1
|
Pessina F, Casini I, Gamberucci A, Carullo G, Signorini C, Brizzi A, Aiello F, Aloisi AM, Pieretti S. Anti-Inflammatory and Antinociceptive Properties of the Quercetin-3-Oleate AV2, a Novel FFAR1 Partial Agonist. Int J Mol Sci 2024; 25:11635. [PMID: 39519187 PMCID: PMC11546106 DOI: 10.3390/ijms252111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Free fatty acid receptor 1 (FFAR1) has emerged as the most targeted isoform of the free fatty acid receptors because of its involvement in the modulation of energy balance and its potential role in the control of inflammatory and pain conditions. Quercetin-3-oleate (AV2), recognized as a new FFAR1 partial agonist, was investigated for its ability to modulate inflammation and nociception. Human immortal neuroblastoma SH and the murine macrophagic RAW 264.7 cells were used to evaluate cell viability, the potential cytoprotective activity, and the anti-inflammatory properties of AV2 in vitro. Paw edema, caused by zymosan-A, and the formalin test were used to assess the in vivo anti-inflammatory and antinociceptive effects in CD-1 mice. In vitro, AV2 was devoid of cytotoxicity, significantly reduced ROS in both cell types, and protected RAW 264.7 cells from lipopolysaccharide damage by reducing tumor necrosis factor-α production. Interestingly, AV2 induced a transient elevation of intracellular calcium that was reduced in cells, pre-incubated with the FFAR1 antagonist DC260126. In vivo, AV2 reduced formalin-induced nociception and zymosan A-induced paw edema, and both effects were reversed by the FFAR1 antagonist GW1100. In conclusion, these data strongly support the AV2-mediated antioxidant, anti-inflammatory, and antinociceptive activity. AV2 represents a promising molecule for the clinical management of inflammatory-related pain conditions.
Collapse
Affiliation(s)
- Federica Pessina
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (A.G.); (C.S.)
| | - Ilenia Casini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (I.C.); (A.M.A.)
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (A.G.); (C.S.)
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy;
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (A.G.); (C.S.)
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy;
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, Italy;
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (I.C.); (A.M.A.)
| | - Stefano Pieretti
- Istituto Superiore di Sanità, National Centre for Drug Research and Evaluation, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
2
|
Lakhrem M, Eleroui M, Boujhoud Z, Feki A, Dghim A, Essayagh S, Hilali S, Bouhamed M, Kallel C, Deschamps N, de Toffol B, Pujo JM, Badraoui R, Kallel H, Ben Amara I. Anti-Vasculogenic, Antioxidant, and Anti-Inflammatory Activities of Sulfated Polysaccharide Derived from Codium tomentosum: Pharmacokinetic Assay. Pharmaceuticals (Basel) 2024; 17:672. [PMID: 38931340 PMCID: PMC11207104 DOI: 10.3390/ph17060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this paper was to investigate the anti-inflammatory and anti-angiogenic activities of sulfated polysaccharide from C. tomentosum (PCT) using carrageenan (CARR)-induced paw edema in a rat model and anti-vasculogenic activity on a chorioallantoic membrane assay (CAM) model. Based on in vitro tests of anti-radical, total antioxidant, and reducing power activities, PCT presents a real interest via its antioxidant activity and ability to scavenge radical species. The in vivo pharmacological tests suggest that PCT possesses anti-inflammatory action by reducing paw edema and leukocyte migration, maintaining the redox equilibrium, and stabilizing the cellular level of several pro-/antioxidant system markers. It could significantly decrease the malondialdehyde levels and increase superoxide dismutase, glutathione peroxidase, and glutathione activities in local paw edema and erythrocytes during the acute inflammatory reaction of CARR. PCT pretreatment was effective against DNA alterations in the blood lymphocytes of inflamed rats and reduced the hematological alteration by restoring blood parameters to normal levels. The anti-angiogenic activity results revealed that CAM neovascularization, defined as the formation of new vessel numbers and branching patterns, was decreased by PCT in a dose-dependent manner, which supported the in silico bioavailability and pharmacokinetic findings. These results indicated the therapeutic effects of polysaccharides from C. tomentosum and their possible use as anti-proliferative molecules based on their antioxidant, anti-inflammatory, and anti-angiogenic activities.
