1
|
Sun Y, Liang J, Zhang Z, Sun D, Li H, Chen L. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: A review. Food Chem 2024; 457:140103. [PMID: 38905824 DOI: 10.1016/j.foodchem.2024.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Saadi HF, Zamani M, Koohpeyma F, Raeisi A, Amirahmadi Z, Rezaei N, Joolidehpoor Z, Shams M, Dastghaib S. Therapeutic potential of aquatic Stevia extract in alleviating endoplasmic reticulum stress and liver damage in streptozotocin-induced diabetic rats. Mol Biol Rep 2024; 51:993. [PMID: 39292293 DOI: 10.1007/s11033-024-09907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Misfolded proteins accumulate in the liver due to endoplasmic reticulum stress (ERS) caused by high blood glucose levels in diabetes. This triggers the unfolded protein response (UPR), which if persistently activated, results in cellular dysfunction. Chronic ER stress increases inflammation, insulin resistance, and apoptosis. There is growing interest in using native plants and traditional medicine for diabetes treatment. The stevia plant has recently gained attention for its potential therapeutic effects. This study investigates the protective effects of aquatic stevia extract on liver damage, ER stress, and the UPR pathway in streptozotocin (STZ)-induced diabetic rats. METHODS Rats were randomly divided into four groups: a control group that received 1 ml of water; a diabetic group induced by intraperitoneal injection of STZ (60 mg/kg); a diabetic group treated with metformin (500 mg/kg); and a diabetic group treated with aquatic extracts of stevia (400 mg/kg). After 28 days, various parameters were assessed, including inflammatory markers, oxidative stress indices, antioxidant levels, gene expression, stereology, and liver tissue pathology. RESULT Compared to the diabetic control group, treatment with stevia significantly decreased serum glucose, liver enzymes, inflammatory markers, and oxidative stress while increasing body weight and antioxidant levels. Additionally, stevia extract manipulated UPR gene expression and reduced apoptosis pathway activation. Histological examination revealed improved liver tissue morphology in stevia-treated diabetic rats. CONCLUSION These findings suggest that aquatic stevia extract mitigates ER stress in diabetic rats by modulating the IRE-1 arm of the UPR and apoptosis pathways, highlighting its potential therapeutic benefits for diabetes-related liver complications.
Collapse
Affiliation(s)
- Hediye Fahandezh Saadi
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Raeisi
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Zahra Amirahmadi
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Narges Rezaei
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Joolidehpoor
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Mesbah Shams
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran.
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Yu C, Cui M, Yin Y, Zhu F, Sui Y, Yan X, Gai Y. Influence of Gegenqinlian decoction on pharmacokinetics and pharmacodynamics of saxagliptin in type 2 diabetes mellitus rats. Biopharm Drug Dispos 2023; 44:396-405. [PMID: 37596705 DOI: 10.1002/bdd.2374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 08/20/2023]
Abstract
Gegenqinlian decoction (GQD) is a classic prescription of traditional Chinese medicine (TCM), which originated from Shanghanlun. The combination of GQD and hypoglycemic drugs (saxagliptin, Sax, metformin) is often used to treat Type 2 diabetes mellitus (T2DM) in TCM clinics. However, the herb-drug interactions (HDIs) between GQD and hypoglycemic drugs are still unclear. In order to determine the safety of the combination, we assessed the influences of GQD on the pharmacokinetics and pharmacodynamics of Sax in T2DM rats. The plasma concentration of Sax (5 mg/kg) pretreated with GQD (freeze-dried powder, 1.35 g/kg) or not was determined by high-performance liquid chromatography (HPLC), and pharmacokinetics parameters were calculated. The influence of GQD on the pharmacodynamics of Sax was investigated by detecting the levels of weight, (see abbreviations list) OGTT, TC, TG, LDL-C, HDL-C, FBG, FINS, HOMA-IR, QUICKI, AST, ALT, and the liver coefficient. The Cmax , AUC0-t ,and AUC0-∞ of Sax increased significantly in the combination group whether in normal or T2DM rats. The results of pharmacodynamics showed that the weight of rats in each treatment group increased. FBG, TC, TG, LDL-C, and HOMA-IR decreased, HDL-C, FINS, and QUICKI increased significantly (p < 0.05) compared with the model control group. The result showed that the combination of GQD and Sax could not only improve the hypoglycemic effect but also increase the plasma exposure of Sax. The potential HDIs between GQD and Sax should be taken into consideration in clinics. Moreover, for the complexity of the human compared with experimental animals, as well as genetic differences, the in-depth study should be carried out to assess the uniformity of the pharmacokinetics and pharmacodynamics between rats and humans.
