1
|
Tian Y, Jing G, Yin R, Ma M, Cao W, Zhang M. Neuroprotective effects of traditional Chinese medicine Naofucong on diabetic cognitive impairment: Mechanisms involving insulin-degrading enzyme-mediated degradation of Amyloid-β and inhibition of ERK/JNK/p38 MAPK signaling pathway. Brain Res 2025; 1849:149365. [PMID: 39617284 DOI: 10.1016/j.brainres.2024.149365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The increasing prevalence of diabetes and its related cognitive impairments is a significant public health concern. With limited clinical treatment options and an incomplete understanding of the underlying mechanisms, traditional Chinese medicine (TCM) Naofucong is proposed as a potential neuroprotective agent against diabetic cognitive impairment (DCI). This study aims to investigate the therapeutic mechanisms of Naofucong in DCI. We hypothesize that Naofucong may improve cognitive function in diabetic rats by modulating the extracellular regulated protein kinases (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinases (MAPK) signaling pathway, enhancing insulin-degrading enzyme (IDE) expression, reducing amyloid-beta (Aβ) deposition, decreasing phosphorylated Tau (p-Tau) levels, and alleviating oxidative stress. Diabetes was induced in specific-pathogen-free male Sprague-Dawley rats using streptozotocin, and the rats were treated with oral Naofucong for 12 weeks. We assessed cognitive function and measured neuronal damage, oxidative stress injury, and the expression levels of IDE, Aβ, amyloid precursor protein (APP), p-Tau, and components of the ERK/JNK/p38 MAPK pathway. Diabetic rats showed significant declines in cognitive function, neuronal damage, oxidative stress, low IDE expression, Aβ accumulation, high APP expression, abnormal Tau phosphorylation, and overactivation of the ERK/JNK/p38 MAPK pathway. Naofucong treatment significantly reversed these symptoms. Our findings suggest that Naofucong improves cognitive impairment in diabetic rats by inhibiting the ERK/JNK/p38 MAPK pathway, upregulating IDE, reducing Aβ deposition, suppressing APP and p-Tau expression, and alleviating neuronal damage and oxidative stress. This research provides a reference for the clinical prevention and treatment of DCI using TCM Naofucong.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruiying Yin
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Ma
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weiwei Cao
- Beijing HFK Bioscience Co., LTD, Beijing 102200, China.
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
2
|
Wang X, Yang X, Liu C, Yin Z, Zhang Z, Feng T, Luo J, Zhou Y. Serum pharmacochemistry combined with network pharmacology reveals the hepatotoxicity mechanism of Alangium chinense (Lour.) Harms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119312. [PMID: 39746409 DOI: 10.1016/j.jep.2024.119312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alangium chinense (Lour.) Harms, commonly known as A. chinense, is a member of the Alangiaceae family. This plant is traditionally utilized by the Miao nationality of Guizhou as a medicinal remedy for rheumatic discomfort, employing a method that targets and eliminates toxins. Research has demonstrated its efficacy in dispelling wind, reducing dampness, breaking up blood stagnation, and alleviating pain. Nonetheless, there have been indications that A. chinense may possess toxic properties; however, the exact mechanism underlying its toxicity remains not fully understood. AIM OF THE STUDY Employing an integrated strategy that combines serum metabolomics and network pharmacology, this work intends to elucidate the toxic elements and comprehensively explore the fundamental processes of toxicity connected to A. chinense. MATERIALS AND METHODS Rats were divided into thirteen groups, including normal control group and low-medium-high dose groups of water extract and ethanol extract of fibrous root and root, over 14 consecutive days. Toxic effects were evaluated through serum biochemistry and pathohistological examinations. Serum metabolomics were analyzed using UPLC-MS/MS to identify the main blood-absorbed constituents of A. chinense. Additionally, hepatotoxicity-related targets were compiled from OMIM, CTD, GeneCards, and DisGeNET databases alongside primary blood-absorbed component targets sourced from TCMSP and Swiss Target Prediction databases. We elucidated the toxic mechanism of A. chinense through compound-target and target-pathway networks. Finally, we verified the mechanism of A. chinense-induced hepatotoxicity in rats by molecular docking, qRT-PCR, western blotting and in vitro experiments. RESULTS In vivo experiments revealed that A. chinense increased the levels of AST and ALT in serum. The sectioning results indicated that different medicinal parts and different extracts of A. chinense caused varying degrees of liver damage in a dose-dependent manner, with the water extract of fibrous root resulting in the greatest damage. The UPLC-MS/MS analysis revealed 75 blood-absorbed components in A. chinense, with 18 significantly linked to liver injury factors, such as Anabasine, Brucine, Tricin, and quercetin-3,4'-dimethyl ether. Additionally, network pharmacology revealed 123 potential targets associated with A. chinense-induced hepatotoxicity. KEGG pathway analysis revealed 247 signaling pathways associated with these common targets, emphasizing key pathways such as the PI3K-Akt signaling pathway, lipid and atherosclerosis signaling pathway, and chemical carcinogenesis-receptor activation signaling pathway. Molecular docking studies demonstrated that Mansonone D, Sudachitin, Mansonone E, Tricin, Brucine, and (-)-Anabasine exhibit strong affinity and low binding energy with PIK3CA, AKT1, mTOR, MAP2K1, and MAPK1 among the identified blood-absorbed ingredients. In addition, qRT-PCR combined with Western blotting analysis showed that compared with the control group, A. chinense water extract significantly increased the mRNA expression of PIK3CA, AKT1, mTOR, MAP2K1, MAPK1 and rheb in rat liver tissue. Abnormal activation of pmTOR/mTOR, pPI3K/PI3K, pAKT/AKT protein expression levels and the enzyme activity levels of caspase 3/7 and caspase 1, thereby activating PI3K/AKT/mTOR pathway to play hepatotoxic role through autophagy or apoptosis. This suggests an intensive activation of this specific biochemical transformation channel. Finally, the in vitro experiment showed that Anabasine, the alkaloids of fibrous root and root could significantly increase AST and ALT levels in mouse AML-12 cells. CONCLUSIONS Through network pharmacology and serum metabolomics analysis, we investigated the possible mechanism of A. chinense's hepatotoxicity and confirmed that A. chinense may be caused by abnormal activation of PI3K/AKT/mTOR signaling pathway. This study elucidates the potential mechanism of A. chinense-related hepatotoxicity, provides a theoretical basis for in-depth exploration of its toxicity mechanism and mitigation strategies, and provides valuable insights and scientific support for understanding the intrinsic toxicity mechanism of ethnomedicine from a holistic perspective.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Xiaoying Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Chang Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China.