Collapse
Affiliation(s)
- Marwa Lakhrem
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Malek Eleroui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Zakaria Boujhoud
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences of Settat, Settat 26000, Morocco;
| | - Amal Feki
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Amel Dghim
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Sanah Essayagh
- Laboratory Agrifood and Health, Faculty of Science and Technology, Hasan First University of Settat, Settat 26000, Morocco; (S.E.); (S.H.)
| | - Said Hilali
- Laboratory Agrifood and Health, Faculty of Science and Technology, Hasan First University of Settat, Settat 26000, Morocco; (S.E.); (S.H.)
| | - Marwa Bouhamed
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax 3029, Tunisia;
| | - Choumous Kallel
- Laboratory of Hematology, CHU Habib Bourguiba, University of Sfax, Sfax 3029, Tunisia;
| | - Nathalie Deschamps
- Neurology Department, Cayenne General Hospital, Cayenne 97300, French Guiana; (N.D.); (B.d.T.)
- Clinical Investigation Center, CIC INSERM 142, Cayenne General Hospital Andrée Rosemon, Guiana University, Cayenne 97300, French Guiana
| | - Bertrand de Toffol
- Neurology Department, Cayenne General Hospital, Cayenne 97300, French Guiana; (N.D.); (B.d.T.)
| | - Jean Marc Pujo
- Emergency Department, Cayenne General Hospital, Cayenne 97300, French Guiana;
| | - Riadh Badraoui
- Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia;
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Tunisia
| | - Hatem Kallel
- Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne 97300, French Guiana;
- Intensive Care Unit, Cayenne General Hospital, Cayenne 97300, French Guiana
| | - Ibtissem Ben Amara
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
- Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne 97300, French Guiana;
- Intensive Care Unit, Cayenne General Hospital, Cayenne 97300, French Guiana
| |
Collapse
|
3
|
Santana AN, Tanajura Mendes JO, de Godoi Pereira M, Alvarenga YA, Boffo EF, da Silva Ramos F, El-Bachá RS, Araújo FM, de Jesus Correia Torquato S, Lima Cruz Santos MH, Ferraz CG, Ribeiro PR, de Souza Neta LC. Influence of seasonality and habitat on chemical composition, cytotoxicity and antimicrobial properties of the Libidibia ferrea. Heliyon 2024; 10:e30632. [PMID: 38765074 PMCID: PMC11101816 DOI: 10.1016/j.heliyon.2024.e30632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Libidibia ferrea Mart, belonging to the Fabacee family, is a medicinal plant known for its biological properties and production of phenolic compounds. Previous studies reveal the biological activity of its phenolic constituents, making it very promising for the development of new medicines. Seasonality and geographic distribution of species can modify the production of secondary metabolites in Fabaceae species in terms of the preferentially activated metabolic pathways and, consequently, interfere with the medicinal properties of these species. Studying the influence of seasonality on the production of phenolic constituents is essential to establish conditions for "cultivation," species collection, standardization, production, and safety in traditional medicine. This unprecedented study proposed to evaluate the influence of seasonal variations and habitat on the production of phenolic compounds and biological properties of the ethanolic extracts of the stem bark from L. ferrea, whose specimens were collected from the Caatinga and the Atlantic Forest, biomes of Brazil. Antimicrobial activity was determined by broth microdilution. Cytotoxicity was evaluated through a colorimetric assay using MTT. ABTS and DPPH radical reduction methods estimated antioxidant capacities. Folin-Ciocalteu and AlCl3 spectrophotometric methods quantified total phenolics and flavonoids, respectively. In turn, radial diffusion quantified tannin content. PCA score plot and HCA dendogram were obtained by multivariate analysis of 1H NMR data. The cytotoxicity against C6 glioma cells was observed only for Atlantic Forest extracts (EC50 = 0.13-0.5 mg