Collapse
Affiliation(s)
- Chao Yu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingyu Cui
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yifeng Yin
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengmei Zhu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Sui
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xueying Yan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yingli Gai
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Ahmad MA, Chaudhary S, Deng X, Cheema M, Javed R. Nano-stevia interaction: Past, present, and future. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107807. [PMID: 37311291 DOI: 10.1016/j.plaphy.2023.107807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Nanotechnology has recently been emerged as a transformative technology that offers efficient and sustainable options for nano-bio interface. There has been a considerable interest in exploring the factors affecting elicitation mechanism and nanomaterials have been emerged as strong elicitors in medicinal plants. Stevia rebaudiana is well-known bio-sweetener and the presence of zero calorie, steviol glycosides (SGs) in the leaves of S. rebaudiana have made it a desirable crop to be cultivated on large scale to obtain its higher yield and maximal content of high quality natural sweeteners. Besides, phenolics, flavonoids, and antioxidants are abundant in stevia which contribute to its medicinal importance. Currently, scientists are trying to increase the market value of stevia by the enhancement in production of its bioactive compounds. As such, various in vitro and cell culture strategies have been adopted. In stevia agronanotechnology, nanoparticles behave as elicitors for the triggering of its secondary metabolites, specifically rebaudioside A. This review article discusses the importance of S. rebaudiana and SGs, conventional approaches that have failed to increase the desired yield and quality of stevia, modern approaches that are currently being applied to obtain utmost benefits of SGs, and future needs of advanced technologies for further exploitation of this wonder of nature.
Collapse
Affiliation(s)
- Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Xu Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada.
| |
Collapse
|
5
|
Papaefthimiou M, Kontou PI, Bagos PG, Braliou GG. Antioxidant Activity of Leaf Extracts from Stevia rebaudiana Bertoni Exerts Attenuating Effect on Diseased Experimental Rats: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3325. [PMID: 37571265 PMCID: PMC10420666 DOI: 10.3390/nu15153325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Stevia (Stevia rebaudiana Bertoni) is an aromatic plant known for its high sweetening power ascribed to its glycosides. Stevia also contains several bioactive compounds showing antioxidant, antiproliferative, antimicrobial, and anti-inflammatory activities. Since inflammation and oxidative stress play critical roles in the pathogenesis of many diseases, stevia emerges as a promising natural product that could support human health. In this study we set out to investigate the way stevia affects oxidative stress markers (e.g., SOD, CAT, GPx, GSH, MDA) in diseased rats administered stevia leaf extracts or glycosides. To this end, we performed an inclusive literature search, following PRISMA guidelines, and recruited multivariate meta-analysis and meta-regression to synthesize all available data on experimental animal models encountering (a) healthy, (b) diseased, and (c) stevia-treated diseased rats. From the 184 articles initially retrieved, 24 satisfied the eligibility criteria, containing 104 studies. Our results demonstrate that regardless of the assay employed, stevia leaf extracts restored all oxidative stress markers to a higher extent compared to pure glycosides. Meta-regression analysis revealed that results from SOD, CAT, GSH, and TAC assays are not statistically significantly different (p = 0.184) and can be combined in meta-analysis. Organic extracts from stevia leaves showed more robust antioxidant properties compared to aqueous or hydroalcoholic ones. The restoration of oxidative markers ranged from 65% to 85% and was exhibited in all tested tissues. Rats with diabetes mellitus were found to have the highest restorative response to stevia leaf extract administration. Our results suggest that stevia leaf extract can act protectively against various diseases through its antioxidant properties. However, which of each of the multitude of stevia compounds contribute to this effect, and to what extent, awaits further investigation.
