and experimental validation approach was used to investigate the bioactive ingredients, critical targets and potential mechanisms of SHD against ischaemic stroke. Four herbal names of SHD, 'ischemic stroke' or 'stroke' was used as a keyword to search the relevant databases. SH-SY5Y cells were treated with various concentrations of SHD (12.5, 25, 50 or 100 μg/mL) for 4 h, exposed to oxygen and glucose deprivation (OGD) for 1 h, then reoxygenation for 24 h. The cell viability was detected by MTT, the lactate dehydrogenase (LDH) was evaluated by ELISA, and protein expression was detected by western blots. RESULTS SHD treatment increased the survival rate from 65.9 ± 4.3 to 85.56 ± 5.7%. The median effective dose (ED50) was 47.1 μg/mL, the LDH decreased from 288.0 ± 12.0 to 122.8 ± 9.1 U/L and the cell apoptosis rate decreased from 33.6 ± 1.8 to 16.3 ± 1.2%. Western blot analysis revealed that SHD increased the levels of p-PI3k, p-Akt and p-CREB1, and decreased the expression of TNF-α and IL-6. DISCUSSION AND CONCLUSIONS This study suggests that SHD protects against cerebral ischaemic injury via regulation of the PI3K/Akt/CREB1 and TNF pathways.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Zhang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen jun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingming Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruili Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei wei Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xian Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dongmei Hu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Yi Ding Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an710032, Shaanxi Province, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- CONTACT Jingwen Wang
| |
Collapse
|
36
|
To Explore the Key Active Compounds and Therapeutic Mechanism of Guizhi Gancao Decoction in Coronary Heart Disease by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2566407. [DOI: 10.1155/2022/2566407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Objective. Coronary heart disease (CHD) is the leading cause of death from cardiovascular disease and has become an important public health problem worldwide. Guizhi Gancao Decoction (GGD) has been shown to be used in the treatment of CHD with good efficacy, but its specific therapeutic mechanism and active ingredients have not been fully clarified. This study aims to identify the active compounds and key targets of GGD in the treatment of CHD, explore the therapeutic mechanism of GGD, and provide candidate compounds for anti-CHD drug development. Methods. The main compounds of GGD were determined by UPLC-MS/MS analysis and screened by SwissADME. The corresponding targets of GGD compounds were obtained from SwissTargetPrediction, and the targets of CHD were obtained from the HERB and GeneCards databases. The STRING 11.5 database was used to analyze the PPI (Protein-Protein Interactions) network of potential therapeutic targets of GGD compounds. Cytoscape 3.7.2 was used to construct target-related networks and find core targets. The GEO database was used to validate the differential expression of core targets. The PANTHER Classification System was used to functionally classify potential therapeutic targets for GGD. The GO biological process analysis and KEGG pathway analysis of targets were completed by DAVID 6.8 database. AutoDockTools 1.5.6 and PyMol 2.5.2 were used to perform molecular docking of core targets with the active GGD compounds. Results. 7 active GGD compounds were obtained based on UPLC-MS/MS and pharmacological parameter evaluation, which corresponded to 131 CHD-related targets. Among them, EGFR, MAPK3, RELA, CCND1, ESR1, PTGS2, NR3C1, CYP3A4, MMP9, and PTPN11 were considered core targets. According to the targets related to CHD, glycyrrhetinic acid, liquiritigenin, and schisandrin are considered key active ingredients. GO biological process and KEGG analysis indicated that the potential targets of GGD in the treatment of CHD involve a variety of biological processes and therapeutic mechanisms. Molecular docking results showed that both the core targets and the corresponding compounds had the good binding ability. Conclusions. This study contributes to a more comprehensive understanding of the therapeutic mechanism and active ingredients of GGD for CHD and provides candidate compounds for drug development of CHD.