| | - Zhigang Yin
- School of Basic Medical Sciences, Xiang Nan University, Chenzhou, 423000, China
| | - Ziyu Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Tingting Feng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Jiangli Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Ying Zhou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
3
|
Teka T, Wu J, Oduro PK, Li Z, Wang C, Chen H, Zhang L, Wang H, Wang L, Han L. Integrated multi-omics analyses combined with western blotting discovered that cis-TSG alleviated liver injury via modulating lipid metabolism. Front Pharmacol 2024; 15:1485035. [PMID: 39635428 PMCID: PMC11614611 DOI: 10.3389/fphar.2024.1485035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background: Polygonum multiflorum shows dual hepatoprotective and hepatotoxic effects. The bioactive components responsible for these effects are unknown. This study investigates whether cis-2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (cis-TSG), a stilbene glycoside, has hepatoprotective and/or hepatotoxic effects in a liver injury model. Methods: C57BL/6J mice were administered α-naphthylisothiocyanate (ANIT) to induce cholestasis, followed by treatment with cis-TSG. Hepatoprotective and hepatotoxic effects were assessed using serum biomarkers, liver histology, and metabolomic and lipidomic profiling. Transcriptomic analysis were conducted to explore gene expression changes associated with lipid and bile acid metabolism, inflammation, and oxidative stress. Results and Discussion: ANIT administration caused significant liver injury, evident from elevated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and dysregulated lipid metabolism. cis-TSG treatment markedly reduced ALT and AST levels, normalized lipid profiles, and ameliorated liver damage, as seen histologically. Metabolomic and lipidomic analyses revealed that cis-TSG influenced key pathways, notably glycerophospholipid metabolism, sphingolipid metabolism, and bile acid biosynthesis. The treatment with cis-TSG increased monounsaturated and polyunsaturated fatty acids (MUFAs and PUFAs), enhancing peroxisome proliferator-activated receptor alpha (PPARα) activity. Transcriptomic data confirmed these findings, showing the downregulation of genes linked to lipid metabolism, inflammation, and oxidative stress in the cis-TSG-treated group. The findings suggest that cis-TSG has a hepatoprotective effect through modulation of lipid metabolism and PPARα activation.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Pharmacy, Wollo University, Dessie, Ethiopia
| | - Jiang Wu
- Shenzhen Technology University, Shenzhen, China
| | - Patrick Kwabena Oduro
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Ze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenxi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haitao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Zeng X, Li C, Liu Y, Liu W, Hu Y, Chen L, Huang X, Li Y, Hu K, Ouyang D, Rao T. HLA-B*35:01-mediated activation of emodin-specific T cells contributes to Polygonum multiflorum thunb. -induced liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118523. [PMID: 38969149 DOI: 10.1016/j.jep.2024.118523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE HLA-B*35:01 has been identified as a risk allele for Polygonum multiflorum Thunb.-induced liver injury (PMLI). However, the immune mechanism underlying HLA-B*35:01-mediated PMLI remains unknown. AIM OF THE STUDY To characterize the immune mechanism of HLA-B*35:01-mediated PMLI. MATERIALS AND METHODS Components of P. multiflorum (PM) bound to the HLA-B*35:01 molecule was screened by immunoaffinity chromatography. Both wild-type mice and HLA-B*35:01 transgenic (TG) mice were treated with emodin. The levels of transaminases, histological changes and T-cell response were assessed. Splenocytes from emodin-treated mice were isolated and cultured in vitro. Phenotypes and functions of T cells were characterized upon drug restimulation using flow cytometry or ELISA. Emodin-pulsed antigen-presenting cells (APCs) or glutaraldehyde-fixed APCs were co-cultured with splenocytes from emodin-treated transgenic mice to detect their effect on T-cell activation. RESULTS Emodin, the main component of PM, could non-covalently bind to the HLA-B*35:01-peptide complexes. TG mice were more sensitive to emodin-induced immune hepatic injury, as manifested by elevated aminotransferase levels, infiltration of inflammatory cells, increased percentage of CD8+T cells and release of effector molecules in the liver. However, these effects were not observed in wild-type mice. An increase in percentage of T cells and the levels of interferon-γ, granzyme B, and perforin was detected in emodin-restimulated splenocytes from TG mice. Anti-HLA-I antibodies inhibited the secretion of these effector molecules induced by emodin. Mechanistically, emodin-pulsed APCs failed to stimulate T cells, while fixed APCs in the presence of emodin could elicit the secretion of T cell effector molecules. CONCLUSION The HLA-B*35:01-mediated CD8+ T cell reaction to emodin through the P-I mechanism may contribute to P. multiflorum-induced liver injury.
Collapse
Affiliation(s)
- Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yuwei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ying Li
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China.
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China.
| |
Collapse
|
5
|
Zhou Q, Wu F, Chen Y, Fu J, Zhou L, Xu Y, He F, Gong Z, Yuan F. Reynoutria multiflora (Thunb.) Moldenke and its ingredient suppress lethal prostate cancer growth by inducing CDC25B-CDK1 mediated cell cycle arrest. Bioorg Chem 2024; 152:107731. [PMID: 39180863 DOI: 10.1016/j.bioorg.2024.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Reynoutria multiflora (Thunb.) Moldenke (Polygonum multiflorum Thunb, PM) is a medicinal plant that was an element of traditional Chinese medicine (TCM) for centuries as a treatment for a wide range of conditions. Recent studies reported that PM suppressed prostate cancer growth in an AR-dependent manner. However, its role and mechanism in the treatment of advanced prostate cancer remain to be explored. This study aims to explore the anti-tumor role and potential mechanism of PM on prostate cancer. METHODS Cell viability, colony formation, fluorescence-activated cell sorting (FACS), and wound-healing assays were conducted to evaluate the tumor suppression effect of PM on lethal prostate cancer models in vitro. A xenograft mice model was established to detect the impact of PM on tumor growth and evaluate its biosafety in vivo. Integrative network pharmacology, RNA-seq, and bioinformatics were applied to determine the mechanisms of PM in prostate cancer. Molecular docking, cellular thermal shift assay (CETSA), CRISPR-Cas13, RT-qPCR, and WB were collaboratively employed to identify the potential anti-tumor ingredient derived from PM and its corresponding targets. RESULTS PM significantly suppressed the growth of prostate cancer and sensitized prostate cancer to AR antagonists. Mechanistically, PM induced G2/M-phase cell-cycle arrest by modulating the phosphorylation of CDK1. Additionally, polygalacic acid derived from PM and its structural analog suppress prostate cancer growth by targeting CDC25B, a master regulator of the cell cycle that governs CDK1 phosphorylation. CONCLUSION PM and its ingredient polygalacic acid suppress lethal prostate cancer growth by regulating the CDC25B-CDK1 axis to induce cell cycle arrest.
