1
|
Zapata-Lopera YM, Trejo-Tapia G, Cano-Europa E, Rodríguez-Hernández AA, Rojas-Franco P, Herrera-Ruiz M, Jiménez-Ferrer E. Neuroprotective effect of Bouvardia ternifolia (Cav.) Schltdl via inhibition of TLR4/NF-κB, caspase-3/Bax/Bcl-2 pathways in ischemia/reperfusion injury in rats. Front Pharmacol 2024; 15:1471542. [PMID: 39376599 PMCID: PMC11456924 DOI: 10.3389/fphar.2024.1471542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Bouvardia ternifolia is a plant known for its traditional medicinal uses, particularly in treating inflammation and oxidative stress. Recent studies have explored its potential in neuroprotection, especially in the context of cerebral ischemia/reperfusion injury, a condition where blood supply returns to the brain after a period of ischemia, leading to oxidative stress and inflammation. This damage is a major contributor to neuronal death and neurodegenerative diseases. Methods A BCCAO/reperfusion model was induced, followed by treatment with B. ternifolia extract. Various molecular biology methods were employed, including Western blot analysis, gene expression assessment via RT-qPCR, and the measurement of oxidative stress mediators. Results In the BCCAO/reperfusion model, the compounds in the dichloromethane extract work by targeting various signaling pathways. They prevent the activation of iNOS and nNOS, reducing harmful reactive oxygen and nitrogen species, and boosting antioxidant enzymes like catalase and superoxide dismutase. This lowers oxidative stress and decreases the expression of proteins and genes linked to cell death, such as Bax, Bcl-2, and caspase-3. The extract also blocks the TLR4 receptor, preventing NF-κB from triggering inflammation. Additionally, it reduces the activation of microglia and astrocytes, as shown by lower levels of glial activation genes like GFAP and AiF1. Conclusion The dichloromethane extract of B. ternifolia demonstrated significant neuroprotective effects in the BCCAO/reperfusion model by modulating multiple signaling pathways. It effectively reduced oxidative stress, inhibited inflammation, and attenuated apoptosis, primarily through the downregulation of key proteins and genes associated with these processes. These findings suggest that the extract holds therapeutic potential for mitigating ischemia/reperfusion-induced neuronal damage.
Collapse
Affiliation(s)
- Yury Maritza Zapata-Lopera
- Centro de investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, Mexico
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, Mexico
| | - Gabriela Trejo-Tapia
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, Mexico
| | - Edgar Cano-Europa
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Placido Rojas-Franco
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Maribel Herrera-Ruiz
- Centro de investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, Mexico
| |
Collapse
|
2
|
Yang X, Ma L, Lu K, Zhao D. Mechanism of Peptide Self-assembly and Its Study in Biomedicine. Protein J 2024; 43:464-476. [PMID: 38676873 DOI: 10.1007/s10930-024-10200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The development of peptide-based materials is one of the most challenging aspects of biomaterials research in recent years. The assembly of peptides is mainly controlled by forces such as hydrogen bonding, hydrophobic interaction, electrostatic interaction, and π-π accumulation. Peptides have unique advantages such as simple structure, easy synthesis, good biocompatibility, non-toxicity, easy modification, etc. These factors make peptides turn into ideal biomedical materials, and they have a broad application prospect in biomedical materials, and thus have received wide attention. In this review, the mechanism and classification of peptide self-assembly and its applications in biomedicine and hydrogels were introduced.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Li Ma
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Gu MM, Li Q, Zhang Y, Wu HW, Shao YL, Han HP, Liao ZX. Chemical constituents of Rubia tibetica Hook. f. from Tibetan medicine and cytotoxic activity evaluation. Fitoterapia 2024; 175:105961. [PMID: 38626855 DOI: 10.1016/j.fitote.2024.105961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Two unprecedented quinone compounds Rubiaxylm A (1) and Rubiaxylm B (2), along with fifteen known anthraquinones (3-17) were isolated and characterized from the roots of Rubia tibetica in Tibetan medicine. Their structures were identified through comprehensive analyses of 1D/2D NMR as well as HR-ESIMS data. Furthermore, all separated compounds were evaluated for their cytotoxic activity on A549, Caco-2, MDA-MB-231 and Skov-3 cell lines. In particular, compound 2 effectively inhibited MDA-MB-231 cells with an IC50 value of 8.15 ± 0.20 μM. Subsequently, the anti-tumor mechanism of 2 was investigated by flow cytometry, JC-1 staining, cell scratching and cell colony. These results indicated that compound 2 could inhibit the proliferation of MDA-MB-231 cells by arresting cells in the G1 phase.
