1
|
Yang J, Xiao S, Li L, Zhu A, Xiao W, Wang Q. Actin Dysregulation Mediates Nephrotoxicity of Cassiae Semen Aqueous Extracts. TOXICS 2024; 12:556. [PMID: 39195658 PMCID: PMC11360101 DOI: 10.3390/toxics12080556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Cassiae semen, commonly consumed as roasted tea, has been widely used for both medicinal purposes and dietary supplements. In this study, we investigated the nephrotoxic effects and underlying mechanisms of Cassiae semen aqueous extracts (CSAEs) using computational and animal models. Both male and female Sprague Dawley rats were treated with 4.73-47.30 g/kg (body weight) of CSAEs by oral gavage twice a day for 7-28 days. We found that serum and urinary biomarkers of kidney injury and kidney coefficients were increased in a dose-dependent manner, and were accompanied by morphological alterations in the kidneys of CSAEs-treated rats. Computational and molecular docking approaches predicted that the three most abundant components of CSAEs-obtusifolin, aurantio-obtusin, and obtusin-exhibited strong affinity for the binding of F-actin, ROCK1, and Rac1, and the RhoA-ROCK pathway was identified as the most likely regulatory mechanism mediating the nephrotoxicity of CSAEs. Consistently, immunofluorescence staining revealed F-actin and cytoskeleton were frequently disturbed in renal cells and brush borders at high doses of CSAEs. Results from gene expression analyses confirmed that CSAEs suppressed the key proteins in the RhoA-ROCK signaling pathway and consequently the expression of F-actin and its stabilization genes. In summary, our findings suggest that Cassiae semen can depolymerize and destabilize actin cytoskeleton by inhibition of the RhoA-ROCK pathway and/or direct binding to F-actin, leading to nephrotoxicity. The consumption of Cassiae semen as a supplement and medicine warrants attention.
Collapse
Affiliation(s)
- Jinlan Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Sheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (J.Y.); (S.X.); (L.L.); (A.Z.); (W.X.)
- Key Laboratory of State Administration of Traditional Chinese Medicine (TCM) for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Zhao L, Wang S, Xu X, Guo W, Yang J, Liu Y, Xie S, Piao G, Xu T, Wang Y, Xu Y. Integrated metabolomics and network pharmacology to reveal the lipid-lowering mechanisms of Qizha Shuangye granules in hyperlipidemic rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3265-3274. [PMID: 38087399 DOI: 10.1002/jsfa.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/02/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Qizha Shuangye granules (QSG) comprise six traditional Chinese herbal medicines (TCHMs), which have a long history of treating hyperlipidemia (HLP) in China. This study aimed to evaluate the potential lipid-lowering effects of QSG in an HLP rat model and investigate possible mechanisms. The HLP rat model was induced by a high-fat diet. Lipid-related indicators in serum were detected. Serum and liver metabolites were investigated using a liquid chromatography-mass spectrometry-based metabolomics approach. A herb-compound-target-metabolite (H-C-T-M) network was further constructed to reveal the possible molecular mechanism of QSG to alleviate HLP. RESULTS The administration of QSG inhibited the HLP-induced changes in total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and non-esterified fatty acid (NEFA) levels. Additionally, QSG significantly attenuated the liver histopathological changes induced by HLP. Metabolomic analysis showed the serum and liver metabolic disorders presented in HLP rats. QSG can reverse the abnormal metabolism caused by HLP. Through network pharmacology analysis, key proteins such as androgen receptor, 3-hydroxy-3-methylglutaryl-CoA reductase, and peroxisome proliferator-activated receptor-α were screened out, and they were speculated to be possible therapeutic targets for QSG to treat HLP. CONCLUSION The present study integrated metabolomics and network pharmacology analysis to reveal the efficacy and possible mechanism of QSG in treating HLP, which provides a new reference for the research and development of QSG as a functional food. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liang Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- College of Pharmacy, Yanbian University, Yanji, China
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Shuyue Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohang Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Wenjun Guo
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Jingxuan Yang
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Yue Liu