Collapse
MESH Headings
- Male
- cdc25 Phosphatases/metabolism
- cdc25 Phosphatases/antagonists & inhibitors
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/metabolism
- Humans
- CDC2 Protein Kinase/metabolism
- CDC2 Protein Kinase/antagonists & inhibitors
- Cell Proliferation/drug effects
- Animals
- Mice
- Cell Cycle Checkpoints/drug effects
- Structure-Activity Relationship
- Molecular Structure
- Drug Screening Assays, Antitumor
- Dose-Response Relationship, Drug
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Cell Survival/drug effects
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Mice, Nude
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Qianqian Zhou
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fanchen Wu
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yanhua Chen
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianguo Fu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Feng He
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhangbin Gong
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Fuwen Yuan
- The Center of Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Urology and Andrology, Gongli Hospital, Shanghai 200135, China.
| |
Collapse
|
6
|
Li WF, Wang Y, Qiu CX, Li J, Bao J, Yang JB, Jin HT. Processing-induced reduction in dianthrones content and toxicity of Polygonum multiflorum: Insights from ultra-high performance liquid chromatography triple quadrupole mass spectrometry analysis and toxicological assessment. Animal Model Exp Med 2024. [PMID: 39439047 DOI: 10.1002/ame2.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/07/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Polygonum multiflorum-induced liver injury (PM-DILI) has significantly hindered its clinical application and development. METHODS This study investigates the variation in content and toxicity of dianthrones, the toxic components of P. multiflorum, during different processing cycles. We employed the ultra-high-performance liquid chromatography triple quadrupole mass spectrometry method to quantify six dianthrones in raw P. multiflorum and formulations processed with a method called nine cycles of steaming and sunning. Additionally, toxicity assessments were conducted using human normal liver cell line L02 and zebrafish embryos. RESULTS Results indicate a gradual reduction in dianthrones content with increasing processing cycles. Processed formulations exhibited significantly reduced cytotoxicity in L02 cells and hepatotoxicity in zebrafish embryos. CONCLUSIONS Our findings elucidate the relationship between processing cycles and P. multiflorum toxicity, providing theoretical support for its safe use.
Collapse
Affiliation(s)
- Wan-Fang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Cai-Xia Qiu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Bao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, China
| | - Jian-Bo Yang
- National Institutes for Food and Drug Control, Beijing, China
| | - Hong-Tao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, China
| |
Collapse
|
7
|
Zhou G, Xie RF, Li SN, Chen SX, Feng YM, Xiang N, Tan ZY, Zhou X. Synergic effects and possible mechanism of emodin and stilbene glycosides on colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155821. [PMID: 39004030 DOI: 10.1016/j.phymed.2024.155821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Polygonum multiflorum (PM) is a core herb that enhances immunity. It can also detoxify, reduce swelling, and intercept malaria. Its main components, emodin (EMD) and 2,3,5,4'-Tetrahydroxy stilbene-2-O-β-D-glucoside (stilbene glycoside, TSG), have good anti-cancer potential. PURPOSE The study aims to investigate synergic effects of EMD and TSG on CRC and its possible mechanism. METHODS Network pharmacology and bioinformatics were used to identify targets. HPLC was used to analyze the effective ingredients in PM and to determine the content of the main ingredients. HT-29 cells were used for in vitro experiments. Cell Counting Kit-8 (CCK8) and scratch test were used to detect the effects of various chemical components of PM on the proliferation and migration of HT-29 cells, and Western Bolt (WB) test was used to evaluate the effects of EMD and TSG on P53 pathway. In vivo experiments, the effects of EMD and TSG were evaluated by measuring tumor weight and tumor volume in CRC mice model and histological analysis were carried out with HE staining. The expressions of HSP90, P53, COX2, and ROS were detected by quantitative reverse transcription polymerase chain reaction (PCR), and IL-1β, IL-4, IL-6, IL-10, TGF-β and IFN-γ were detected by enzyme linked immunosorbent assay (ELISA). WB and Immunohistochemistry (IHC) were used to detect the expression of P53 related proteins. RESULTS Network pharmacology showed PM closely related to colorectal cancer pathway and the core targets included STAT3 and P53; bioinformatics indicated P53 played an important role in the development and prognosis of CRC; chemical analysis showed identified and quantified gallic acid (GA), cis-TSG, trans-TSG, Emodin glucoside(EMDG), physcion glucoside (PHYG), EMD in PM; EMD induced apoptosis and TSG inhibited migration of HT-29 cells; EMD and TSG could coordinately shrink tumor size of CRC mice, elevate expressions of F4/80, decrease the content of IL-6 and TGF-β, promote tumor oxidized and reduce expression of P53 and STAT3 in the tumor. CONCLUSIONS In vitro experiments showed that TSG inhibited cancer cell migration and EMD induced apoptosis. EMD and TSG had synergic effects on CRC, whose possible mechanism might be to regulate the expression of cytokines and inhibit P53 pathway.
Collapse
Affiliation(s)
- Gui Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Rui-Fang Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shan-Ni Li
- Shanghai Nanyang Model Private High School, Shanghai, China
| | - Shi-Xiu Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yi-Ming Feng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nan Xiang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ze-Ye Tan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xin Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
8
|
Ngo TH, Lee YJ, Choi H, Song KS, Lee KJ, Nam JW. Evaluating the anticancer potential of Polygonum multiflorum root-derived stilbenes against H2452 malignant pleural mesothelioma cells. Fitoterapia 2024; 177:106135. [PMID: 39047845 DOI: 10.1016/j.fitote.2024.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
A naturally occurring stilbene, resveratrol, shows promising effects in the treatment of malignant pleural mesothelioma (MPM) both as a single agent and in combination with chemotherapeutic drugs. To discover new anticancer agents targeting MPM, stilbene-targeted isolation was performed on the roots of Polygonum multiflorum Thunb., an herbal medicine rich in stilbene compounds. In this study, seven stilbene glycosides (1-7) were isolated, along with four non-stilbenes (8-11), of which compounds 4 and 9-11 have not previously been isolated from this species. Stiquinoside A (1) is a previously undescribed stilbene glycoside, and its structure was elucidated as (E)-2,3,5,4'-tetrahydroxystilbene 2-O-β-d-quinovopyranoside based on 1D and 2D-NMR, HR-ESI-MS, and acid hydrolysis experiments. Compounds 1, 4, 6, and 8 significantly inhibit the growth of MPM cancer cells H2452. These results demonstrate the potential utility of stilbenes in new strategies for the treatment of MPM.