Collapse
|
37
|
Xiao G, Liu J, Wang H, He S, Liu J, Fan G, Lyu M, Zhu Y. CXCR1 and its downstream NF-κB inflammation signaling pathway as a key target of Guanxinning injection for myocardial ischemia/reperfusion injury. Front Immunol 2022; 13:1007341. [PMID: 36325326 PMCID: PMC9618804 DOI: 10.3389/fimmu.2022.1007341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Guanxinning Injection (GXNI) is used clinically to treat cardiac injury, but its active components and mode of action remains unclear. Therefore, a myocardial ischemia/reperfusion injury (MIRI) model-based integrated strategy including function evaluation, RNA-seq analysis, molecular docking, and cellular thermal shift assay (CETSA) was employed to elucidate the effect and mechanism of GXNI and its main ingredient on cardiac injury. These results revealed that GXNI significantly improved cardiac dysfunction and myocardial injury in I/R mice. RNA-seq analysis clarified that CXCR1-mediated interleukin-8 pathway played a critical role in MIRI. Molecular docking screening identified danshensu (DSS) as the major active components of GXNI targeting CXCR1 protein, which was confirmed in an oxygen-glucose deprivation/reoxygenation-induced cardiomyocytes damage model showing that GXNI and DSS reduced the protein expression of CXCR1 and its downstream NF-κB, COX-2, ICAM-1 and VCAM-1. CETSA and isothermal dose-response fingerprint curves confirmed that DSS combined with CXCR1 in a dose-dependent manner. Furthermore, GXNI and DSS significantly decreased the expression levels of IL-6, IL-1β and TNF-α and the number of neutrophils in post I/R myocardial tissue. In conclusion, this study revealed that GXNI and its active components DSS exert inhibitory effects on inflammatory factor release and leukocyte infiltration to improve I/R-induced myocardial injury by down-regulating CXCR1-NF-κB-COX-2/ICAM-1/VCAM-1 pathway.
Collapse
Affiliation(s)
- Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Haihe Laboratory, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaxu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Haihe Laboratory, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huanyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Haihe Laboratory, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Haihe Laboratory, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianwei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Haihe Laboratory, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yan Zhu, ; Ming Lyu,
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Haihe Laboratory, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yan Zhu, ; Ming Lyu,
| |
Collapse
|
38
|
Zhang J, Wang F, Wu D, Zhao D. Revealing the mechanisms of Weishi Huogu I capsules used for treating osteonecrosis of the femoral head based on systems pharmacology with one mechanism validated with in vitro experiments. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115354. [PMID: 35577160 DOI: 10.1016/j.jep.2022.115354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weishi Huogu I (WH I) capsules, developed through traditional Chinese medicine, have been used to treat clinical osteonecrosis of the femoral head (ONFH) for decades. However, the mechanisms have not been systematically studied. AIM OF THE STUDY In this study, the mechanisms of WH I capsules used in treating ONFH were examined through a systems pharmacology strategy, and one mechanism was validated with in vitro experiments. MATERIALS AND METHODS WH I capsules compounds were identified by screening databases; then, a database of the potential active compounds was constructed after absorption, distribution, metabolism and excretion (ADME) evaluation. The compounds were identified through a systematic approach in which the probability of an interaction of every candidate compound with each corresponding target in the DrugBank database was calculated. Gene Ontology (GO) and pathway enrichment analyses of the targets was performed with the Metascape and KEGG DISEASE databases. Then, a compound-target network (C-T) and target-pathway network (T-P) of WH I capsule components were constructed, and network characteristics and related information were used for systematically identifying WH I capsule multicomponent-target interactions. Furthermore, the effects of WH I capsule compounds identified through the systematic pharmacology analysis of the osteogenic transformation of human umbilical mesenchymal stem cells (HUMSCs) were validated in vitro. RESULTS In total, 152 potentially important compounds and 176 associated targets were identified. Twenty-two crucial GO biological process (BP) or pathways were related to ONFH, mainly in regulatory modules regulating blood circulation, modulating growth, and affecting pathological processes closely related to ONFH. Furthermore, the GO enrichment analysis showed that corydine, isorhamnetin, and bicuculline were enriched in "RUNX2 regulates osteoblast differentiation", significantly increased alkaline phosphatase activity and calcium deposition and upregulated runt-related transcription factor 2 mRNA and protein expression and osteocalcin mRNA expression in HUMSCs, suggesting that these compounds promoted the mesenchymal stem cell (MSC) osteogenic transformation. CONCLUSIONS The study showed that the pharmacological mechanisms of WH I capsule attenuation of ONFH mainly involve three therapeutic modules: blood circulation, modulating growth, and regulating pathological processes. The crosstalk between GOBPs/pathways may constitute the basis of the synergistic effects of the compounds in WH I capsules in attenuating ONFH. One of the pharmacological mechanisms in the WH I capsule effect on ONFH involves enhancement of the osteogenic transformation of MSCs, as validated in experiments performed in vitro; however, more mechanisms should be validated in further studies.