Collapse
Affiliation(s)
- Min-Min Gu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Qing Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Yu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Hong-Wei Wu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Yuan-Ling Shao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Hong-Ping Han
- The Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, School of Chemistry and Chemical Engineering, Qinghai Normal university, Xining 810008, China
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
4
|
Man X, Li S, Xu G, Li W, Zhu M, Zhang Z, Liang H, Yang F. Developing a Copper(II) Isopropyl 2-Pyridyl Ketone Thiosemicarbazone Compound Based on the IB Subdomain of Human Serum Albumin-Indomethacin Complex: Inhibiting Tumor Growth by Remodeling the Tumor Microenvironment. J Med Chem 2024; 67:5744-5757. [PMID: 38553427 DOI: 10.1021/acs.jmedchem.3c02378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
To develop a next-generation metal agent and dual-agent multitargeted combination therapy, we developed a copper (Cu) compound based on the properties of the human serum albumin (HSA)-indomethacin (IND) complex to remodel the tumor microenvironment (TME). We optimized a series of Cu(II) isopropyl 2-pyridyl ketone thiosemicarbazone compounds to obtain a Cu(II) compound (C4) with significant cytotoxicity and then constructed an HSA-IND-C4 complex (HSA-IND-C4) delivery system. IND and C4 bind to the hydrophobic cavities of the IB and IIA domains of HSA, respectively. In vivo, the HSA-IND-C4 not only showed enhanced antitumor efficacy relative to C4 and C4 + IND but also improved their targeting ability and decreased their side effects. The antitumor mechanism of C4 + IND involved acting on the different components of the TME. IND inhibited tumor-related inflammation, while C4 not only induced apoptosis and autophagy of cancer cells but also inhibited tumor angiogenesis.
Collapse
Affiliation(s)
- Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
5
|
Yang X, Hua C, Lin L, Ganting Z. Antimicrobial peptides as potential therapy for gastrointestinal cancers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2831-2841. [PMID: 37249612 DOI: 10.1007/s00210-023-02536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Since conventional therapy faces limitations in the field of different cancers as well as gastrointestinal cancers, that decrease the survival rate of patients, there is an urgent need to find new effective therapeutic approaches without the adverse effects of the traditional agents. Antimicrobial peptides (AMPs) attract much attention and are well known for their role in innate immunity. These peptides, in addition to their antimicrobial activity, exhibit strong anticancer potential against various types of malignancy. AMPs specifically target tumor cells and have selective toxicity for these cells without affecting normal cells. Here we aim to comprehensively overview the current knowledge in the field of using AMPs as novel therapeutic agents for gastrointestinal cancer.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Heping Hospital Attached to Changzhi Medical College, Changzhi, 046000, China
| | - Cui Hua
- Tangshan Fengnan District Traditional Chinese Medicine Hospital, Tangshan, 063000, China.