Collapse
Affiliation(s)
- Trung Huy Ngo
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyu Joon Lee
- Department of Tropical Medicine, College of Medicine, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| |
Collapse
|
9
|
Wang Y, Zhao M, Li B, Geng X. Advances in the mechanism of emodin-induced hepatotoxicity. Heliyon 2024; 10:e33631. [PMID: 39027614 PMCID: PMC11255441 DOI: 10.1016/j.heliyon.2024.e33631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Emodin is a naturally occurring anthraquinone derivative and serves as an active component in various traditional Chinese herbal medicines. It is widely known for its broad pharmacological effects, including anti-inflammatory, antioxidant, and anticancer properties. However, high doses and long-term use of emodin can also lead to liver toxicity. Nevertheless, the mechanism of emodin-induced liver toxicity remains unclear at present. This article aims to summarize the toxicological research progress on emodin, with a particular focus on elucidating the mechanisms underlying emodin-induced hepatocyte injury. By providing essential information, the study intends to facilitate further research and safe usage of emodin for researchers and clinical practitioners.
Collapse
Affiliation(s)
- Yupeng Wang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control. Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, China
| | - Mengchao Zhao
- Department of Pharmacy, General Hospital of Ningxia Medical University, 804 Shengli Street, Xingqing District, Ningxia, 750004, China
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control. Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control. Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, China
| |
Collapse
|
10
|
Qian J, Feng C, Wu Z, Yang Y, Gao X, Zhu L, Liu Y, Gao Y. Phytochemistry, pharmacology, toxicology and detoxification of Polygonum multiflorum Thunb.: a comprehensive review. Front Pharmacol 2024; 15:1427019. [PMID: 38953108 PMCID: PMC11215120 DOI: 10.3389/fphar.2024.1427019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Background Polygonum multiflorum Thunb. (PM), a kind of perennial plant, belongs to the genus Polygonum of the family polygonaceae.The dry root of PM (also called Heshouwu), is a traditional Chinese medicine, which has a series of functions and is widely used in clinic for hair lossing, aging, and insomnia. While, PM also has some toxicity, its clinical drug safety has been concerned. In this paper, the chemical components, toxic mechanisms and detoxification strategies of PM were reviewed in order to provide evidence for its clinical application. Materials and methods We conducted a systematic review of published literature of PM, including English and Chinese databases, such as PubMed, Web of Science, CNKI, and Wanfang. Results PM contains a variety of chemical compounds, including stilbenes, quinones, flavonoids, phospholipids, and has many pharmacological activities such as anti-aging, wound healing, antioxidant, and anti-inflammatory properties. The PE has certain therapeutic effect, and it has certain toxicity like hepatotoxicity, nephrotoxicity, and embryotoxicity at the same time, but.these toxic effects could be effectively reduced by processing and compatibility. Conclusion It is necessary to further explore the pharmacological and toxicological mechanisms of the main active compounds of PE.This article provides scientific basis for the safe clinical application of PM.
Collapse
Affiliation(s)
- Jiawen Qian
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chenhang Feng
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziyang Wu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuanmei Yang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiangfu Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Lingyan Zhu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yuancheng Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
11
|
Xie Y, Gong S, Wang L, Yang Z, Yang C, Li G, Zha H, Lv S, Xiao B, Chen X, Di Z, He Q, Wang J, Weng Q. Unraveling the treatment effects of huanglian jiedu decoction on drug-induced liver injury based on network pharmacology, molecular docking and experimental validation. BMC Complement Med Ther 2024; 24:219. [PMID: 38849824 PMCID: PMC11157734 DOI: 10.1186/s12906-024-04517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Huanglian Jiedu Decoction (HJD) is a well-known Traditional Chinese Medicine formula that has been used for liver protection in thousands of years. However, the therapeutic effects and mechanisms of HJD in treating drug-induced liver injury (DILI) remain unknown. In this study, a total of 26 genes related to both HJD and DILI were identified, which are corresponding to a total of 41 potential active compounds in HJD. KEGG analysis revealed that Tryptophan metabolism pathway is particularly important. The overlapped genes from KEGG and GO analysis indicated the significance of CYP1A1, CYP1A2, and CYP1B1. Experimental results confirmed that HJD has a protective effect on DILI through Tryptophan metabolism pathway. In addition, the active ingredients Corymbosin, and Moslosooflavone were found to have relative strong intensity in UPLC-Q-TOF-MS/MS analysis, showing interactions with CYP1A1, CYP1A2, and CYP1B1 through molecule docking. These findings could provide insights into the treatment effects of HJD on DILI.
Collapse
Affiliation(s)
- Yaochen Xie
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Shuchen Gong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingkun Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Zhaoxu Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Guilin Li
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Huiyan Zha
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Shuying Lv
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Boneng Xiao
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyu Chen
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Zhenning Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
- ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, 312500, Zhejiang, China
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China.
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China.
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China.
- ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, 312500, Zhejiang, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Li SG, Zou ZR, Zheng XF, Sun Y, Wang SM. A new flavonostilbene glycoside and four new stilbene derivatives from the roots of Polygonum multiflorum. Nat Prod Res 2024:1-8. [PMID: 38838282 DOI: 10.1080/14786419.2024.2354850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/05/2024] [Indexed: 06/07/2024]
Abstract
One new flavonostilbene glycoside, polygonflavanol C (1), two new dimeric stilbene glycosides, multiflorumiside M and multiflorumiside N (2-3), one new diphenyl ethanol glycoside, (R)-2,3,5,4'-tetrahydroxy-diphenylethanol 2-O-β-D-glucopyranoside (4), and one new deoxybenzoin glycoside, 2,4,3',5'-tetrahydroxy-6-methyl-deoxybenzoin 2-O-β-D-glucopyranoside (5), together with six known ones (6-11), were isolated from the roots of Polygonum multiflorum. Their structures were elucidated by the comprehensive spectroscopic analyses. In addition, compounds 1 and 7 showed significantly in vitro anti-inflammatory activity.