Collapse
Affiliation(s)
- Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| |
Collapse
|
6
|
Chowdhury AI, Rahanur Alam M, Raihan MM, Rahman T, Islam S, Halima O. Effect of stevia leaves ( Stevia rebaudiana Bertoni) on diabetes: A systematic review and meta-analysis of preclinical studies. Food Sci Nutr 2022; 10:2868-2878. [PMID: 36171777 PMCID: PMC9469865 DOI: 10.1002/fsn3.2904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 12/09/2022] Open
Abstract
Stevia (Stevia rebaudiana Bertoni) is a natural herb with biological activities such as anticancer, antidiabetic, anticardiovascular disease, anti-inflammatory, and antimicrobial. The current systematic review and meta-analysis of previously published data were performed to assess the antidiabetic effect of stevia leaves. Three electronic databases (PubMed, CENTRAL, and DOAJ) had been used for searching articles published before September 2020. Meta-analysis via random-effect model had been performed to assess the effects of different doses of stevia on blood glucose level (BGL) and studies were weighted according to an estimate of the standard mean difference (SMD). Overall, 16 eligible studies were selected for qualitative analysis and 9 were included for quantitative analysis. The results of the meta-analysis for BGL showed that at the doses of 200, 300, and 400 mg/kg of stevia leaves there was a significant difference in means of BGL between the intervention and control group and the dose of 500 mg/kg showed no significance (Standard mean difference (SMD): -3.84 (-9.96, 2.27); p = .22). Based on the duration of intervention, subgroup analysis of articles showed a significant difference between the groups (p < .001). The results of the meta-analysis support the hypothesis that stevia leaf has an antihyperglycemic effect and reduces the blood glucose level at doses of 200, 300, and 400 mg/kg. Therefore, more clinical trials on animals and humans have to be done to investigate the antidiabetic and antihyperglycemic effects along with the efficacy and safety of these medicinal leaves.
Collapse
Affiliation(s)
- Akibul Islam Chowdhury
- Department of Food Technology and Nutrition ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Mohammad Rahanur Alam
- Department of Food Technology and Nutrition ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - M Maruf Raihan
- Department of Food Technology and Nutrition ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Tanjina Rahman
- Department of Food Technology and Nutrition ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| | - Oumma Halima
- Department of Food Technology and Nutrition ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
7
|
Oudbor L, Mokhtari Z, Dastghaib S, Mokarram P, Rajani HF, Barazesh M, Salami S. Aqueous extract of Stevia rebaudiana (Bertoni) Bertoni abrogates death-related signaling pathways via boosting the expression profile of oxidative defense systems. J Food Biochem 2022; 46:e14151. [PMID: 35365911 DOI: 10.1111/jfbc.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
Indigenous inhabitants of South America and other areas have been using stevia as a traditional medicine for years, but its impact on cell signaling pathways has not been well studied yet. We evaluated the impacts of aqueous extract of Stevia rebaudiana (Bertoni) Bertoni on the expression of the selected genes involved in significant cell death modalities, including p53-DNA damage and the cellular antioxidative defense in pancreatic tissues in STZ-induced diabetic rats and murine pancreatic cell lines. The in vivo study revealed that aqueous extract of Stevia significantly upregulated the expression of GSTM1 and P1 and GPX (4.67, 12.08, and 2.81 fold, respectively; all p < .05) along with significant downregulation of the genes which were upregulated by STZ, including apoptotic genes caspase-3 and -9 (-9.80 and -4.16 fold, p < .05, respectively) and necroptotic genes, RIP1K, 2 K, and 3 K (-9.48, -2.70, and -12.9 fold, respectively, all p < .05). In vitro studies also revealed comparable results. In conclusion, the observed clinical improvements in diabetic rats are the result of overexpression of major genes of antioxidative defense systems in the course of a significant downregulation of major cell death modalities. PRACTICAL APPLICATIONS: The popularity of noncaloric sweeteners, including stevia, has rocketed in recent years, but the consumption of stevia as traditional medicine has a long history. The findings of the current study provide strong mechanistic lines of evidence supporting the beneficial biological effects of stevia as a noncaloric sweetener in diabetes.