| | - Lin Lin
- Tangshan Hongci Hospital, Tangshan, 063000, China
| | - Zhao Ganting
- Heping Hospital Attached to Changzhi Medical College, Changzhi, 046000, China
| |
Collapse
|
6
|
Wang H, Liu Y, Wang Y, Xu T, Xia G, Huang X. Umbelliprenin induces autophagy and apoptosis while inhibits cancer cell stemness in pancreatic cancer cells. Cancer Med 2023; 12:15277-15288. [PMID: 37409635 PMCID: PMC10417289 DOI: 10.1002/cam4.6170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Umbelliprenin is a sesquiterpene coumarin isolated from Artemisia absinthium L. and shows antitumor effects in various cancers by inducing apoptosis. However, the antitumor effect of umbelliprenin in human pancreatic cancer has not been clarified. METHODS The antitumor effects were determined by MTT and AnnexinV/PI double staining assay in vitro and xenograft mice in vivo. Autophagy was determined via immunofluorescence analysis. Apoptotic or autophagic related proteins were measured by immunoblotting. The pancreatic cancer cell stemness were determined by mammosphere formation and ALDEFLUOR assay. RESULTS It revealed that umbelliprenin inhibited pancreatic cancer cell proliferation in vitro and pancreatic cancer tumor growth in vivo. Moreover, umbelliprenin induced pancreatic cancer cell BxPC3 apoptosis and autophagy as evidenced by upregulated apoptosis and autophagy- related protein expression (p < 0.01). Blocking autophagy by 3-MA or Atg7 knockout enhanced umbelliprenin-induced apoptosis (p < 0.05). Umbelliprenin also reduced pancreatic cancer cell stemness by reducing Oct4, Nanog, and Sox2 mRNA levels (p < 0.01). Mechanistically, umbelliprenin greatly inhibited Akt/mTOR and Notch1 signal pathway. CONCLUSION Umbelliprenin may be a novel therapeutic approach for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Hongcheng Wang
- Department of Hepatobiliary and Pancreatic SurgerySixth People's Hospital Affiliated Shanghai Jiao Tong UniversityShanghaiChina
- Department of General SurgeryThe Second People’ Hospital of Kashgar, 1SKashgarXinjiangChina
| | - Yongzhi Liu
- Affiliated Xiaoshan Hospital Hangzhou Normal UniversityZhejiangChina
| | - Yiwei Wang
- Department of Hepatobiliary and Pancreatic SurgerySixth People's Hospital Affiliated Shanghai Jiao Tong UniversityShanghaiChina
| | - Ting Xu
- Department of Hepatobiliary and Pancreatic SurgerySixth People's Hospital Affiliated Shanghai Jiao Tong UniversityShanghaiChina
| | - Guanggai Xia
- Department of Hepatobiliary and Pancreatic SurgerySixth People's Hospital Affiliated Shanghai Jiao Tong UniversityShanghaiChina
| | - Xinyu Huang
- Department of Hepatobiliary and Pancreatic SurgerySixth People's Hospital Affiliated Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
Feng L, Shang RR, Wang XJ, Li L, Li X, Gong YX, Shi LY, Wang JW, Qian ZY, Tan NH, Wang Z. The Natural Alkaloid (-)- N-Hydroxyapiosporamide Suppresses Colorectal Tumor Progression as an NF-κB Pathway Inhibitor by Targeting the TAK1-TRAF6 Complex. JOURNAL OF NATURAL PRODUCTS 2023; 86:1449-1462. [PMID: 37243616 DOI: 10.1021/acs.jnatprod.3c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Colorectal cancer (CRC) is an exceptionally deadly disease, whereas effective therapeutic drugs for CRC have declined over the past few decades. Natural products have become a reliable source of anticancer drugs. Previously we isolated an alkaloid named (-)-N-hydroxyapiosporamide (NHAP), which exerts potent antitumor effects, but its effect and mechanism in CRC remain unclear. This study aimed to reveal the antitumor target of NHAP and identify NHAP as a promising lead compound for CRC. Various biochemical methods and animal models were used to investigate the antitumor effect and molecular mechanism for NHAP. These results showed that NHAP exhibited potent cytotoxicity, induced both apoptosis and autophagic cell death of CRC cells, and inhibited the NF-κB signaling pathway by blocking the interaction of the TAK1-TRAF6 complex. NHAP also markedly inhibited CRC tumor growth in vivo without obvious toxicities and possessed good pharmacokinetic characteristics. These findings identify, for the first time, that NHAP is an NF-κB inhibitor with potent antitumor activity in vitro and in vivo. This study clarifies the antitumor target of NHAP against CRC, which will contribute to the future development of NHAP as a novel therapeutic lead compound for CRC.