Collapse
Affiliation(s)
- Shuo-Guo Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality, Universities of Guangdong Province, Guangzhou, China
| | - Zheng-Ran Zou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality, Universities of Guangdong Province, Guangzhou, China
| | - Xiao-Feng Zheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality, Universities of Guangdong Province, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality, Universities of Guangdong Province, Guangzhou, China
| | - Shu-Mei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, China
- Engineering and Technology Research Center for Chinese Materia Medica Quality, Universities of Guangdong Province, Guangzhou, China
| |
Collapse
|
13
|
Chen C, Chen F, Gu L, Jiang Y, Cai Z, Zhao Y, Chen L, Zhu Z, Liu X. Discovery and validation of COX2 as a target of flavonoids in Apocyni Veneti Folium: Implications for the treatment of liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117919. [PMID: 38364933 DOI: 10.1016/j.jep.2024.117919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Apocyni Veneti Folium (AVF), a popular traditional Chinese medicine (TCM), is known for its effects in soothing the liver and nerves and eliminating heat and water. It is relevant from an ethnopharmacological perspective. Pharmacological research has confirmed its benefits on antihypertension, antihyperlipidemia, antidepression, liver protection, immune system boosting, antiaging, and diabetic vascular lesions. Previous studies have shown that flavonoids, the active ingredients, have a hepatoprotective effect. However, the exact mechanism has not been clarified. AIM OF THE STUDY This study aimed to identify the active flavonoids in AVF and their corresponding targets for liver injury. Multiple methods were introduced to confirm the targets. MATERIAL AND METHODS AVF compounds were analyzed using liquid chromatography-mass spectrometry (LC-MS). Then, network pharmacology was utilized to screen potential hepatoprotection targets of the compounds. An enzyme activity assay was performed to determine the effect of the compounds on the targets. Biolayer interferometry (BLI) was applied to confirm the direct interaction between the compounds and the targets. RESULTS A total of 71 compounds were identified by LC-MS and 19 compounds and 112 shared targets were screened using network pharmacology. These common targets were primarily involved in the TNF signaling pathway, cancer pathways, hepatitis B, drug responses, and negative regulation of the apoptotic process. Flavonoids were the primary pharmacological substance basis of AVF. The cyclooxygenase 2 (COX2) protein was one of the direct targets of flavonoids in AVF. The enzyme activity assay and BLI-based intermolecular interactions demonstrated that the compounds astragalin, isoquercitrin, and hyperoside exhibited stronger inhibition of enzyme activity and a higher affinity with COX2 compared to epigallocatechin, quercetin, and catechin. CONCLUSIONS COX2 was preliminarily identified as a target of flavonoids, and the mechanism of the hepatoprotective effect of AVF might be linked to flavonoids inhibiting the activity of COX2. The findings can establish the foundation for future research on the traditional hepatoprotective effect of AVF on the liver and for clinical studies on liver disorders.
Collapse
Affiliation(s)
- Cuihua Chen
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Feiyan Chen
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ling Gu
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yucui Jiang
- College of Traditional Chinese Medicine & College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhichen Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yunan Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhu Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
14
|
Xu Y, Liu X, Gao Y, Liu Y, Chen S, Chen C, Cheng J, Guo C, Xu Q, Di J, Zhang J, Liu A, Jiang J. Metabolomic analysis revealed the edible and extended-application potential of specific Polygonum multiflorum tissues. Heliyon 2024; 10:e25990. [PMID: 38404795 PMCID: PMC10884814 DOI: 10.1016/j.heliyon.2024.e25990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
The diverse applications of various tissues of Polygonum Multiflorum (PM) encompass the use of its leaf and bud as tea and vegetables, as well as the utilization of its expanded root tubers and caulis as medicinal substances. However, previous studies in the field of metabolomics have primarily focused on the medicinal properties of PM. In order to investigate the potential for broader applications of other tissues within PM, a metabolomic analysis was conducted for the first time using UPLC-Q-TOF-MS/MS on 15 fresh PM tissues. A total of 231 compounds, including newly discovered compounds such as torosachrysone and dihydro-trihydroxystilbene acid derivatives, were identified within PM. Through clustering analysis, the PM tissues were categorized into edible and medicinal parts, with edible tissues exhibiting higher levels of phenolic acids, organic acids, and flavonoids, while the accumulation of quinones, dianthrones, stilbenes, and xanthones was observed in medicinal tissues. Comparative analysis demonstrated the potential application of discarded tissues, such as unexpanded root tuber (an industrial alternative to expanded root tuber) and young caulis (with edible potential). Moreover, the quantification of representative metabolites indicated that flowers and buds contained significant amounts of flavonoids or phenolic acids, suggesting their potential as functional food. Additionally, the edible portion of PM exhibited a high content of quercitrin, ranging from 0.59 to 10.37 mg/g. These findings serve as a valuable point of reference for the expanded utilization of PM tissues, thereby mitigating resource waste in this plant.
Collapse
Affiliation(s)
- Yudi Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianju Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingying Gao
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sha Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jintang Cheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cong Guo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingxia Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jipeng Di
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - An Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinzhu Jiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
15
|
Fan J, Wang Y, Yang J, Gu D, Kang S, Liu Y, Jin H, Wei F, Ma S. Anti-aging activities of neutral and acidic polysaccharides from Polygonum multiflorum Thunb in Caenorhabditis elegans. Int J Biol Macromol 2024; 257:128724. [PMID: 38103673 DOI: 10.1016/j.ijbiomac.2023.128724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Polygonum multiflorum Thunb (PM) is used to slow the aging process. Although polysaccharides are a major constituent of PM, their anti-aging properties have not been thoroughly investigated. Therefore, this study aimed to examine the anti-aging effects of polysaccharides extracted from PM using the Caenorhabditis elegans (C. elegans) model. Two types of water-soluble heteropolysaccharides, namely a neutral polysaccharide (RPMP-N) and an acidic polysaccharide (RPMP-A), were obtained from PM. Their structures were elucidated by various methods. The effects of these polysaccharides on the lifespan, levels of antioxidants, and activities of antioxidant-related enzymes in C. elegans were also evaluated. The results showed that RPMP-A had higher GalA content compared with RPMP-N. The average molecular weights of RPMP-N and RPMP-A were 245.30 and 28.45 kDa, respectively. RPMP-N is a α-1,4-linked dextran as the main chain, and contains a small amount of branched dextran with O-6 as the branched linkage site;RPMP-A may be a complex of α-1,4-linked dextran, HG and RG-I. Treatment with RPMP-N and RPMP-A increased the mean lifespan of C. elegans, and significantly regulated oxidative stress. RPMP-A exhibited stronger anti-aging effects compared with RPMP-N. These findings suggest that RPMP-A may be a potent antioxidant and anti-aging component that can be used for developing functional food products and effective dietary supplements.