mL-1). These extracts also showed selectivity against Gram-positive bacteria Bacillus subtilis (ATCC 6633) [MICs 500-2000 μg mL-1], B. cereus CCT 0096) [MIC = 250 μg mL-1], Staphylococcus aureus (ATCC 6538) [MICs = 250-500 μg mL-1], S. epidermidis (ATCC 12228) [62.5-1000 μg mL-1], mainly to Staphylococcus sp. Caatinga extracts showed higher production of flavonoids and antioxidants in the summer [7.36 ± 0.19 μg QE mg-1 extract; IC50ABTS = 4.86 ± 0.05 μg mL-1], spring [5.96 ± 0.10 μg QE mg-1 extract; IC50ABTS = 5.96 ± 0.08 μg mL-1 ], winter [4.89 ± 0.25 μg QE mg-1 extract; IC50ABTS = 6.72 ± 0.08 μg mL-1 ]. Regarding habitat, two discriminating compound patterns in the studied biomes were revealed by NMR. The results indicated that the Caatinga biome offers better conditions for activating the production of phenolics [336.34 ± 18.1 μgGAE mg-1 extract], tannins [328.38 ± 30.19 μgTAE mg-1 extract] in the summer and flavonoids in winter, spring, and summer. The extracts that showed the best antioxidant activities were also those from the Caatinga. In turn, extracts from the Atlantic Forest are more promising for discovering antibacterial compounds against Staphylococcus sp and cytotoxic for C6 glioma cells. These findings corroborated the traditional use of L. ferrea bark powder for treating skin wounds and suggest the cytotoxic potential of these extracts for glioblastoma cell lines.
Collapse
Affiliation(s)
- Aiane Nascimento Santana
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia, Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Júlia Oliveira Tanajura Mendes
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia, Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Madson de Godoi Pereira
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia, Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Yasmin Almeida Alvarenga
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/N, Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Elisangela Fabiana Boffo
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/N, Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Florisvaldo da Silva Ramos
- Laboratório de Pesquisa em Matéria Médica, Faculdade de Farmácia, Departamento do Medicamento, Universidade Federal da Bahia, S/N, Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Ramon Santos El-Bachá
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon, S/N, Canela, 40231-300, Salvador, Bahia, Brazil
| | - Floricéa M. Araújo
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/N, Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Suzimone de Jesus Correia Torquato
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia, Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| | - Maria Herbênia Lima Cruz Santos
- Departamento de Tecnologia e Ciências Sociais, Universidade do Estado da Bahia, Rua Edgar Chastinet, S/N, São Geraldo, 48905-680, Juazeiro, Bahia, Brazil
| | - Caline Gomes Ferraz
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/N, Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Paulo R. Ribeiro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/N, Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Lourdes C. de Souza Neta
- Departamento de Ciências Exatas e da Terra I, Universidade do Estado da Bahia, Rua Silveira Martins, 2555, Cabula, 41150-000, Salvador, Bahia, Brazil
| |
Collapse
|
4
|
Adjafre BL, Lima IC, Alves APNN, Lessa RA, Cunha AP, Pereira MG, Assreuy AMS, Mota MRL. Anti-inflammatory and healing effect of the polysaccharidic extract of Opuntia ficus-indica cladodes in cutaneous excisional wounds in rats. Int J Exp Pathol 2024; 105:33-44. [PMID: 37991201 PMCID: PMC10797432 DOI: 10.1111/iep.12498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