Collapse
Affiliation(s)
- Jiaoyue Zhang
- Department of Orthopedics, Affifiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China; Ansteel Group Hospital, Anshan, 114002, China.
| | - Fanli Wang
- Ansteel Group Hospital, Anshan, 114002, China.
| | - Dengbin Wu
- Ansteel Group Hospital, Anshan, 114002, China.
| | - Dewei Zhao
- Department of Orthopedics, Affifiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| |
Collapse
|
39
|
Li J, Huang Z, Li K, Jian X, Liang B. Study on the Effect of Self-Made Lifei Dingchuan Decoction Combined with Western Medicine on Cough Variant Asthma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9803552. [PMID: 36132547 PMCID: PMC9484939 DOI: 10.1155/2022/9803552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 01/17/2023]
Abstract
Aims To observe the clinical efficacy of self-made Lifei Dingchuan decoction combined with western medicine in the treatment of cough variant asthma (phlegm-heat accumulation in the lung syndrome). Materials and Methods The clinical data of 90 patients with cough variant asthma who were hospitalized in the Department of Respiratory Medicine of our hospital from January 2020 to April 2022 were selected as the research objects, and they were equally divided into the observation group and the reference group according to different treatment methods, 45 cases in each group. The group was treated with traditional montelukast sodium chewable tablet and salmeterol fluticasone mixed powder inhalation, and the observation group was treated with self-made Lifei Dingchuan decoction on the basis of the control group, saturation, pH, partial pressure of oxygen in arterial blood, partial pressure of carbon dioxide, length of stay, and hospitalization costs. Results After the patients underwent self-made Lifei Dingchuan decoction, there were significant differences between the observation group and the reference group in terms of heart rate, respiratory rate, blood oxygen saturation, pH value, arterial blood oxygen partial pressure, carbon dioxide partial pressure, and within the group. There was a statistical difference (P < 0.05). The adverse reactions in patients with cough variant asthma after treatment showed that the red throat, shortness of breath, chest tightness, and dry mouth in the observation group were significantly different from those in the control group (P < 0.05). After investigation, follow-up, and statistics, the hospitalization time, hospitalization cost, asthma exacerbation control time, effective rate, and recurrence rate were compared between the two groups, and the differences between the two groups were statistically significant (P < 0.05). Conclusion The study on the clinical efficacy and low hospitalization cost of the self-prepared lung and asthma-restorative soup in patients with cough variant asthma significantly improved the patients' arterial oxygen saturation, acid-base value, arterial partial pressure of oxygen, and partial pressure of carbon dioxide and effectively controlled the heart rate and respiratory rate with high safety, which is worth further promotion.
Collapse
Affiliation(s)
- Jiachun Li
- Department of Respiratory Medicine, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Ziliang Huang
- The Third School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510145, China
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China
| | - Keying Li
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, China
| | - Xiaoyun Jian
- Department of Respiratory Medicine, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Binghui Liang
- Department of Respiratory Medicine, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, China
| |
Collapse
|
40
|
Feng W, Zhong XQ, Zheng XX, Liu QP, Liu MY, Liu XB, Lin CS, Xu Q. Study on the effect and mechanism of quercetin in treating gout arthritis. Int Immunopharmacol 2022; 111:109112. [PMID: 35932610 DOI: 10.1016/j.intimp.2022.109112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Quercetin is widely found in natural plants, especially Chinese herbal plants. It has been used to treat arthritis in China for thousands of years. However, the effects and mechanisms of quercetin in the treatment of gout arthritis (GA) remain unclear. We aimed to verify the treatment of GA with quercetin and investigate the underlying mechanism. A combination of network pharmacology and experiments was used to reveal the mechanism of quercetin in the treatment of GA. Potential targets of quercetin and gout were identified. Then, the protein-protein interaction network for the common targets between quercetin and gout was constructed and the core targets were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses for the common targets were performed to elucidate the pharmacological functions and mechanisms associated with quercetin treatment in GA. Finally, a monosodium urate-induced GA rat model was used to validate the predicted mechanisms in network pharmacology. Seventy-two common targets were identified. KEGG analysis revealed that treatment of GA with quercetin predominantly involved the interleukin (IL)-17, tumor necrosis factor (TNF), mitogen-activated protein kinase, and phosphoinositide 3-kinase-Akt signaling pathways. In an experimental validation, quercetin attenuated ankle joint inflammation-induced bone destruction and histological lesions. It also diminished the expression of IL-6, IL-17A, and IL-17F in the IL-17 pathway, and regulated the release of RAR-related orphan receptor gamma t,IL-17E, IL-1β, IL-6, TNF-α, Foxp3, and transforming growth factor-beta 1. The collective findings implicate quercetin as a valuable alternative drug for the treatment of GA.