Collapse
Affiliation(s)
- Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ran-Ran Shang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin-Jia Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ling Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuan-Xiang Gong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Li-Yuan Shi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jing-Wen Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhi-Yu Qian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
8
|
Chen J, Liu H, Chen Y, Hu H, Huang C, Wang Y, Liang L, Liu Y. Iridium(III) complexes inhibit the proliferation and migration of BEL-7402 cells through the PI3K/AKT/mTOR signaling pathway. J Inorg Biochem 2023; 241:112145. [PMID: 36709684 DOI: 10.1016/j.jinorgbio.2023.112145] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Iridium(III) complexes are largely studied as anti-cancer complexes due to their excellent anti-cancer activity. In this article, two new iridium(III) complexes [Ir(piq)2(THPIP)]PF6 (THPIP = 2,4-di-tert-butyl-6-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol, piq = deprotonated 1-phenylisoquinoline) (Ir1) and [Ir(bzq)2(THPIP)]PF6 (bzq = deprotonated benzo[h]quinolone) (Ir2) were synthesized. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays showed that complex Ir1 exhibits moderate activity (IC50 = 29.9 ± 4.6 μM) and Ir2 shows high cytotoxicity (IC50 = 9.8 ± 1.8 μM) against BEL-7402 cells. Further studies on the mechanism showed that Ir1 and Ir2 induced apoptosis by changing the mitochondrial membrane potential, Ca2+ release, ROS accumulation, and cell cycle arrest at the S phase. The complexes can effectively inhibit cell colony formation and migration. The expression of B-cell lymphoma-2 (Bcl-2) family proteins, PI3K (phosphatidylinositol 3-kinase), AKT (protein kinase B), mTOR (mammalian target of rapamycin), and p-mTOR was studied by immunoblotting. Complexes Ir1 and Ir2 downregulated the expression of anti-apoptotic protein Bcl-2 and increased the expression of autophagy-related proteins of Beclin-1 and LC3-II. Further experiments showed that the complexes inhibited the production of glutathione (GSH) and increased the amounts of malondialdehyde (MDA). Fluorescence of HMGB1 was significantly increased. We also investigated the effect of the complexes on the expression of genes using RNA-sequence analysis, we further calculated the lowest binding energies between the complexes and proteins using molecular docking. Taken together, the above results indicated that complexes Ir1 and Ir2 induce apoptosis in BEL-7402 cells through a ROS-mediated mitochondrial dysfunction and inhibition of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
9
|
He Q, Ding H. Bioinformatics analysis of rheumatoid arthritis tissues identifies genes and potential drugs that are expressed specifically. Sci Rep 2023; 13:4508. [PMID: 36934132 PMCID: PMC10024744 DOI: 10.1038/s41598-023-31438-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/11/2023] [Indexed: 03/20/2023] Open
Abstract
Studies have implicated necroptosis mechanisms in orthopaedic-related diseases, since necroptosis is a unique regulatory cell death pattern. However, the role of Necroptosis-related genes in rheumatoid arthritis (RA) has not been well described. We downloaded RA-related data information and Necroptosis-related genes from the Gene Expression Omnibus (GEO), Kyoto Gene and Genome Encyclopedia (KEGG) database, and Genome Enrichment Analysis (GSEA), respectively. We identified 113 genes associated with RA-related necroptosis, which was closely associated with the cytokine-mediated signaling pathway, necroptosis and programmed necrosis. Subsequently, FAS, MAPK8 and TNFSF10 were identified as key genes among 48 Necroptosis-associated differential genes by three machine learning algorithms (LASSO, RF and SVM-RFE), and the key genes had good diagnostic power in distinguishing RA patients from healthy controls. According to functional enrichment analysis, these genes may regulate multiple pathways, such as B-cell receptor signaling, T-cell receptor signaling pathways, chemokine signaling pathways and cytokine-cytokine receptor interactions, and play corresponding roles in RA. Furthermore, we predicted 48 targeted drugs against key genes and 31 chemical structural formulae based on targeted drug prediction. Moreover, key genes were associated with complex regulatory relationships in the ceRNA network. According to CIBERSORT analysis, FAS, MAPK8 and TNFSF10 may be associated with changes in the immune microenvironment of RA patients. Our study developed a diagnostic validity and provided insight to the mechanisms of RA. Further studies will be required to test its diagnostic value for RA before it can be implemented in clinical practice.