- Key Laboratory for Analysis Methods of Active Ingredients in Traditional Chinese Medicine, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Shengxu Xie
- Key Laboratory for Analysis Methods of Active Ingredients in Traditional Chinese Medicine, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Guangchun Piao
- College of Pharmacy, Yanbian University, Yanji, China
- Key Laboratory for Natural Resource of Changbai Mountain, Yanbian University, Yanji, China
| | - Tunhai Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| |
Collapse
|
3
|
Jeyakumar P, Jasmin Suriya AR, Yolin Angel PASR, Mangala Nagasundari S, Natarajan PP, Murugan K. Diet-induced animal model anti-obesity, phytochemical profiling, and in silico analysis of culinary plant gokhru ( Pedalium murex L.) mucilage. J Biomol Struct Dyn 2023; 42:12954-12969. [PMID: 37902530 DOI: 10.1080/07391102.2023.2274516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023]
Abstract
Plant-based diets (PBDs) are renowned for managing and developing bioactive chemical inhibitors to combat obesity, a well-known global public health concern. There are currently no published research studies examining the effects of food plant mucilage dietary supplements on animal models of obesity induced by high-fat diets (HFD). The present research investigated the anti-obesity properties of the culinary plant Pedalium murex L. mucilage (PMM) in obese albino male rats models fed HFD. PMM's HR-LCMS phytochemical profiling and in silico evaluation of anti-obesity and drug-likeness using Schrodinger's Glide, QikProp, and GROMACS modules were also investigated. In vivo, anti-obesity model animal rat's daily dietary intake, common blood biochemical parameters, and histological examination of the liver and kidney tissues for the development of macrovesicular and microvesicular steatosis were all performed. Among the 46 Phytochemicals profiled, 7(14)-Bisabolene-2, 3, 10,11tetrol, Moschamine, and N-Feruloyltyramine show prominent anti-obesity activity and drug-like characteristics in silico. Rats given PMM showed significantly lower serum levels of total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TGs), increased levels of high-density lipoprotein (HDL), as well as macro-and microvesicular steatosis, lobular inflammation of the liver and kidney tissues. This suggests that PMM is an effective natural anti-obesity therapeutic ingredient or dietary supplement with a high concentration of anti-obesity phytochemicals that mainly satisfies the needs for such natural anti-obesity medicine or a supplement.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Palanisamy Jeyakumar
- Department of Biotechnology, Bioprocesses and Biofilm Laboratory, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Arul Raj Jasmin Suriya
- Department of Biotechnology, Bioprocesses and Biofilm Laboratory, Manonmaniam Sundaranar University, Tirunelveli, India
| | | | | | | | - Kasi Murugan
- Department of Biotechnology, Bioprocesses and Biofilm Laboratory, Manonmaniam Sundaranar University, Tirunelveli, India
| |
Collapse
|
4
|
Wei X, Liu R, Chen W. Meta theories of technological innovation based on the analysis of classic texts. Heliyon 2023; 9:e16779. [PMID: 37292334 PMCID: PMC10245269 DOI: 10.1016/j.heliyon.2023.e16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
This study aims to investigate the classification of technological innovation meta-theories based on classical texts, as well as the relationships between various classifications. Both qualitative and quantitative methods are employed. From the perspective of technological innovation, using scientometric methods, 105 pieces of classic texts from the 1930s-2010s are extracted from the references of 3862 pieces of high-quality literature from the 1900s-2020s. As a result, based on a combination of qualitative data analysis and topic model analysis, we developed a typology with eight meta-theories of technological innovation, including performance-based, resource-based, knowledge-based, capability-based, network-based, technological-innovation-system, dual-innovation, and dynamic-sustainability views. Then we analyzed 1) the evolution, reification, and confusion relationships between different meta-theories; 2) the causes of technological innovation's concept jungle; and 3) an integrated framework of technological innovation meta-theories. This study analyzed the benefits of the meta-theoretical analysis on the future study of technological innovation. Additionally, the results of this study can help to measure technological innovation, construct new theories, and improve the efficiency of the connection between the practical problems of innovation and potentially useful theoretical frameworks.