Collapse
Affiliation(s)
- Wei Feng
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Qin Zhong
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xue-Xia Zheng
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qing-Ping Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Min-Ying Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Bao Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chang-Song Lin
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qiang Xu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
41
|
Liu Z, Li G, Zhang Y, Jin H, Liu Y, Dong J, Li X, Liu Y, Liang X. Blending Technology Based on HPLC Fingerprint and Nonlinear Programming to Control the Quality of Ginkgo Leaves. Molecules 2022; 27:molecules27154733. [PMID: 35897910 PMCID: PMC9332425 DOI: 10.3390/molecules27154733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
The breadth and depth of traditional Chinese medicine (TCM) applications have been expanding in recent years, yet the problem of quality control has arisen in the application process. It is essential to design an algorithm to provide blending ratios that ensure a high overall product similarity to the target with controlled deviations in individual ingredient content. We developed a new blending algorithm and scheme by comparing different samples of ginkgo leaves. High-consistency samples were used to establish the blending target, and qualified samples were used for blending. Principal component analysis (PCA) was used as the sample screening method. A nonlinear programming algorithm was applied to calculate the blending ratio under different blending constraints. In one set of calculation experiments, the result was blended by the same samples under different conditions. Its relative deviation coefficients (RDCs) were controlled within ±10%. In another set of calculations, the RDCs of more component blending by different samples were controlled within ±20%. Finally, the near-critical calculation ratio was used for the actual experiments. The experimental results met the initial setting requirements. The results show that our algorithm can flexibly control the content of TCMs. The quality control of the production process of TCMs was achieved by improving the content stability of raw materials using blending. The algorithm provides a groundbreaking idea for quality control of TCMs.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guixin Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
| | - Yu Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongli Jin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Yucheng Liu
- Heilongjiang ZhenBaoDao Pharmaceutical Co., Ltd., Haerbin 158400, China; (Y.L.); (J.D.)
| | - Jiatao Dong
- Heilongjiang ZhenBaoDao Pharmaceutical Co., Ltd., Haerbin 158400, China; (Y.L.); (J.D.)
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
- Correspondence: (X.L.); (Y.L.); Tel.: +86-791-8306-1116 (X.L.); +86-411-8437-9519 (Y.L.)
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
- Correspondence: (X.L.); (Y.L.); Tel.: +86-791-8306-1116 (X.L.); +86-411-8437-9519 (Y.L.)
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| |
Collapse
|
42
|
Investigating the Role of Dahuang in Hepatoma Treatment Using Network Pharmacology, Molecular Docking, and Survival Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5975223. [PMID: 35872841 PMCID: PMC9307382 DOI: 10.1155/2022/5975223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
Hepatoma is one of the most common malignant tumors. The incidence rate is high in developing countries, and China has the most significant number of cases. Dahuang is a classic traditional antitumor drug commonly used in China and has also been applied to treat hepatoma. However, the potential mechanism of Dahuang in treating hepatoma is not clear. Therefore, this study is aimed at elucidating the possible molecular mechanism and key targets of Dahuang using methods of network pharmacology, molecular docking, and survival analysis. Firstly, the active ingredients and key targets of Dahuang were analyzed through public databases, and then the drug-ingredient-target-disease network diagram of Dahuang against hepatoma was constructed. Five main active components and five core targets were determined according to the enrichment degree. Enrichment analysis demonstrated that Dahuang treated hepatoma through the multiple pathways in cancer. Additionally, molecular docking predicted that aloe-emodin and PIK3CG depicted the best binding energy. Survival analysis indicated that a high/ESR1 gene expression had a relatively good prognosis for patients with hepatoma (p < 0.05). In conclusion, the current study results demonstrated that Dahuang could treat hepatoma through a variety of active ingredients, targets, and multiantitumor pathways. Moreover, it effectively improved the prognosis of hepatoma patients. ESR1 is the potential key gene that is beneficial for the survival of hepatoma patients. Also, aloe-emodin and beta-sitosterol are the two main active crucial ingredients for hepatoma treatment. The study also provided some functional bases and references for the development of new drugs, target mining, and experimental animal research of hepatoma in the future.