Collapse
Affiliation(s)
- Qingshan He
- Nanyang Medical College, Henan, 473000, China
| | | |
Collapse
|
10
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
11
|
Guo C, Zhang L, Zhao M, Ai Y, Liao W, Wan L, Liu Q, Li S, Zeng J, Ma X, Tang J. Targeting lipid metabolism with natural products: A novel strategy for gastrointestinal cancer therapy. Phytother Res 2023; 37:2036-2050. [PMID: 36748953 DOI: 10.1002/ptr.7735] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
Gastrointestinal cancer (GIC), including gastric cancer and colorectal cancer, is a common malignant tumor originating from gastrointestinal epithelial cells. Although the pathogenesis of GIC remains unclear, aberrant lipid metabolism has emerged as a hallmark of cancer. Several enzymes, proteins, and transcription factors are involved in lipid metabolism reprogramming in GIC, and their abnormal expression can promote lipid synthesis and accumulation of lipid droplets through numerous mechanisms, thereby affecting the growth, proliferation, and metastasis of GIC cells. Studies show that some natural compounds, including flavonoids, alkaloids, and saponins, can inhibit the de novo synthesis of lipids in GIC, reduce the level of lipid accumulation, and subsequently, inhibit the occurrence and development of GIC by regulating Sterol regulatory element-binding protein 1 (SREBP-1), adenosine monophosphate-activated protein kinase (AMPK), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), phosphatidylinositol-3-kinase/Akt and the mammalian target of rapamycin PI3K/Akt/mTOR, amongst other targets and pathways. Therefore, targeting tumor lipid metabolism is the focus of anti-gastrointestinal tumor therapy. Although most natural products require further high-quality studies to firmly establish their clinical efficacy, we review the potential of natural products in the treatment of GIC and summarize the application prospect of lipid metabolism as a new target for the treatment of GIC, hoping to provide a reference for drug development for gastrointestinal tumors.
Collapse
Affiliation(s)
- Cui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Ai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Wang J, Lai X, Yuan D, Liu Y, Wang J, Liang Y. Effects of ferulic acid, a major component of rice bran, on proliferation, apoptosis, and autophagy of HepG2 cells. Food Res Int 2022; 161:111816. [DOI: 10.1016/j.foodres.2022.111816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 01/07/2023]
|
13
|
Sazonova EV, Chesnokov MS, Zhivotovsky B, Kopeina GS. Drug toxicity assessment: cell proliferation versus cell death. Cell Death Dis 2022; 8:417. [PMID: 36241623 PMCID: PMC9568594 DOI: 10.1038/s41420-022-01207-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Analysis of the toxicity of chemotherapeutic drugs is one of the main tasks of clinical pharmacology. Decreased viability of tumor cells may reflect two important physiological processes, namely the arrest of proliferation associated with disturbances in cellular metabolism or actual cell death. Elucidation of the exact processes mediating a reduction in the number of cells is fundamentally important to establish the mechanisms of drug action. Only the use of a combination of cell biological and biochemical approaches makes it possible to understand these mechanisms. Here, using various lines of tumor cells and a set of methodological approaches, we carried out a detailed comparative analysis and demonstrated the possible ways to overcome the uncertainties in establishing the mechanisms of cell response to the action of chemotherapeutic drugs and their toxicity.
Collapse
Affiliation(s)
- Elena V Sazonova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | | | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia. .,Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
14
|
Cyclic Peptides for the Treatment of Cancers: A Review. Molecules 2022; 27:molecules27144428. [PMID: 35889301 PMCID: PMC9317348 DOI: 10.3390/molecules27144428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclic peptides have been widely reported to have therapeutic abilities in the treatment of cancer. This has been proven through in vitro and in vivo studies against breast, lung, liver, colon, and prostate cancers, among others. The multitude of data available in the literature supports the potential of cyclic peptides as anticancer agents. This review summarizes the findings from previously reported studies and discusses the different cyclic peptide compounds, the sources, and their modes of action as anticancer agents. The prospects and future of cyclic peptides will also be described to give an overview on the direction of cyclic peptide development for clinical applications.