Collapse
Affiliation(s)
- Jing Fan
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Donglin Gu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuai Kang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
16
|
Zhang T, Xie Y, Li T, Deng Y, Wan Q, Bai T, Zhang Q, Cai Z, Chen M, Zhang J. Phytochemical analysis and hepatotoxicity assessment of braised Polygoni Multiflori Radix (Wen-He-Shou-Wu). Biomed Chromatogr 2024; 38:e5768. [PMID: 38087457 DOI: 10.1002/bmc.5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 01/26/2024]
Abstract
Polygoni Multiflori Radix (PMR) is a medicinal herb commonly used in China and Eastern Asia. Recently, the discovery of hepatotoxicity in PMR has received considerable attention from scientists. Processing is a traditional Chinese medicine technique used for the effective reduction of toxicity. One uncommon technique is the braising method-also known as 'Wen-Fa' in Chinese-which is used to prepare tonics or poisonous medications. Braised PMR (BPMR)-also known as 'Wen-He-Shou-Wu'-is one of the processed products of the braising method. However, the non-volatile components of BPMR have not been identified and examined in detail, and therefore, the hepatotoxic advantage of BPMR remains unknown. In this study, we compared the microscopic characteristics of different samples in powder form using scanning electron microscopy (SEM), investigated the non-volatile components, assessed the effects of different processed PMR products on the liver, and compared the differences between BPMR and PMR Praeparata recorded in the Chinese Pharmacopoeia (2020 edition). We found that the hepatotoxicity of BPMR was dramatically decreased, which may be related to an increase in polysaccharide content and a decrease in toxic substances. The present study provides an important foundation for future investigations of the processing mechanisms of BPMR.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yating Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tao Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yaling Deng
- Department of Pharmacy, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Quan Wan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tingting Bai
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qing Zhang
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
| | - Zhongxi Cai
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
| | - Mingxia Chen
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
- Beijing Scrianen Pharmaceutical Co., Ltd., Beijing, China
| | - Jinlian Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
17
|
Ding Y, Zhao D, Wang T, Xu Z, Fu Y, Tao L. Medicinal patterns of vines used in Chinese herbal medicine: a quantitative study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117184. [PMID: 37827301 DOI: 10.1016/j.jep.2023.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The botanical characteristics of twinning, climbing vine plants conceptually take shape to interlink the meridians and collaterals system throughout the human body by expelling climatic evils (e.g., wind, dampness). Thus, vines have displayed great medicinal properties in traditional Chinese medicine (TCM). AIM OF THE STUDY Although some popular vine species have been intensively investigated, the comparable features and medicinal specifications among a vast collection of taxonomic groups based on data visualization methods are relatively lacking in attention. Moreover, the translatability of vines from ancient ethnomedical evidence to modern medical system has not been well established. This review tends to quantitatively summarize the strength of vines in healthcare from the perspectives of medicinal part, traditional function, clinical spectrum, phytochemistry divergence, pharmacological attributes, toxicity as well as the progress of proprietary drug development. MATERIALS AND METHODS Medicinal vines were retrieved from databases of drug standards and curated catalogues. Synonyms of plant origin across different datasets were normalized by accepted scientific names in the World Flora Online. The distribution patterns and rank of plant origin, medicinal parts, traditional functions and target conditions, as well as the correlation between phytochemical composition and clinical applications were analyzed and visualized. RESULTS A total of 121 crude drugs from 36 families, 77 genera, 133 species of vines were obtained and analyzed. The Fabaceae, Menispermaceae and Rubiaceae were the highest ranked families of medicinal vines. Not surprisingly, stem was the most dominant medical part. Moreover, "eliminate wind" displayed a hub node in the traditional function co-occurrence network. In addition to joint impediment disorders, these vines particularly displayed a wide range of therapeutic modalities toward conditions from various organ systems. Chemotaxonomic properties-oriented phytochemical analysis was performed and the chemical diversity among medicinal vines complementarily determined a certain group of therapeutic domains. Particularly, the anti-inflammatory effect and antiarthritic effect were highlighted for treating rheumatic diseases. Using integral animal models and cultured cells, modern pharmacological actions of medicinal vines have been largely observed and validated according to their traditional ethnopharmacology. Furthermore, a small proportion of vine species are well-known toxic plants. Successful drug development pipelines in rheumatic, cardiovascular, liver, malignant and infectious diseases have offered the capacity to generate new treatment options that are being sought out from vine plants. CONCLUSIONS Medicinal vines are rich sources of Chinese Material Medica (CMM) and good fit for a variety of clinical manifestations beyond arthritis and rheumatic diseases. In addition to stem, other parts are also popular for both medicines and dietary supplements. Vine plants provide extensive biologically relevant chemical space for developing value-creating drugs. Thus, our analysis can be useful for further motivating and strengthening the preclinical and clinical research of vine-derived remedies.
Collapse
Affiliation(s)
- Yanlin Ding
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dingping Zhao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tingye Wang
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhenyu Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuxuan Fu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Li Tao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
18
|
Saifi A, Sharma A, Chaudhary A, Siddiqui N, Ashwlayan VD, Singh B. Unveiling the Latest Breakthroughs: A Comprehensive Review of the Therapeutic Activity and Safety Profile of Aloe vera. Curr Drug Saf 2024; 19:407-416. [PMID: 38204271 DOI: 10.2174/0115748863274759231221093309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 01/12/2024]
Abstract
The use of herbal drugs as alternative and complementary medicine has increased in popularity, raising concerns about their safety profile. Aloe vera, a plant with diverse therapeutic properties, has been extensively used for centuries. This review aims to assess the therapeutic activity and safety profile of Aloe vera. A comprehensive literature search was conducted to gather relevant information from various biomedical databases. The chemical composition, mechanism of action, and therapeutic activities of Aloe vera were analyzed. Aloe vera contains numerous active components such as vitamins, enzymes, minerals, sugars, lignin, saponins, and anthraquinones. Its mechanisms of action involve collagen synthesis, anti-inflammatory effects, immune modulation, laxative properties, and antiviral activity. Aloe vera has demonstrated potential therapeutic benefits in wound healing, diabetes management, liver and kidney protection, and glycemic control. However, it is essential to consider potential side effects, such as skin irritation and allergic reactions. This review provides evidence-based information to improve patient safety and promote informed decisions regarding the use of Aloe vera as a therapeutic agent.