Collapse
Affiliation(s)
- Xuan Wei
- School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan, 250000, China
| | - Ranran Liu
- School of Technology and Business, Shandong Management University, Jinan 250022, China
| | - Wei Chen
- School of Economics and Management, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
5
|
Ding M, Zhou F, Li Y, Liu C, Gu Y, Wu J, Fan G, Li Y, Li X. Cassiae Semen improves non-alcoholic fatty liver disease through autophagy-related pathway. CHINESE HERBAL MEDICINES 2023. [PMID: 37538867 PMCID: PMC10394324 DOI: 10.1016/j.chmed.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Objective Cassiae Semen (CS, Juemingzi in Chinese) has been used for thousands of years in ancient Chinese history for relieving constipation, improving liver function as well as preventing myopia. Here we aimed to elucidate the anti-steatosis effect and underlying mechanism of CS against non-alcoholic fatty liver disease (NAFLD). Methods High-performance liquid chromatography (HPLC) was used to identify the major components of CS water extract. Mice were fed with a high-fat and sugar-water (HFSW) diet to induce hepatic steatosis and then treated with CS. The anti-NAFLD effect was determined by measuring serum biomarkers and histopathology staining. Additionally, the effects of CS on cell viability and lipid metabolism in oleic acid and palmitic acid (OAPA)-treated HepG2 cells were measured. The expression of essential genes and proteins involved in lipid metabolism and autophagy signalings were measured to uncover the underlying mechanism. Results Five compounds, including aurantio-obtusin, rubrofusarin gentiobioside, cassiaside C, emodin and rhein were simultaneously identified in CS extract. CS not only improved the diet-induced hepatic steatosis in vivo, as indicated by decreased number and size of lipid droplets, hepatic and serum triglycerides (TG) levels, but also markedly attenuated the OAPA-induced lipid accumulation in hepatocytes. These lipid-lowering effects induced by CS were largely dependent on the inhibition of fatty acid synthase (FASN) and the activation of autophagy-related signaling, including AMP-activated protein kinase (AMPK), light chain 3-II (LC3-II)/ LC3-1 and autophagy-related gene5 (ATG5). Conclusion Our study suggested that CS effectively protected liver steatosis via decreasing FASN-related fatty acid synthesis and activating AMPK-mediated autophagy, which might become a promising therapeutic strategy for relieving NAFLD.
Collapse
|
6
|
Politi M, Tresca G, Menghini L, Ferrante C. Beyond the Psychoactive Effects of Ayahuasca: Cultural and Pharmacological Relevance of Its Emetic and Purging Properties. PLANTA MEDICA 2022; 88:1275-1286. [PMID: 34794194 DOI: 10.1055/a-1675-3840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The herbal preparation ayahuasca has been an important part of ritual and healing practices, deployed to access invisible worlds in several indigenous groups in the Amazon basin and among mestizo populations of South America. The preparation is usually known to be composed of two main plants, Banisteriopsis caapi and Psychotria viridis, which produce both hallucinogenic and potent purging and emetic effects; currently, these are considered its major pharmacological activities. In recent decades, the psychoactive and visionary effect of ayahuasca has been highly sought after by the shamanic tourism community, which led to the popularization of ayahuasca use globally and to a cultural distancing from its traditional cosmological meanings, including that of purging and emesis. Further, the field of ethnobotany and ethnopharmacology has also produced relatively limited data linking the phytochemical diversity of ayahuasca with the different degrees of its purging and emetic versus psychoactive effects. Similarly, scientific interest has also principally addressed the psychological and mental health effects of ayahuasca, overlooking the cultural and pharmacological importance of the purging and emetic activity. The aim of this review is therefore to shed light on the understudied purging and emetic effect of ayahuasca herbal preparation. It firstly focuses on reviewing the cultural relevance of emesis and purging in the context of Amazonian traditions. Secondly, on the basis of the main known phytochemicals described in the ayahuasca formula, a comprehensive pharmacological evaluation of their emetic and purging properties is presented.