Collapse
|
43
|
Xia X, Lin Q, Zhao N, Zeng J, Yang J, Liu Z, Huang R. Anti-Colon Cancer Activity of Dietary Phytochemical Soyasaponin I and the Induction of Metabolic Shifts in HCT116. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144382. [PMID: 35889255 PMCID: PMC9316303 DOI: 10.3390/molecules27144382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
Dietary phytochemicals play an important role in the prevention and treatment of colon cancer. It is reported that group B of soyasaponin, derived from dietary pulses, has anti-colonic effects on some colon cancer cell lines. However, it is uncertain which specific soybean saponins play a role. In our study, as one of the group B soyasaponin, the anti-colon cancer activity of soyasaponins I (SsI) was screened, and we found that it had the inhibitory effect of proliferation on colon cancer cell lines HCT116 (IC50 = 161.4 μM) and LoVo (IC50 = 180.5 μM), but no effect on HT29 between 0–200 μM. Then, nine potential targets of SsI on colon cancer were obtained by network pharmacology analysis. A total of 45 differential metabolites were identified by metabolomics analysis, and the KEGG pathway was mainly enriched in the pathways related to the absorption and metabolism of amino acids. Finally, molecular docking analysis predicted that SsI might dock with the protein of DNMT1, ERK1. The results indicated that the effect of SsI on HCT116 might be exerted by influencing amino acid metabolism and the estrogen signaling pathway. This study may provide the possibility for the application of SsI against colon cancer.
Collapse
Affiliation(s)
- Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (Q.L.); (J.Z.); (J.Y.); (Z.L.)
| | - Qianmin Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (Q.L.); (J.Z.); (J.Y.); (Z.L.)
| | - Ning Zhao
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Jinzi Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (Q.L.); (J.Z.); (J.Y.); (Z.L.)
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (Q.L.); (J.Z.); (J.Y.); (Z.L.)
| | - Zhiyuan Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (Q.L.); (J.Z.); (J.Y.); (Z.L.)
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (Q.L.); (J.Z.); (J.Y.); (Z.L.)
- Correspondence:
| |
Collapse
|
44
|
Hong L, He M, Li S, Zhao J. Predicting for anti-(mutant) SARS-CoV-2 and anti-inflammation compounds of Lianhua Qingwen Capsules in treating COVID-19. Chin Med 2022; 17:84. [PMID: 35799189 PMCID: PMC9261255 DOI: 10.1186/s13020-022-00637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Lianhua Qingwen Capsules (LHQW) is a traditional Chinese medicine prescription commonly used to treat viral influenza in China. There has been sufficient evidence that LHQW could effectively treat COVID-19. Nevertheless, the potential anti-(mutant) SARS-CoV-2 and anti-inflammation compounds in LHQW are still vague. METHODS The compounds of LHQW and targets were collected from TCMSP, TCMID, Shanghai Institute of Organic Chemistry of CAS database, and relevant literature. Autodock Vina was used to carry out molecular docking. The pkCSM platform to predict the relevant parameters of compound absorption in vivo. The protein-protein interaction (PPI) network was constructed by the STRING database. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was carried out by Database for Annotation, Visualization, and Integrated Discovery (DAVID). The anti-(mutant) SARS-CoV-2 and anti-inflammation networks were constructed on the Cytoscape platform. RESULTS 280 compounds, 16 targets related to SARS-CoV-2, and 54 targets related to cytokine storm were obtained by screening. The key pathways Toll-like receptor signaling, NOD-like receptor signal pathway, and Jak-STAT signaling pathway, and the core targets IL6 were obtained by PPI network and KEGG pathway enrichment analysis. The network analysis predicted and discussed the 16 main anti-SARS-CoV-2 active compounds and 12 main anti-inflammation active compounds. Ochnaflavone and Hypericin are potential anti-mutant virus compounds in LHQW. CONCLUSIONS In summary, this study explored the potential anti-(mutant) SARS-CoV-2 and anti-inflammation compounds of LHQW against COVID-19, which can provide new ideas and valuable references for discovering active compounds in the treatment of COVID-19.