Collapse
Affiliation(s)
- Leila Oudbor
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mokhtari
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Dastghaib
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Huda Fatima Rajani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash Faculty of Medical Sciences, Gerash, Iran
| | - Siamak Salami
- Cell Death and Differentiation Signaling Research Lab, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Stevioside Enhances the Anti-Adipogenic Effect and β-Oxidation by Activating AMPK in 3T3-L1 Cells and Epididymal Adipose Tissues of db/db Mice. Cells 2022; 11:cells11071076. [PMID: 35406641 PMCID: PMC8997985 DOI: 10.3390/cells11071076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022] Open
Abstract
Stevioside, the primary sweetener in stevia, is a glycoside with numerous beneficial biological activities. However, its anti-adipogenic effects on tissue differentiation and adipose tissues remain to be thoroughly investigated. In this study, the anti-adipogenic effects of stevioside during the differentiation of 3T3-L1 cells and epididymal adipose tissues of db/db mice were investigated by measuring the lipid droplets stained with Oil Red O and an immunoblot assay. Immunoblot analysis revealed that stevioside downregulated the expression of peroxisome proliferator-activated receptor-gamma (PPARγ), sterol regulatory element-binding protein-1c (SREBP-1c), CCAAT/enhancer-binding protein alpha (C/EBPα), and fatty acid synthase (FAS). Additionally, the protein expression of carnitine palmitoyltransferase 1 (CPT1), silent mating type information regulation 2 homolog 1 (SIRT1), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) increased following treatment with stevioside. Furthermore, stevioside increased the phosphorylation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), both in vitro and in vivo. The activity of AMPK in stevioside-treated 3T3-L1 cells was further confirmed using agonists and antagonists of AMPK signaling. Our data indicate that stevioside ameliorates anti-adipogenic effects and promotes β-oxidation in adipocytes by activating AMPK-mediated signaling. The results of this study clearly demonstrated the inhibitory effect of stevioside on the differentiation of adipocytes and the reduction of lipid accumulation in the epididymal adipose tissues of db/db mice.
Collapse
|
9
|
Jiang N, Zhang Y. Antidiabetic effects of nerolidol through promoting insulin receptor signaling in high-fat diet and low dose streptozotocin-induced type 2 diabetic rats. Hum Exp Toxicol 2022; 41:9603271221126487. [PMID: 36169646 DOI: 10.1177/09603271221126487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study was designed to investigate the antidiabetic effect of nerolidol on high-fat diet and streptozotocin-induced diabetic rats. Type 2 diabetes was induced in animals by feeding them a high-fat diet for 4 weeks and administering a single intraperitoneal dose of streptozotocin (35 mg/kg body weight). Diabetic rats were treated with nerolidol (25 mg/kg BW) for 28 days. Results showed that nerolidol treatment significantly reduced (p < 0.05) the level of elevated glucose, glycosylated hemoglobin and improved (p < 0.05) the body weight and insulin level. Nerolidol also considerably improved (p < 0.05) the carbohydrate metabolic enzyme activities and increased the glycogen storage in the liver of diabetic rats. Increased serum triglycerides, total cholesterol (C), low-density lipoproteins-C and very low-density lipoproteins-C levels were significantly lowered (p < 0.05), while reduction of serum high-density lipoprotein-C was alleviated after administration of nerolidol. In addition, nerolidol attenuated oxidative stress markers by significantly increasing (p < 0.05) the levels of superoxide dismutase, catalase, reduced glutathione, and lowering (p < 0.05) the level of thiobarbituric acid reactive substances, and lipid hydroperoxide. Similarly, nerolidol showed its pharmacological effects against hepatic markers via restoring (p < 0.05) the alleviated level of alanine transaminase, aspartate aminotransferase, and alkaline phosphatase. Finally, it improved insulin-dependent glucose transport in skeletal muscle by enhancing and activating glucose transporter protein-4. These findings confirmed the antidiabetic potential of nerolidol in type 2 diabetic rats. This may be related to a high antioxidant capacity, the restoration of plasma insulin and lipid levels, and the activation of insulin signaling in STZ/HFD-induced diabetic rats.