Collapse
Affiliation(s)
- Matteo Politi
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
- Research Department, Center for Drug Addiction Treatment and Research on Traditional Medicines - Takiwasi, Tarapoto, Peru
| | - Giorgia Tresca
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| |
Collapse
|
7
|
Yang F, Zou Y, Li C, Li J, Zang Y, Peng X, Wang J, Liu EH, Tong S, Chu C. Discovery of potential hypoglycemic metabolites in Cassiae Semen by coupling UHPLC-QTOF-MS/MS combined plant metabolomics and spectrum-effect relationship analyses. Food Funct 2022; 13:10291-10304. [PMID: 36125104 DOI: 10.1039/d2fo00562j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cassiae Semen (CS) is consumed as fried tea or medicinal food in Asian areas. Its two commercial forms, namely raw and fried CS, exert different clinical applications, in which fried CS is commonly applied as a functional tea for losing weight. To prevent confusion in the use of the two forms of CS, a comprehensive strategy by combining plant metabolomics and spectrum-effect relationship analyses was developed for the fast and efficient discrimination of raw and fried CS, and further for the discovery of the potential hypoglycemic metabolites of CS to control its quality. First, the plant metabolic profiling of raw and processed samples was performed by UHPLC-QTOF-MS/MS. A total of 1111 differential metabolites were found to well distinguish the raw and fried CS after analyzing by MPP software. Subsequently, α-glucosidase inhibition of raw and fried CS was investigated. As a result, fried CS demonstrated much stronger α-glucosidase inhibition activity than the raw sample. By analyzing the spectrum-effect relationship with GRA, BCA, and PLSR, 14 potential hypoglycemic-related compounds were discovered. As anticipated, they were also found as the differential metabolites of the raw and fried samples with a potential hypoglycemic effect, which might be beneficial for the quality control of CS tea. Additionally, molecular docking analysis was conducted to reveal the underlying inhibition mechanisms of the four most critical constituents, including physcion, chrysoobtusin, aurantio-obtusin, and obtusifolin. This study provides a powerful tool for the discrimination of processed samples and fast screening of the active constituents in complex natural products on a high-throughput basis.
Collapse
Affiliation(s)
- Fei Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yanfang Zou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Chenyue Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Jiaxu Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yaping Zang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Xin Peng
- Ningbo Research Institute of Traditional Chinese Medicine, Ningbo, 315100, P. R. China
| | - Juan Wang
- Zhejiang Pharmaceutical College, Ningbo, 315100, P. R. China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
8
|
Hu M, Lin L, Liu J, Zhong Y, Liang B, Huang Y, Li Z, Lin X, Wang B, Zhang B, Meng H, Ye R, Du J, Dai M, Peng Y, Li H, Wu Q, Gao H, Yang X, Huang Z. Aurantio-obtusin induces hepatotoxicity through activation of NLRP3 inflammasome signaling. Toxicol Lett 2021; 354:1-13. [PMID: 34718095 DOI: 10.1016/j.toxlet.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/08/2022]
Abstract
Aurantio-obtusin (AO) is a major anthraquinone (AQ) compound derived from Cassiae semen (CS). Although pharmacological studies have shown that the CS extracts can serve as effective agents in preclinical and clinical practice, AQ-induced hepatotoxicity in humans has attracted widespread attention. To explore whether AO induces hepatotoxicity and its underlying mechanisms, we exposed larval zebrafish and mice to AO. We found that AO delayed yolk sac absorption, and increased liver area and inflammation in the larval zebrafish. This inflammation was manifested as an increase in liver neutrophils and the up-regulated mRNA expression of interleukin-6 (Il-6) and tumor necrosis factor-α (Tnf-α) in the larval zebrafish. Furthermore, a pharmacokinetics study showed that AO was quickly absorbed into the blood and rapidly metabolized in the mice. Of note, AO induced hepatotoxicity in a gender-dependent manner, characterized by liver dysfunction, increased hepatocyte necrosis with inflammatory infiltration, and up-regulated mRNAs of Il-6, Tnf-α and monocyte chemotactic protein 1(Mcp1) in the female mice after 28-day oral administration. It also highlighted that AO triggered NOD-like receptor protein (NLRP) signaling in the female mice, as evidenced by the increased NLRP3, Caspase-1, pro-IL-1β, IL-1β and IL-18. Finally, we found that AO led to a significant increase in potassium calcium-activated channel, subfamily N, member 4 (KCNN4) and reactive oxygen species (ROS) levels, along with decreased nuclear factor kappa B p65 (NF-κB p65), in the female mouse livers. In conclusion, AO induced hepatotoxicity by activating NLRP3 inflammasome signaling, at least in part, through increased KCNN4 and ROS production, and NF-κB inhibition.