Collapse
Affiliation(s)
- Liang Hong
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Min He
- grid.412982.40000 0000 8633 7608Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Shaoping Li
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jing Zhao
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
45
|
Li N, Sun J, Chen JL, Bai X, Wang TH. Gene Network Mechanism of Zhilong Huoxue Tongyu Capsule in Treating Cerebral Ischemia–Reperfusion. Front Pharmacol 2022; 13:912392. [PMID: 35873563 PMCID: PMC9302771 DOI: 10.3389/fphar.2022.912392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023] Open
Abstract
Objective: To investigate the effect of Zhilong Huoxue Tongyu capsule (ZLH) in the treatment of cerebral ischemia–reperfusion injury and determine the underlying molecular network mechanism. Methods: The treatment effect of Zhilong Huoxue Tongyu capsule (ZLH) was evaluated for cerebral ischemia–reperfusion injury in middle cerebral artery occlusion (MACO) rat, and the underlying molecular network mechanism was explored by using molecular network analysis based on network pharmacology, bioinformatics including protein–protein interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), as well as molecular docking. Results: The neurological function of rats in the ZLH group was significantly improved compared to those in the NS group (p = 0.000), confirming the positive effect of ZLH for the treatment of brain ischemia. There were 126 intersecting genes screened in ischemia–reperfusion cerebrum that are associated with several important biological processes, such as lipopolysaccharide, and the most important cell component, such as raft, as well as the most important molecular function pointed as cytokine receptor binding. The most important KEGG signaling pathway was the AGE-RAGE signaling pathway in diabetic complications. Moreover, according to the STRING interaction in the PPI network, 10 hub genes including MAPK14, FOS, MAPK1, JUN, MYC, RELA, ESR1, STAT1, AKT1, and IL6 were selected and exhibited in Cytoscape and molecular docking. Lastly, the relation between PPI, GO, and KEGG was analyzed. These findings indicated that multiple hub network genes have been involved in behavior improvement in cerebral ischemia–reperfusion rats subjected to ZLH treatment. Conclusion: Zhilong Huoxue Tongyu capsule improves cerebral ischemia–reperfusion and is associated with multiple network gene expressions.
Collapse
Affiliation(s)
- Na Li
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Jie Sun
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ji-Lin Chen
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Xue Bai
- Department of Encephalopathy, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Ting-Hua Wang, ; Xue Bai,
| | - Ting-Hua Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ting-Hua Wang, ; Xue Bai,
| |
Collapse
|
46
|
Wang N, Chu F, Fei C, Pan L, Wang Y, Chen W, Peng D, Duan X, He L. Naoluo Xintong Decoction in the Treatment of Ischemic Stroke: A Network Analysis of the Mechanism of Action. Front Pharmacol 2022; 13:809505. [PMID: 35668929 PMCID: PMC9163544 DOI: 10.3389/fphar.2022.809505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
The mechanism of action of Naoluo Xintong decoction (NLXTD) for the treatment of ischemic stroke (IS) is unknown. We used network analysis and molecular docking techniques to verify the potential mechanism of action of NLXTD in treating IS. The main active components of NLXTD were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and IS targets were collected from the Online Mendelian Inheritance in Man (OMIM), GeneCards, and Drugbank databases; their intersection was taken. In addition, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed and used to build protein-protein interaction networks. AutoDock Vina software was used for molecular docking, and animal experiments were conducted to verify the results. Hematoxylin and eosin staining was used to observe the brain morphology of rats in each group, and real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression level of relative mRNA in the brain tissue of rats. Western blot was used to detect the expression level of relative protein in the brain tissue of rats. Network analysis and molecular docking results showed that CASP3, NOS3, VEGFA, TNF, PTGS2, and TP53 are important potential targets for NLXTD in the treatment of IS. RT-qPCR and western blot results showed that NLXTD inhibited the expression of CASP3, TNF, PTGS2, and TP53 and promoted the expression of VEGFA and NOS3. NLXTD treats IS by modulating pathways and targets associated with inflammation and apoptosis in a multicomponent, multitarget manner.