This study aimed to investigate the anti-inflammatory and wound healing effects of the polysaccharide extract from Opuntia ficus-indica cladodes (TPL-Ofi) using a rat cutaneous wound model. After anaesthesia, four 7-mm-diameter dorsal wounds per animal (n = 6/group for each experimental day of evaluation) were created in female Wistar rats using a surgical punch. The animals were treated topically twice daily with TPL-Ofi (0.01-1%; treated group) or sterile saline (control group) for a period of 21 days. Ulcerated tissue was collected for analysis of histological parameters (inflammation score, number of polymorphonuclear, mononuclear, fibroblast/myofibroblasts and blood vessels), immunohistochemical (fibroblast growth factor 2 [FGF-2]) and oxidative stress markers (myeloperoxidase [MPO] and glutathione [GSH]). After 21 days of treatment, body weight, net organ weight and plasma biochemical levels were measured. TPL-Ofi, containing a total carbohydrate content of 65.5% and uronic acid at 2.8%, reduced oedema on the second day and increased the nociceptive threshold on the second and third days. TPL-Ofi reduced mononuclear infiltrate on the second and MPO activity on the fifth day. TPL-Ofi increased GSH levels on the second day, as well as fibroblast/myofibroblasts counts, neoangiogenesis and FGF-2 levels on the fifth and seventh days. No changes were observed in body weight, net organ weight or toxicology assessment. Topical application of TPL-Ofi exhibited anti-inflammatory and antinociceptive effects, ultimately improving wound healing in cutaneous wounds.
Collapse
Affiliation(s)
- Beatriz Lima Adjafre
- Superior Institute of Biomedical SciencesState University of CearáFortalezaBrazil
| | - Iásly Costa Lima
- Superior Institute of Biomedical SciencesState University of CearáFortalezaBrazil
| | | | - Rafael Aires Lessa
- Faculty of Education, Sciences and Letters of Sertão CentralState University of CearáQuixadáBrazil
| | | | - Maria Gonçalves Pereira
- Faculty of Education, Sciences and Letters of Sertão CentralState University of CearáQuixadáBrazil
| | | | - Mário Rogério Lima Mota
- Department of Dental Clinic, Faculty of Pharmacy, Dentistry and NursingFederal University of CearáFortalezaBrazil
| |
Collapse
|
5
|
Araujo DFD, Holanda BF, Nascimento FLFD, Martins AB, Silva ALM, Pereira MG, Freitas Pires AD, Assreuy AMS. Polysaccharide-rich extract of Genipa americana leaves exerts anti-inflammatory effects modulated by platelet mediators. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117234. [PMID: 37793578 DOI: 10.1016/j.jep.2023.117234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Genipa americana L. (Rubiaceae) leaves are traditionally used to treat fever, pharyngitis, healing, luxation and bruises. AIM OF THE STUDY This study aimed to investigate the anti-inflammatory effect of the polysaccharide-rich extract of G. americana leaves (PE-Ga) in acute inflammation models and underlying mechanisms associated with platelet activity. MATERIALS AND METHODS Rats received PE-Ga (0.3-3.0 mg/kg; IV) 30 min before injection (IP or SC) of zymosan, serotonin, PGE2, PLA2, PAF or L-arginine, and evaluated in the models of paw edema and acute peritonits. The blockage of plasma serotonin reuptake into platelets was performed with fluoxetine (40 mg/kg; IP). RESULTS In vitro, PE-Ga inhibited ADP-induced platelet aggregation up to 49%. In the edema model, PE-Ga reduced (41%) the time-course of the edema induced by zymosan, mainly the last phase (62%), as well as that induced by PLA2 (32%), PAF (35%), L-arginine (36%), PGE2 (49%) or serotonin (54% AUC); and reversed paw hypernociception induced by PGE2 or serotonin. In the peritonitis model, PE-Ga reversed abdominal hypernociception and reduced leukocyte migration induced by zymosan to blood (38%) and peritoneal cavity (55%), mainly neutrophils (70%). PE-GA also decreased leukocyte rolling (32%) and adhesion (47%), and increased the rolling velocity 2.2-fold. In the peritoneal fluid, PE-Ga reversed P-selectin and reduced total proteins (17%), MDA (40%), NO2-/NO3- (27%), and MPO activity (43%) but increased catalase activity 3.3-fold compared to zymosan. In addition, fluoxetine reversed PE-Ga anti-inflammatory effect on leukocyte migration and adhesion. CONCLUSIONS PE-Ga exerts antiplatelet and anti-inflammatory effects in acute inflammation induced by zymosan, being modulated by P-selectin and platelet serotonin, among other inflammatory mediators.