Collapse
|
15
|
Lin Q, Liu M, Yue GGL, Cheung MK, Lai Z, Kwok FHF, Lee JKM, Wang Z, Lau CBS, Tan N. Anti-inflammatory activities of natural cyclopeptide RA-XII in colitis-associated colon cancer mouse model and its effect on gut microbiome. Phytother Res 2022; 36:2641-2659. [PMID: 35537703 DOI: 10.1002/ptr.7482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC), the third most common cancer globally, is associated with intestinal inflammation that leads to poor prognosis. RA-XII, a natural cyclopeptide, has previously been reported to possess anti-tumor activities. Here, the anti-inflammatory activities of RA-XII were investigated in colitis-associated colon cancer mice and a co-culture in vitro model, in which colon cancer cells HCT116 and macrophages RAW264.7 were grown together to mimic the inflammatory microenvironment of CRC. Changes of inflammatory-related molecules and protein expressions in cells were evaluated after RA-XII incubation. Besides, azoxymethane and dextran sulfate sodium-induced colitis-associated colon cancer mice were treated with RA-XII for 24 days, inflammatory parameters and gut microbiome alterations were studied. Our results showed that RA-XII reversed the inflammatory responses of RAW264.7 cells induced by LPS and modulated the protein expressions of AKT, STAT3/p-STAT3, P70S6K, NF-κB and GSK3β and suppressed the expression of LC3A/B in HCT116 cells in co-culture system. RA-XII treatment restored the colitis damage in colon, reduced colon tumors numbers and decreased inflammatory factors (IL-6, IL-10 and TNF-α). The role of RA-XII on regulating gut microbiome was also demonstrated for the first time. In conclusion, our findings provided new scientific evidence for developing RA-XII as a potent anti-inflammatory agent for CRC.
Collapse
Affiliation(s)
- Qianwen Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mingyu Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man Kit Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhixing Lai
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Frankie Hin-Fai Kwok
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Zhou Y, Bai L, Tian L, Yang L, Zhang H, Zhang Y, Hao J, Gu Y, Liu Y. Iridium(III)-BBIP complexes induce apoptosis via PI3K/AKT/mTOR pathway and inhibit A549 lung tumor growth in vivo. J Inorg Biochem 2021; 223:111550. [PMID: 34311319 DOI: 10.1016/j.jinorgbio.2021.111550] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The new ligand BBIP (BBIP = 2-(7-bromo-2H-benzo[d]imidazole-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) with its iridium(III) complexes: [Ir(ppy)2(BBIP)](PF6) (ppy = 2-phenylpyridine, Ir1), [Ir(bzq)2(BBIP)](PF6) (bzq = benzo[h]quinolone, Ir2) and [Ir(piq)2(BBIP)](PF6) (piq = 1-phenylisoquinoline, Ir3) were synthesized and characterized by elemental analysis, High Resolution Mass Spectrometer (HRMS), 1H NMR and 13C{1H} NMR. The cytotoxicity of the complexes against A549, HepG2, SGC-7901, BEL-7402, HeLa and normal LO2 was evaluated through 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. The results show that Ir1 exhibits high cytotoxic activity against A549 cells with a low IC50 value of 4.9 ± 0.5 μM. A series of biological activities such as cell cycle arrest, endoplasmic reticulum localization assay, apoptosis, western blotting, cellular uptake determination and in vivo antitumor activity were investigated. The assays implied that the complexes inhibit cancer cell migration through blocking mitotic progress. Cell cycle distribution stated that the complexes depress cell growth at G0/G1 phase. Additionally, the complexes acted on the endoplasmic reticulum and induce apoptosis through endoplasmic reticulum stress pathway. Especially, the western blotting showed that the complexes activated Bcl-2 (B-cell lymphoma-2) family and decreased PI3K (phosphoinositide-3 kinase) and AKT (protein kinase B), up-regulated the expression of mTOR (mammalian target of rapamycin) and p-mTOR (phosphorylated mammalian target of rapamycin). Therefore, the complexes induce apoptosis through activating PI3K-AKT-mTOR pathway. Antitumor in vivo demonstrated that Ir1 can effectively prevent the tumor growth with an inhibitory rate of 48.89%.