Collapse
Affiliation(s)
- Ni Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Furui Chu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Changyi Fei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lingyu Pan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yongzhong Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xianchun Duan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ling He
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
47
|
Dong Y, Zheng Y, Zhu L, Li T, Guan Y, Zhao S, Wang Q, Wang J, Li L. Hua-Tan-Sheng-Jing Decoction Treats Obesity With Oligoasthenozoospermia by Up-Regulating the PI3K-AKT and Down-Regulating the JNK MAPK Signaling Pathways: At the Crossroad of Obesity and Oligoasthenozoospermia. Front Pharmacol 2022; 13:896434. [PMID: 35559247 PMCID: PMC9086321 DOI: 10.3389/fphar.2022.896434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Oligoasthenozoospermia is the leading cause of male infertility, seriously affecting men's health and increasing the societal medical burden. In recent years, obesity-related oligoasthenozoospermia has attracted increased attention from researchers to find a cure. This study aimed to evaluate the efficacy of Hua-Tan-Sheng-Jing decoction (HTSJD) in treating obesity with oligoasthenozoospermia, determine its active ingredients and identify its mechanism of action. Methods: The ingredients of HTSJD were determined by combining the ultra-performance liquid chromatography with mass spectrometry (UPLC-MS/MS) and systems pharmacology approach. The common pathogenesis of obesity and oligoasthenozoospermia and the potential mechanism of HTSJD against obesity with oligoasthenozoospermia were obtained through target fishing, network construction, and enrichment analyses. Further, molecular docking of the key ingredients with the upstream receptors of the key signaling pathways of the potential mechanism was used to predict their affinity. Finally, high-fat-induced obesity with oligoasthenozoospermia rat model was constructed to determine the effects of HTSJD on semen concentration, sperm motility, body weight, and serum lipid metabolism. The key proteins were validated by immunohistochemistry (IHC). Results: A total of 70 effective components and 847 potential targets of HTSJD (H targets) were identified, of which 743 were common targets related to obesity and oligoasthenozoospermia (O-O targets) mainly enriched in the pathways related to inflammation, oxidative stress and hormone regulation. Finally, 143 common targets (H-O-O targets) for HTSJD against obesity with oligoasthenozoospermia were obtained. Combining the hub genes and the results of Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of H-O-O targets, PI3K-AKT and MAPK signaling pathways were identified as the key pathways. Molecular docking results showed that Diosgenin, Kaempferol, Quercetin, Hederagenin, Isorhamnetin may act on the related pathways by docking EGFR, IGF1R and INSR. The animal-based in vivo experiments confirmed that HTSJD improves the sperm quality of high-fat diet-fed rats by reducing their body weight and blood lipid levels, influencing the PI3K-AKT and MAPK signaling pathways and altering the corresponding protein expressions. Conclusion: HTSJD treats obesity with oligoasthenozoospermia by up-regulating the PI3K-AKT signaling pathway and down-regulating the MAPK signaling pathway, which are at the crossroad of obesity and oligoasthenozoospermia.
Collapse
Affiliation(s)
- Yang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Zhu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxing Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shipeng Zhao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
48
|
Noor F, Tahir ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals (Basel) 2022; 15:572. [PMID: 35631398 PMCID: PMC9143318 DOI: 10.3390/ph15050572] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Natural products have played a critical role in medicine due to their ability to bind and modulate cellular targets involved in disease. Medicinal plants hold a variety of bioactive scaffolds for the treatment of multiple disorders. The less adverse effects, affordability, and easy accessibility highlight their potential in traditional remedies. Identifying pharmacological targets from active ingredients of medicinal plants has become a hot topic for biomedical research to generate innovative therapies. By developing an unprecedented opportunity for the systematic investigation of traditional medicines, network pharmacology is evolving as a systematic paradigm and becoming a frontier research field of drug discovery and development. The advancement of network pharmacology has opened up new avenues for understanding the complex bioactive components found in various medicinal plants. This study is attributed to a comprehensive summary of network pharmacology based on current research, highlighting various active ingredients, related techniques/tools/databases, and drug discovery and development applications. Moreover, this study would serve as a protocol for discovering novel compounds to explore the full range of biological potential of traditionally used plants. We have attempted to cover this vast topic in the review form. We hope it will serve as a significant pioneer for researchers working with medicinal plants by employing network pharmacology approaches.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| |