Collapse
Affiliation(s)
- Alimuddin Saifi
- Department of Pharmaseutical, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Alok Sharma
- Department of Pharmaseutical, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Anurag Chaudhary
- Department of Pharmaseutical, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Nazia Siddiqui
- Department of Pharmaseutical, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Vrish Dhwaj Ashwlayan
- Department of Pharmaseutical, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, SD College of Pharmacy & Vocational Studies, Muzaffarnagar UP, India
| |
Collapse
|
19
|
Huang PH, Cheng YT, Chan YJ, Chen SJ, Ciou JY, Lu WC, Hsu WJ, Wang CCR, Li PH. Anti-hyperlipidemic and antioxidant ability of HeShouWu (roots of Polygonum multiflorum Thunb.) and its complex formula. ARAB J CHEM 2023; 16:105280. [DOI: 10.1016/j.arabjc.2023.105280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
20
|
Yu J, Xu FQ. Clinical efficacy and safety of Guipi decoction combined with escitalopram oxalate tablets in patients with depression. World J Clin Cases 2023; 11:7017-7025. [PMID: 37946779 PMCID: PMC10631412 DOI: 10.12998/wjcc.v11.i29.7017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Depression is a widespread mental health condition that requires effective treatment. In the treatment of depression, traditional Chinese medicine (TCM) offers obvious advantages, fewer adverse reactions, and a lower recurrence rate. AIM To evaluate the clinical benefits of Guipi decoction combined with escitalopram oxalate tablets for individuals with depression. METHODS In total, 80 patients diagnosed as having depression were enrolled in the study and divided into either an experimental group or a control group. All of the patients were orally administered escitalopram oxalate tablets. Additionally, the experimental group received Jiajian Guipi decoction and reduced Governor vessel fumigation over 4 wk. TCM syndrome scores, Hamilton depression rating scale (HAM-D) scores, self-rating depression scale (SDS) scores, and Pittsburgh sleep quality index scores were measured for the two groups and compared before and after the treatment. The two groups were monitored for any adverse reactions. RESULTS After 4 wk of treatment, both groups exhibited a significant reduction in TCM syndrome scores compared with their pre-treatment scores (P < 0.05). However, the experimental group exhibited significantly lower TCM syndrome scores than the control group (P < 0.05). Similarly, the post-treatment SDS and HAM-D-24 scores were significantly lower in both groups than the pre-treatment scores (P < 0.05), with the experimental group exhibiting lower scores than the control group (P < 0.05). The total treatment efficiency was significantly better in the experimental group (97.14%) than in the control group (77.78%) (P < 0.05). Furthermore, after 4 wk of treatment, the Pittsburgh sleep quality index scores for both groups were significantly lower than those before the treatment (P < 0.05), with the experimental group exhibiting lower scores than the control group (P < 0.05). The incidence of adverse reactions was significantly lower in the experimental group than in the control group (P < 0.05). CONCLUSION The combination of Guipi decoction and escitalopram oxalate tablets was found to be an effective and safe treatment for depression. This combination could reduce TCM syndrome scores, improve depressive symptoms, and enhance sleep quality.
Collapse
Affiliation(s)
- Jia Yu
- Psychiatry Department, Beijing Changping Hospital of Traditional and Western Medicine, Beijing 102206, China
| | - Feng-Quan Xu
- Department of Psychosomatic Medicine, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing 100053, China
| |
Collapse
|
21
|
Di Giacomo S, Di Sotto A, Percaccio E, Scuotto E, Battistelli C, Mazzanti G, Menniti-Ippolito F, Ippoliti I. Interaction of Garcinia cambogia (Gaertn.) Desr. and Drugs as a Possible Mechanism of Liver Injury: The Case of Montelukast. Antioxidants (Basel) 2023; 12:1771. [PMID: 37760074 PMCID: PMC10525400 DOI: 10.3390/antiox12091771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Overweight and obesity prevalence has increased worldwide. Apart from conventional approaches, people also resort to botanical supplements for reducing body weight, although several adverse events have been associated with these products. In this context, the present study aimed at evaluating the toxicity of Garcinia cambogia-based products and shedding light on the mechanisms involved. The suspected hepatotoxic reactions related to G. cambogia-containing products collected within the Italian Phytovigilance System (IPS) were examined. Then, an in vitro study was performed to evaluate the possible mechanisms responsible for the liver toxicity, focusing on the modulation of oxidative stress and Nrf2 expression. From March 2002 to March 2022, the IPS collected eight reports of hepatic adverse reactions related to G. cambogia, which exclusively involved women and were mostly severe. The causality assessment was probable in three cases, while it was possible in five. In the in vitro experiments, a low cytotoxicity of G. cambogia was observed. However, its combination with montelukast greatly reduced cell viability, increased the intracellular ROS levels, and affected the cytoplasmic Nrf2 expression, thus suggesting an impairment of the antioxidant and cytoprotective defenses. Overall, our results support the safety concerns about G. cambogia-containing supplements and shed light on the possible mechanisms underpinning its hepatotoxicity.
Collapse
Affiliation(s)
- Silvia Di Giacomo
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (E.S.); (G.M.)
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (E.S.); (G.M.)
| | - Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (E.S.); (G.M.)
| | - Erica Scuotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (E.S.); (G.M.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (E.S.); (G.M.)
| | - Francesca Menniti-Ippolito
- National Centre for Drug Research and Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (F.M.-I.); (I.I.)
| | - Ilaria Ippoliti
- National Centre for Drug Research and Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (F.M.-I.); (I.I.)
| |
Collapse
|
22
|
Ouyang L, Fan Z, He Y, Tan L, Deng G, He Q, He Y, Ouyang T, Li C, Zhang Q, Liu H, Zuo Y. 4-hydroxylonchocarpin and corylifol A: The potential hepatotoxic components of Psoralea corylifolia L. Toxicol Lett 2023; 385:31-41. [PMID: 37598872 DOI: 10.1016/j.toxlet.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Psoralea corylifolia L. (P. corylifolia) has attracted increasing attention because of its potential hepatotoxicity. In this study, we used network analysis (toxic component and hepatotoxic target prediction, proteinprotein interaction, GO enrichment analysis, KEGG pathway analysis, and molecular docking) to predict the components and mechanism of P. corylifolia-induced hepatotoxicity and then selected 4-hydroxylonchocarpin and corylifol A for experimental verification. HepG2 cells were treated with low, medium, and high concentrations of 4-hydroxylonchocarpin or corylifol A. The activities of ALT, AST, and LDH in cell culture media and the MDA level, SOD activity, and GSH level in cell extracts were measured. Moreover, apoptosis, ROS levels, and mitochondrial membrane potential were evaluated. The results showed that the activities of ALT, AST, and LDH in the culture medium increased, and hepatocyte apoptosis increased. The level of MDA increased, and the activity of SOD and level of GSH decreased, and the ROS level increased with 4-hydroxylonchocarpin and corylifol A intervention. Furthermore, the mitochondrial membrane potential decreased in the 4-hydroxylonchocarpin and corylifol A groups. This study suggests that 4-hydroxylonchocarpin and corylifol A cause hepatocyte injury and apoptosis by inducing oxidative stress and mitochondrial dysfunction, suggesting that these compounds may be the potential hepatotoxic components of P. corylifolia.