Collapse
Affiliation(s)
- Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Linlin Yang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou 510010, PR China.
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yiying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
17
|
Li L, Wang J, Feng L, Fan J, Wang J, Tan N, Wang Z. Rubioncolin C, a natural naphthohydroquinone dimer isolated from Rubia yunnanensis, inhibits the proliferation and metastasis by inducing ROS-mediated apoptotic and autophagic cell death in triple-negative breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114184. [PMID: 33961996 DOI: 10.1016/j.jep.2021.114184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rubia yunnanensis Diels is a traditional Chinese medicine that has diverse pharmacological activities, including antituberculosis, antirheumatism and anticancers. Rubioncolin C (RC), a natural naphthohydroquinone dimer isolated from the roots and rhizomes of R. yunnanensis Diels, has shown potent antitumor activity. However, the antitumor activity and its potential mechanism of RC in triple-negative breast cancer (TNBC) cell lines remained unclear. AIM OF THE STUDY This study was aim to investigate the anti-proliferation and anti-metastasis activity as well as the potential mechanism of RC on triple-negative breast cancer cells in vitro and in vivo. MATERIALS AND METHODS The sulforhodamine B assay, colony formation assay and cell cycle analysis were used to determine the anti-proliferative activity of RC on TNBC. The anti-metastatic activity in vitro of RC was detected through the scratch wound assay, cell migration and invasion assays and gelatin zymography. The flow cytometry, JC-1, GFP-LC3B plasmid transfection, MDC, Lysotracker red and Carboxy-H2DCFDA, DHE, and MitoSOX™ Red staining were performed to investigate the effect of RC on apoptosis, autophagy and ROS level. The apoptosis inhibitor, autophagy inhibitors and ROS inhibitors were used to further verify the antitumor mechanism of RC. The protein levels related with cell cycle, apoptosis, and autophagy were examined with western blotting. In addition, the anti-tumor activity of RC in vivo was assessed in an experimental metastatic model. RESULTS In the present study, RC suppressed the proliferation of TNBC cells in a time- and dose-dependent manner via regulating cell cycle. Further experiments showed that RC inhibited the migration and invasion of TNBC cells by downregulating MMPs and inhibiting EMT. Moreover, we demonstrated that RC induced obviously apoptotic and autophagic cell death, activated MAPK signaling pathway and inhibited mTOR/Akt/p70S6K and NF-κB signaling pathways. Furthermore, the excessive ROS was produced after treatment with RC. The antioxygen NAC and GSH could rescue the cell viability and reestablish the ability of cell metastasis, and inhibit the RC-induced apoptosis and autophagy. In a mice lung metastasis model of breast cancer, RC inhibited lung metastasis, and induced autophagy and apoptosis. CONCLUSION These findings clarified the antitumor mechanism of RC on TNBC cell lines and suggested that RC is a key active ingredient for the cancer treatment of R. yunnanensis, which would help RC develop as a new potential chemotherapeutic agent for TNBC treatment.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jia Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; School of Pharmacy, Nanjing Medical University, Nanjing, 211116, China.
| | - Li Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Junting Fan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; School of Pharmacy, Nanjing Medical University, Nanjing, 211116, China.
| | - Jing Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
18
|
Indocyanine green loaded pH-responsive bortezomib supramolecular hydrogel for synergistic chemo-photothermal/photodynamic colorectal cancer therapy. Photodiagnosis Photodyn Ther 2021; 36:102521. [PMID: 34481977 DOI: 10.1016/j.pdpdt.2021.102521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Colorectal cancer is with high incidence worlwide.. Because of the heterogeneity of the tumor, combination therapy is probably of great significance to improve the prognosis of colorectal cancer patients. Herein, the pH-responsive supramolecular hydrogels mPEG-luteolin-BTZ@ICG based on bortezomib (BTZ) and indocyanine green (ICG) were prepared, and the colorectal cancer was treated with mPEG-luteolin-BTZ@ICG through the combination of photothermal/photodynamic and chemotherapy. BTZ performed drug therapy, meanwhile ICG wrapped in supramolecular hydrogels possessed higher light stability than free ICG to perform photothermal/photodynamic therapy. In vitro and in vivo assays showed excellent inhibition of tumor cells due to the combined effect of BTZ and ICG. The mPEG-luteolin-BTZ@ICG combined with laser therapy possessed exceptional biological safety and provided new candidates for advanced colon cancer therapy and important references for other tumor therapies.