Collapse
Affiliation(s)
- Nengmei Jiang
- Department of Endocrinology, 146225Haimen People's Hospital, Nantong, China
| | - Yuanyuan Zhang
- Department of Pharmacy, 146225Haimen People's Hospital, Nantong, China
| |
Collapse
|
10
|
Wang X, Xiang J, Huang G, Kang L, Yang G, Wu H, Jiang K, Liang Z, Yang S. Inhibition of Podocytes DPP4 Activity Is a Potential Mechanism of Lobeliae Chinensis Herba in Treating Diabetic Kidney Disease. Front Pharmacol 2021; 12:779652. [PMID: 34950037 PMCID: PMC8688925 DOI: 10.3389/fphar.2021.779652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/17/2021] [Indexed: 01/23/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and has become a serious public health problem worldwide. Dipeptidyl peptidase-4 (DPP4) inhibitors, an emerging drug for the treatment of diabetes, have been found to have renoprotective effects in addition to glucose-lowering effects and therefore have the potential to be a treatment modality for DKD. Lobeliae Chinensis Herba (LCH), a traditional Chinese herb widely used in the treatment of diabetes, has recently been found to have a hypoglycaemic mechanism related to the inhibition of DPP4. Firstly, analysis of single-cell sequencing data from mouse kidneys in the National Center for Biotechnology Information (NCBI) database revealed that DPP4 was specifically upregulated in DKD podocytes and was associated with podocyte proliferation. Subsequently, the network pharmacology approach was applied to the screening of compounds. Twelve LCH active ingredients targeting DPP4 were extracted from the Traditional Chinese Medicine System Pharmacology (TCMSP) database. In addition, these 12 compounds and DPP4 were molecularly docked to predict the probability of them affecting DPP4 activity. In vitro, Quercetin, Methyl rosmarinate, Kaempferol, Diosmetin and Acacetin were demonstrated to retard podocyte proliferation by inhibiting DPP4 activity and were the top five compounds predicted by molecular docking to be the most likely to affect DPP4 activity. The half maximal inhibitory concentration (IC50) of the five compounds for DPP4 activity were as follows. Acacetin Log IC50 = −8.349, 95%CI (−9.266, −7.265), Diosmtrin Log IC50 = −8.419, 95%CI (−8.889, −7.950), Log IC50 = −8.349, 95%CI (−9.266, −7.265), Methyl rosmarinate Log IC50 = −8.415, 95%CI (−8.751, −8.085), Kaempferol Log IC50 = −8.297, 95%CI (−9.001, −7.615), Quercetin Log IC50 = −8.864, 95%CI (−9.107, −8.615). Finally, Quercetin, Methyl rosmarinate, Kaempferol, Diosmetin and Acacetin qualified for pharmacokinetic and drug similarity screening and have the potential to be the most promising oral agents for the treatment of DKD.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Jiaqing Xiang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Guixiao Huang
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lin Kang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Guangyan Yang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Han Wu
- Department of Endocrinology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Kewei Jiang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Zhen Liang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Shu Yang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
11
|
Libik-Konieczny M, Capecka E, Tuleja M, Konieczny R. Synthesis and production of steviol glycosides: recent research trends and perspectives. Appl Microbiol Biotechnol 2021; 105:3883-3900. [PMID: 33914136 PMCID: PMC8140977 DOI: 10.1007/s00253-021-11306-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 01/13/2023]
Abstract
Abstract Steviol glycosides (SvGls) are plant secondary metabolites belonging to a class of chemical compounds known as diterpenes. SvGls have been discovered only in a few plant species, including in the leaves of Stevia rebaudiana Bertoni. Over the last few decades, SvGls have been extensively researched for their extraordinary sweetness. As a result, the nutritional and pharmacological benefits of these secondary metabolites have grown increasingly apparent. In the near future, SvGls may become a basic, low-calorie, and potent sweetener in the growing natural foods market, and a natural anti-diabetic remedy, a highly competitive alternative to commercially available synthetic drugs. Commercial cultivation of stevia plants and the technologies of SvGls extraction and purification from plant material have already been introduced in many countries. However, new conventional and biotechnological solutions are still being sought to increase the level of SvGls in plants. Since many aspects related to the biochemistry and metabolism of SvGls in vivo, as well as their relationship to the overall physiology of S. rebaudiana are not yet understood, there is also a great need for in-depth scientific research on this topic. Such research may have positive impact on optimization of the profile and SvGls concentration in plants and thus lead to obtaining desired yield. This research summarizes the latest approaches and developments in SvGls production. Key points • Steviol glycosides (SvGls) are found in nature in S. rebaudiana plants. • They exhibit nutraceutical properties. • This review provides an insight on different approaches to produce SvGls. • The areas of research that still need to be explored have been identified.
Collapse
Affiliation(s)
- Marta Libik-Konieczny
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Krakow, Poland.
| | - Ewa Capecka
- Department of Horticulture, Faculty of Biotechnology and Agriculture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Monika Tuleja
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, ul. Gronostajowa 9, 30-387, Krakow, Poland
| | - Robert Konieczny
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, ul. Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|