Collapse
Affiliation(s)
- Diego Freitas de Araujo
- Instituto Superior de Ciências Biomédicas, Universidade Estadual Do Ceará, Av. Dr. Silas Munguba 1700, Fortaleza, CE, 60740-000, Brazil
| | - Bianca Feitosa Holanda
- Instituto Superior de Ciências Biomédicas, Universidade Estadual Do Ceará, Av. Dr. Silas Munguba 1700, Fortaleza, CE, 60740-000, Brazil
| | | | - Alice Brito Martins
- Instituto Superior de Ciências Biomédicas, Universidade Estadual Do Ceará, Av. Dr. Silas Munguba 1700, Fortaleza, CE, 60740-000, Brazil; Centro de Ciências da Saúde, Centro Universitário Estácio Do Ceará, Unidade Centro, Av. Duque de Caxias 101, Fortaleza, CE, 60035-111, Brazil
| | - Alefe Lopes Macario Silva
- Faculdade de Educação, Ciências e Letras Do Sertão Central, Universidade Estadual Do Ceará, Rua José de Queiroz 2554, Quixadá, CE, 63900-000, Brazil
| | - Maria Gonçalves Pereira
- Instituto Superior de Ciências Biomédicas, Universidade Estadual Do Ceará, Av. Dr. Silas Munguba 1700, Fortaleza, CE, 60740-000, Brazil; Faculdade de Educação, Ciências e Letras Do Sertão Central, Universidade Estadual Do Ceará, Rua José de Queiroz 2554, Quixadá, CE, 63900-000, Brazil
| | - Alana de Freitas Pires
- Instituto Superior de Ciências Biomédicas, Universidade Estadual Do Ceará, Av. Dr. Silas Munguba 1700, Fortaleza, CE, 60740-000, Brazil; Centro de Ciências da Saúde, Centro Universitário Estácio Do Ceará, Unidade Centro, Av. Duque de Caxias 101, Fortaleza, CE, 60035-111, Brazil
| | - Ana Maria Sampaio Assreuy
- Instituto Superior de Ciências Biomédicas, Universidade Estadual Do Ceará, Av. Dr. Silas Munguba 1700, Fortaleza, CE, 60740-000, Brazil.
| |
Collapse
|
6
|
Carvalho R, Bonfá IS, de Araújo Isaías Muller J, Pando SC, Toffoli-Kadri MC. Protease inhibitor from Libidibia ferrea seeds attenuates inflammatory and nociceptive responses in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115694. [PMID: 36096346 DOI: 10.1016/j.jep.2022.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Libidibia ferrea (Mart. ex. Tul.) L.P. Queiroz is a Brazilian native tree locally known as jucá and pau-ferro, and it has been used in folk medicine for relieving, asthma, bronchitis, sore throat, rheumatism, enterocolitis and fever. The anti-inflammatory properties of L. ferrea were confirmed for its stem, fruit, leaves, bark and seeds extracts, however little is known about the natural compounds that may be associated with that response. AIM OF THIS STUDY In a normal physiological condition, many enzymes play an important role in catalyzing biological functions. Among them, proteases are of great interest. Although they take part of many biological systems, as the inflammatory process, when deregulated, proteases may cause system malfunctions, such as under- or overproduction of cytokines, or immune cells activation. Thus, protease inhibitors prevent these immune responses by regulating proteases. The objective of this study was to evaluate the anti-inflammatory and anti-nociceptive response of a protease inhibitor purified from L. ferrea seeds (LfTI). MATERIALS AND METHODS In vitro (5, 50 and 250 μg/mL of LfTI) and in vivo (0.6, 3 e 15 mg/kg of LfTI) assays were performed. Male Swiss mice weighing 18-25 g were used for cell harvesting and for the in vivo assays. The anti-inflammatory activity was analyzed in vitro by macrophage cytotoxicity, hydrogen peroxide (H2O2) production, and cell adhesion assays; and in vivo by leukocyte recruitment, nitric oxide (NO) production, vascular permeability, paw edema and mast cell degranulation assays. The anti-nociceptive activity was evaluated through abdominal writhing test induced by acetic acid and formalin sensitization. RESULTS