Collapse
|
49
|
Zhang J, Fan F, Liu A, Zhang C, Li Q, Zhang C, He F, Shang M. Icariin: A Potential Molecule for Treatment of Knee Osteoarthritis. Front Pharmacol 2022; 13:811808. [PMID: 35479319 PMCID: PMC9037156 DOI: 10.3389/fphar.2022.811808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/21/2022] [Indexed: 01/24/2023] Open
Abstract
Background: Knee osteoarthritis (KOA) is a degenerative disease that develops over time. Icariin (ICA) has a positive effect on KOA, although the mechanism is unknown. To investigate drug-disease connections and processes, network pharmacology is commonly used. The molecular mechanisms of ICA for the treatment of KOA were investigated using network pharmacology, molecular docking and literature research approaches in this study. Methods: We gathered KOA-related genes using the DisGeNET database, the OMIM database, and GEO microarray data. TCMSP database, Pubchem database, TTD database, SwissTargetPrediction database, and Pharmmapper database were used to gather ICA-related data. Following that, a protein-protein interaction (PPI) network was created. Using the Metascape database, we performed GO and KEGG enrichment analyses. After that, we built a targets-pathways network. Furthermore, molecular docking confirms the prediction. Finally, we looked back over the last 5 years of literature on icariin for knee osteoarthritis to see if the findings of this study were accurate. Results: core targets relevant to KOA treatment include TNF, IGF1, MMP9, PTGS2, ESR1, MMP2 and so on. The main biological process involved regulation of inflammatory response, collagen catabolic process, extracellular matrix disassembly and so on. The most likely pathways involved were the IL-17 signaling pathway, TNF signaling pathway, Estrogen signaling pathway. Conclusion: ICA may alleviate KOA by inhibiting inflammation, cartilage breakdown and extracellular matrix degradation. Our study reveals the molecular mechanism of ICA for the treatment of KOA, demonstrating its potential value for further research and as a new drug.
Collapse
Affiliation(s)
- Juntao Zhang
- Academy of Medical Engineering and Traditional Medicine, Tianjin University, Tianjin China.,Orthopedics Department, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangyang Fan
- Orthopedics Department, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Aifeng Liu
- Orthopedics Department, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chao Zhang
- Orthopedics Department, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Li
- Orthopedics Department, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenglong Zhang
- Orthopedics Department, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng He
- Academy of Medical Engineering and Traditional Medicine, Tianjin University, Tianjin China
| | - Man Shang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
50
|
Liao Y, Wang J, Guo C, Bai M, Ju B, Ran Z, Hu J, Yang J, Wen A, Ding Y. Combination of Systems Pharmacology and Experimental Evaluation to Explore the Mechanism of Synergistic Action of Frankincense-Myrrh in the Treatment of Cerebrovascular Diseases. Front Pharmacol 2022; 12:796224. [PMID: 35082676 PMCID: PMC8784887 DOI: 10.3389/fphar.2021.796224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
Frankincense-Myrrh is a classic drug pair that promotes blood circulation, and eliminates blood stasis. The combination of the two drugs has a definite clinical effect on the treatment of cerebrovascular diseases (CBVDs), but its mechanism of action and compatibility have not been elucidated. In this study, the bioactive components, core targets, and possible synergistic mechanisms of Frankincense-Myrrh in the treatment of CBVDs are explored through systems pharmacology combined with in vivo and in vitro experiments. Comparing target genes of components in Frankincense and Myrrh with CBVD-related genes, common genes were identified; 15 core target genes of Frankincense-Myrrh for the treatment of CBVDs were then identified using protein-protein interaction (PPI) analysis. It was also predicted through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis that the molecular mechanism of Frankincense-Myrrh action on CBVDs was mainly related to the regulation of neurotrophic factors and inflammatory responses. Frankincense-Myrrh significantly improved neurological function, decreased infarct volume, alleviated histopathological damage, inhibited microglial expression, and promoted the expression of neurons in middle cerebral artery occlusion (MCAO)-induced rats. The results of this study not only provide important theoretical support and experimental basis for the synergistic effect of Frankincense-Myrrh, but also provide new ideas for the prevention and treatment of cerebral ischemic injuries.
Collapse
Affiliation(s)
- Yucheng Liao
- College of Pharmacy, Xinjiang Medical University, Urumqi, China.,Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Bai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bowei Ju
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Zheng Ran
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Jianhua Yang
- College of Pharmacy, Xinjiang Medical University, Urumqi, China.,Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|