Collapse
|
19
|
Xu Y, Yao Y, Wang L, Chen H, Tan N. Hyaluronic Acid Coated Liposomes Co-Delivery of Natural Cyclic Peptide RA-XII and Mitochondrial Targeted Photosensitizer for Highly Selective Precise Combined Treatment of Colon Cancer. Int J Nanomedicine 2021; 16:4929-4942. [PMID: 34326635 PMCID: PMC8314934 DOI: 10.2147/ijn.s311577] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/05/2021] [Indexed: 01/10/2023] Open
Abstract
Background Natural cyclopeptide RA-XII, isolated from Rubia yunnanensis, is a promising chemotherapeutic agent for colon cancer. The photosensitizer protoporphyrin-IX attached with triphenylphosphonium (TPP) could possess mitochondria targeting capacity and exert photodynamic therapy (PDT) by inducing oxidizing damage to the mitochondria and cell apoptosis eventually. In this work, pH-sensitive liposomes were constructed to simultaneously deliver RA-XII as a chemotherapeutic drug and modified porphyrin as a mitochondria-targeting photosensitizer to treat colon cancer, and verified its mechanism of action and antitumor therapeutic efficacy. Methods The colon cancer targeting liposome nanoparticle RA/TPPP-Lip was synthesized using thin film hydration. The therapeutic effect and targeting ability of RA/TPPP-Lip was investigated in vitro. And use HCT116 cell allogeneic subcutaneous transplantation tumor model to investigate the anti-tumor and targeting effects of RA/TPPP-Lip in vivo. Results RA/TPPP-Lip gained the targeting ability through surface-modified HA to increase the accumulation of RA-XII and TPPP in colon cancer cells. A series of in vitro experimental results showed that TPPP produced cytotoxic ROS under laser irradiation to directly damage cell mitochondria and played a combined role with RA-XII, making RA/TPPP-Lip the best colon cancer cell growth inhibitory effect. Furthermore, in vivo antitumor experiments showed that the RA/TPPP-Lip substantially accumulated at the tumor site and efficiently repressed tumor growth in nude mice. Conclusion We have successfully designed a new cancer-targeted nanomedicine platform (RA/TPPP-Lip) for the collaborative treatment of colon cancer, which can achieve the targeted continuous release of multiple therapeutic drugs. This work provides a new strategy for precise combination therapy, which may promote the further development of collaborative cancer treatment platforms.
Collapse
Affiliation(s)
- Yanqing Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yongrong Yao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Linxiao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huachao Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| |
Collapse
|
20
|
Sazonova EV, Kopeina GS, Imyanitov EN, Zhivotovsky B. Platinum drugs and taxanes: can we overcome resistance? Cell Death Discov 2021; 7:155. [PMID: 34226520 PMCID: PMC8257727 DOI: 10.1038/s41420-021-00554-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer therapy is aimed at the elimination of tumor cells and acts via the cessation of cell proliferation and induction of cell death. Many research publications discussing the mechanisms of anticancer drugs use the terms "cell death" and "apoptosis" interchangeably, given that apoptotic pathways are the most common components of the action of targeted and cytotoxic compounds. However, there is sound evidence suggesting that other mechanisms of drug-induced cell death, such as necroptosis, ferroptosis, autophagy, etc. may significantly contribute to the fate of cancer cells. Molecular cross-talks between apoptotic and nonapoptotic death pathways underlie the successes and the failures of therapeutic interventions. Here we discuss the nuances of the antitumor action of two groups of the widely used anticancer drugs, i.e., platinum salts and taxane derivatives. The available data suggest that intelligent interference with the choice of cell death pathways may open novel opportunities for cancer treatment.
Collapse
Affiliation(s)
- Elena V Sazonova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia.
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia.
- Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 195067, Russia.
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, 17177, Stockholm, Sweden.
| |
Collapse
|
21
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|