Our results showed that, in vitro, LfTI is not cytotoxic. Also, LfTI (50 μg/mL) inhibited macrophage H2O2 production (48.2%), and adhesion (48.4%). LfTI (0.6, 3 e 15 mg/kg) decreased polymorphonuclear cell recruitment dose-dependently, and it inhibited NO production (53%), vascular permeability (40.7%) and paw edema at 3 mg/kg at different time, but it did not inhibit mast cell degranulation. Besides, LfTI did not inhibit either the number of writhing or the licking time in the formalin test in the second phase (inflammatory). However, LfTI (3 mg/kg) inhibited licking time at the first phase (neurogenic) in the formalin sensitization (46.1%). CONCLUSIONS Our results show that LfTI has anti-inflammatory and antinociceptive (neurogenic pain) effects, and these effects might be associated with the inhibition of inflammatory proteases and/or protease-activated receptors activation hindering.
Collapse
Affiliation(s)
- Raquel Carvalho
- Graduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil; Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil.
| | - Iluska Senna Bonfá
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil.
| | - Jéssica de Araújo Isaías Muller
- Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil; Multicenter Graduate Program in Biochemistry and Molecular Biology, Institute of Biosciences, UFMS, Campo Grande, MS, Brazil.
| | | | - Mônica Cristina Toffoli-Kadri
- Graduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil; Laboratory of Pharmacology and Inflammation, Faculty of Pharmaceutical Sciences, Food and Nutrition, UFMS, Campo Grande, MS, Brazil; Multicenter Graduate Program in Biochemistry and Molecular Biology, Institute of Biosciences, UFMS, Campo Grande, MS, Brazil.
| |
Collapse
|
7
|
Mota MRL, do Carmo Filho JRL, Martins TV, Soares DQ, de Sousa MP, de Barros Silva PG, Alves APNN, Pereira MG, Assreuy AMS. Polysaccharide extract of Caesalpinia ferrea (Mart) pods attenuates inflammation and enhances the proliferative phase of rat cutaneous wounds. Inflammopharmacology 2022; 30:1799-1810. [PMID: 35922736 DOI: 10.1007/s10787-022-01024-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Pods of Caesalpinia ferrea, popularly used to treat inflammatory processes, were collected to obtain the polysaccharide-rich extract, presenting anti-inflammatory and antinociceptive effects in acute inflammation models. This study aimed to evaluate the anti-inflammatory, antinociceptive and healing activities of the polysaccharide-rich extract from Caesalpinia ferrea pods (PEp-Cf) in the rat model of cutaneous excisional wound. PEp-Cf (0.025-0.1%) or 0.9% NaCl was topically applied in the wounds at dorsal thoracic region (2×/day) during 21 days for measurement of clinical signs (hyperemia, inflammatory exudate, edema, nociception), wound size, histopathological/histomorphometric, oxidative/inflammatory markers and systemic toxicity. PEp-Cf at 0.1% reduced wound area and increased ulcer contraction [days 2 and 10 (21-78%)]. PEp-Cf reduced clinical signs [days 2 and 5 (2.2-2.8×)] and modulated the healing inflammatory phase via stimulation of epithelialization (days 10 and 14), and inhibition of polymorphonuclears [days 2 and 5 (71-74%)], protein leakage [days 2 and 5 (28-41%)], nitrate [days 2 and 5 (2.2-6×)] and malondialdehyde [days 2 and 5 (46-49%)]. PEp-Cf increased the number of blood vessels [days 5 and 7 (3.1-9.6×)], fibroblasts [days 5 and 7 (2.1-6.4×)] and collagen [days 5 to 14 (1.5-1.8×)]. In conclusion, the topical application of PEp-Cf at 0.1% accelerates the healing process of rat cutaneous wounds via modulation of the inflammatory and proliferative phases, being devoid of systemic alterations.