Collapse
Affiliation(s)
- Manjiang Hu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Li Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jun Liu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xi Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bo Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Hao Meng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Yi Peng
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Hongqun Li
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Qinghong Wu
- Laboratory Animal Management Center, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Hongbin Gao
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Zhang J, Chen H, Luo L, Zhou Z, Wang Y, Gao T, Yang L, Peng T, Wu M. Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria. Carbohydr Polym 2021; 267:118219. [PMID: 34119173 DOI: 10.1016/j.carbpol.2021.118219] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/02/2023]
Abstract
Polygonatum cyrtonema is a known tonic herb in Chinese Materia Medica, extensively consumed in China, but the structure and activity of its polysaccharide components remain to be clarified. Herein, two new polysaccharides (a fructan and a galactan) were purified from the dried and the processed P. cyrtonema rhizome, respectively. Structural analysis suggested that the fructan consisted of a (2 → 6) linked β-d-Fruf residues backbone with an internal α-d-Glcp residue and two (2 → 1) linked β-d-Fruf residues branches, and that the galactan was a (1 → 4)-β-d-galactan branched with a single β-d-galactose at C-6 at about every nine residues in its main chain. The bioactive assay showed that the fructan and the galactan remarkably promoted growth of Bifidobacterium and Lactobacillus strains, indicating that they possess prebiotic activity. These findings may help expand the application of the polysaccharides from the tonic herb P. cyrtonema as functional ingredients in food products.
Collapse
Affiliation(s)
- Junyin Zhang
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hulan Chen
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhipeng Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yingxiang Wang
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Tianyu Gao
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Teng Peng
- College of Pharmacy, Chengdu University of TCM, Chengdu 611137, China.
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
10
|
Shi B, Ding H, Wang L, Wang C, Tian X, Fu Z, Zhang L, Han L. Investigation on the stability in plant metabolomics with a special focus on freeze-thaw cycles: LC-MS and NMR analysis to Cassiae Semen (Cassia obtusifolia L.) seeds as a case study. J Pharm Biomed Anal 2021; 204:114243. [PMID: 34273658 DOI: 10.1016/j.jpba.2021.114243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 07/03/2021] [Indexed: 01/16/2023]
Abstract
Metabolomics is a rapid and sensitive tool for the detection of dynamic metabolic compositions in the study of systemic metabolic consequences. However, it is also susceptible to a tiny variation of pre-analytical handling procedures. To provide reproducible results, specific knowledge on metabolites perturbance along with different freeze-thaw cycles (FTCs) is needed for further metabolomics studies. In this paper, five FTCs of germinated Cassiae Semen (CS) were chosen as a case study to investigate the influence of FTC effect based on UHPLC-Q-Orbitrap-MS and NMR technologies. A total of 108 metabolites were relatively quantified by LC-MS and NMR analyses. Principal component analysis (PCA) showed that the first and second FTC samples are welly separated from the other groups; however, the extent of FTC-induced effects are smaller after the third cycle. Upon five consecutive FTCs, alterations which consisted of decreased stachyose, sucrose, norrubrofusarin-6-O-β-d-glucopyranoside, and quercetin 3-(3″-acetylgalactoside), as well as increased phenylalanine, leucine, isoleucine, methionine, phenylalanine, mannose, gluconic acid, and valine, could be observed. FTC does not exert the same effect on all metabolites. Although a large number of secondary metabolites were stable when subjected to five FTCs, FTC effects may lead to false-positive in the discovery of biomarker. In the case of reusing plant seed samples, no more than three consecutive freeze-thaw cycles were found advisable. This work provides unique perspectives on the FTC effects, which may fill in some existing gaps in the knowledge of the stability of plant metabolites during sample pre-handling.
Collapse
Affiliation(s)
- Biru Shi
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Hui Ding
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Liming Wang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Chenxi Wang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Xiaoxuan Tian
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Zhifei Fu
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China
| | - Lihua Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China.
| | - Lifeng Han
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, PR China.
| |
Collapse
|