Collapse
Affiliation(s)
- Mário Rogério Lima Mota
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Alexandre Baraúna Street, 949, Fortaleza, CE, CEP 60430-170, Brazil
| | - José Ronildo Lins do Carmo Filho
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Alexandre Baraúna Street, 949, Fortaleza, CE, CEP 60430-170, Brazil
| | - Timna Varela Martins
- Higher Institute of Biomedical Sciences, State University of Ceará. Dr, Silas Munguba Avenue,1700, Fortaleza, CE, CEP 60740-903, Brazil
| | - Devany Quintela Soares
- Higher Institute of Biomedical Sciences, State University of Ceará. Dr, Silas Munguba Avenue,1700, Fortaleza, CE, CEP 60740-903, Brazil
| | - Mariana Pereira de Sousa
- Faculdade de Educação, Ciências E Letras Do Sertão Central, Universidade Estadual Do Ceará, Rua José de Queiroz 2554, Quixadá, CE, 63900-000, Brazil
| | - Paulo Goberlânio de Barros Silva
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Alexandre Baraúna Street, 949, Fortaleza, CE, CEP 60430-170, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Alexandre Baraúna Street, 949, Fortaleza, CE, CEP 60430-170, Brazil
| | - Maria Gonçalves Pereira
- Higher Institute of Biomedical Sciences, State University of Ceará. Dr, Silas Munguba Avenue,1700, Fortaleza, CE, CEP 60740-903, Brazil
| | - Ana Maria Sampaio Assreuy
- Higher Institute of Biomedical Sciences, State University of Ceará. Dr, Silas Munguba Avenue,1700, Fortaleza, CE, CEP 60740-903, Brazil.
| |
Collapse
|
8
|
Cui M, Tian J, Sun J, Li X, Xu Q, Ma J, Liu K, Liu K. Isolation, Structural Analysis and Anti-Inflammatory Activity of a Polysaccharide from Ilex cornuta Fruits. Chem Biodivers 2022; 19:e202200084. [PMID: 35484695 DOI: 10.1002/cbdv.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022]
Abstract
In the present study, a polysaccharide from Ilex cornuta fruits (LCFP-3) was obtained by hot water extraction, Diethyaminoethyl cellulose-52 (DEAE-52) chromatography column and Sephadex G-100 gel column purification. Its structural characteristics were further explored using high performance anion exchange chromatography (HPAEC), gas chromatography and mass spectrometry (GC/MS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Monosaccharide composition analysis revealed LCFP-3 contained mainly Galactose (31.92 %), Arabinose (25.87 %) and Galacturonic acid (23.35 %) while small percentage of Rhamnose, Glucose, Mannose and Xylose. Chemical composition analysis showed that the total sugar content of LCFP-3 was 90.31 % and the protein content was 0.246 %. Gel permeation chromatography (GPC) analysis showed that its average molecular weight was 41.199 kDa. Structural analysis showed that LCFP-3 may be composed of residues, T-α-Arap, T-α-Rhap, 1,3-α-Arap, 1,4-α-Arap, T-β-Galp, 1,4-α-GalpA(OMe), 1,4-β-Glcp, 1,3-β-Galp, 1,3,6-β-Manp, 1,6-β-Galp, 1,3,4-β-GalpA, 1,4,6-β-Manp, 1,3,6-β-Glcp, 1,2,3,4-α-Xylp. The anti-inflammatory activity of LCFP-3 was evaluated using lipopolysaccharide (LPS)-induced RAW246.7 macrophages. The results showed that 1-200 μg/mL LCFP-3 could dose-dependently protect against LPS-induced toxicity and 1 μg/mL LCFP-3 could significantly inhibit LPS-induced NO production. Therefore, LCFP-3 exerted an anti-inflammatory activity and has great potential as a functional ingredient.
Collapse
Affiliation(s)
- Mingxiao Cui
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Tian
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Sun
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinyuan Li
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiaohong Xu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian Ma
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Kewu Liu
- Mudanjiang Branch of Heilongjiang Academy of Forestry, Heilongjiang, 157010, China
| |
Collapse
|
9
|
Almeida NCOS, Silva FRP, Carneiro ALB, Lima ES, Barcellos JFM, Furtado SC. Libidibia ferrea (jucá) anti-inflammatory action: A systematic review of in vivo and in vitro studies. PLoS One 2021; 16:e0259545. [PMID: 34739501 PMCID: PMC8570521 DOI: 10.1371/journal.pone.0259545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
Libidibia ferrea (Mart. ex Tul.) L. P. Queiroz (jucá) is a plant extensively used in the Brazilian folk medicine for the treatment of the inflammatory process. Primary studies have focused on the verification of these biological activities, highlighting the role of this plant in inflammatory conditions. This systematic review aimed to critically establish which part of the plant and what type of plant extract present the highest evidence of anti-inflammatory activity as in vivo and in vitro experimental models. This study has followed the recommendations by PRISMA and was registered in the PROSPERO database under number CRD42020159934. The literature review was carried out in several medical and scientific databases (Google Scholar, LILACS, ProQuest, PubMed, ScienceDirect, Scopus and Web of Science) in studies published up to February 2020 and updated on March 2021. No language restriction was made to this search. Eligibility criteria were adopted instead. The risk of bias was evaluated through SYRCLE's RoB tool for the in vivo studies. 609 studies were initiated to identify the whole and the subsequent steps of screening. 13 studies remained in the results (10 in vivo and 3 in vitro). In most studies the risk of bias was low or unclear. The high risk of bias was related to the risk of attrition and reporting bias. The fruit and the aqueous extract were identified as the most used in the studies carried out on the qualitative analysis and the results of the in vivo and in vitro studies were conducive to the anti-inflammatory action, a meta-analysis could not be performed due to heterogeneity between studies and the potential risk of bias to estimate the side effects. Therefore, the implementation of in vivo studies following the international guidelines could collaborate with analyses of the anti-inflammatory effect of jucá.
Collapse
Affiliation(s)
- Nayanne C. O. S. Almeida
- Graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Felipe R. P. Silva
- Post-Doctoral Fellowship in the Graduate Program of Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Emerson S. Lima
- Faculty Member of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - José Fernando M. Barcellos
- Department of Morphology, Institute of Biological Sciences, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Silvania C. Furtado
- Department of Morphology, Institute of Biological Sciences, Federal University of Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
10
|
Cai M, Zhong H, Chu H, Zhu H, Sun P, Liao X. Forward osmosis concentration of high viscous polysaccharides of
Dendrobium officinale
: Process optimisation and membrane fouling analysis. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ming Cai
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang 310014 China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology) China National Light Industry Hangzhou Zhejiang 310014 China
| | - Huazhao Zhong
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang 310014 China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology) China National Light Industry Hangzhou Zhejiang 310014 China
| | - Haoqi Chu
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang 310014 China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology) China National Light Industry Hangzhou Zhejiang 310014 China
| | - Hua Zhu
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang 310014 China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology) China National Light Industry Hangzhou Zhejiang 310014 China
| | - Peilong Sun
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang 310014 China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology) China National Light Industry Hangzhou Zhejiang 310014 China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
- Beijing Key Laboratory for Food Nonthermal Processing National Engineering Research Center for Fruit & Vegetable Processing Beijing 100083 China
| |
Collapse
|