Collapse
Affiliation(s)
- Linqi Ouyang
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China; School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhiqiang Fan
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yang He
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Long Tan
- Department of Pharmacy, People's Hospital of Yizhang County, Chenzhou, China
| | - Guoyan Deng
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qin He
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yiran He
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ting Ouyang
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Congjie Li
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qin Zhang
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hongyu Liu
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| | - Yajie Zuo
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
23
|
Yang JB, Yang CS, Li J, Su GZ, Tian JY, Wang Y, Liu Y, Wei F, Li Y, Ye F, Ma SC. Dianthrone derivatives from Polygonum multiflorum Thunb: Anti-diabetic activity, structure-activity relationships (SARs), and mode of action. Bioorg Chem 2023; 135:106491. [PMID: 37011521 DOI: 10.1016/j.bioorg.2023.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
PTP1B plays an important role as a key negative regulator of tyrosine phosphorylation associated with insulin receptor signaling in the therapy for diabetes and obesity. In this study, the anti-diabetic activity of dianthrone derivatives from Polygonum multiflorum Thunb., as well as the structure-activity relationships, mechanism, and molecular docking were explored. Among these analogs, trans-emodin dianthrone (compound 1) enhances insulin sensitivity by upregulating the insulin signaling pathway in HepG2 cells and displays considerable anti-diabetic activity in db/db mice. By using photoaffinity labeling and mass spectrometry-based proteomics, we discovered that trans-emodin dianthrone (compound 1) may bind to PTP1B allosteric pocket at helix α6/α7, which provides fresh insight into the identification of novel anti-diabetic agents.
Collapse
Affiliation(s)
- Jian-Bo Yang
- National Institutes for Food and Drug Control, Beijing 100050, China; Xinjiang Uygur Autonomous Region Institute for Drug Control, Urumqi 830054, China
| | - Cheng-Shuo Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiang Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guo-Zhu Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-Ying Tian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Fei Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
24
|
Therapeutic potential of natural molecules against Alzheimer's disease via SIRT1 modulation. Biomed Pharmacother 2023; 161:114474. [PMID: 36878051 DOI: 10.1016/j.biopha.2023.114474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly characterized by progressive cognitive dysfunction and memory impairment. Recent studies have shown that regulating silent information regulator 1 (SIRT1) expression has a significant neuroprotective effect, and SIRT1 may become a new therapeutic target for AD. Natural molecules are an important source of drug development for use in AD therapy and may regulate a wide range of biological events by regulating SIRT1 as well as other SIRT1-mediated signaling pathways. This review aims to summarize the correlation between SIRT1 and AD and to identify in vivo and in vitro studies investigating the anti-AD properties of natural molecules as modulators of SIRT1 and SIRT1-mediated signaling pathways. A literature search was conducted for studies published between January 2000 and October 2022 using various literature databases, including Web of Science, PubMed, Google Scholar, Science Direct, and EMBASE. Natural molecules, such as resveratrol, quercetin, icariin, bisdemethoxycurcumin, dihydromyricetin, salidroside, patchouli, sesamin, rhein, ligustilide, tetramethoxyflavanone, 1-theanine, schisandrin, curcumin, betaine, pterostilbene, ampelopsin, schisanhenol, and eriodictyol, have the potential to modulate SIRT1 and SIRT1 signaling pathways, thereby combating AD. The natural molecules modulating SIRT1 discussed in this review provide a potentially novel multi-mechanistic therapeutic strategy for AD. However, future clinical trials need to be conducted to further investigate their beneficial properties and to determine the safety and efficacy of SIRT1 natural activators against AD.
Collapse
|
25
|
Comparisons of physicochemical features and hepatoprotective potentials of unprocessed and processed polysaccharides from Polygonum multiflorum Thunb. Int J Biol Macromol 2023; 235:123901. [PMID: 36871693 DOI: 10.1016/j.ijbiomac.2023.123901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The raw and processed Polygonum multiflorum Thunb (PM) are used to treat different diseases, and PM has also been reported to have hepatotoxic effects. Moreover, mounting evidence indicates that processed PM is less toxic than raw PM. The changes in efficacy and toxicity of PM during the processing are closely related to the changes in chemical composition. Previous studies have mainly focused on the changes of anthraquinone and stilbene glycosides during process. Polysaccharides, as main components of PM, showed many pharmacological effects, but its changes in the processing has been neglected for a long time. In this study, the polysaccharides of PM in the raw (RPMPs) and processed products (PPMPs) were determined and the liver injury model induced by acetaminophen was utilized to evaluate the impact of polysaccharides on the liver. Results showed that the heteropolysaccharides RPMPs and PPMPs both comprised Man, Rha, GlcA, GalA, Glc, Ara and Xyl, but markedly differed in polysaccharide yield, molar ratio of monosaccharide composition and Mw. In vivo analysis, results showed that demonstrated that RPMPs and PPMPs both exerted hepatoprotective effects by upregulating antioxidant enzymes and repressing lipid peroxidation. It is noteworthy that the polysaccharide yield of processed PM was seven-fold higher than that of raw PM, so it is speculated that processed PM has better hepatoprotective effects at the same dose of decoction. The present work provides an important foundation for studying the polysaccharide activity of PM and further revealing the processing mechanism of PM. This study also proposed a new hypothesis that the significant increase of polysaccharide content in processed PM may be another reason that the product PM causes less liver injury.
Collapse
|
26
|
Wang D, Duan J, Chen XJ, Liu K, Guo Y, Shi R, Li S, Liu M, Zhao L, Li B, Liu H, Li M, Feng Y, Li H, Wang X. Pharmacokinetic characteristics of emodin in polygoni Multiflori Radix Praeparata. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115945. [PMID: 36435407 DOI: 10.1016/j.jep.2022.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/12/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygoni Multiflori Radix Praeparata (Zhiheshouwu) has been a Wudang Taoist medicine for tonifying the liver and kidney, resolving turbidity and reducing lipid. Emodin is one of the active anthraquinones in Zhiheshouwu. Our previous studies showed that emodin (EM) and the other anthraquinones in Zhiheshouwu extract (HSWE) exerted similar inhibitory effects on liver cancer cells in vitro. However, it is still unknown if the other anthraquinones enhance pharmacokinetics (PK) of EM in HSWE in vivo. AIM OF THE STUDY In this study, we compared the PK characteristics of EM alone with that in Zhiheshouwu aiming to explore which anthraquinones in HSWE contribute to the changed PK of EM in rats. MATERIALS AND METHODS Quality control of HSWE was determined using high performance liquid chromatography (HPLC). The ratios of emodin to other anthraquinones, physcion (PH), chrysophanol (CH), rhein (RH), aloe-emodin (AE), emodin-8-O-β-D-glycoside (EMG), physcion-1-O-β-D-glycoside (PHG) and chrysophanol-8-O-β-D-glycoside (CHG) in HSWE were determined and analyzed using UPLC combined with tandem mass spectrometry (UPLC/MS). The PK parameters and intestinal tissue concentration of EM alone, EM in HSWE, or with other anthraquinones in SD rats were analyzed using UPLC/MS. RESULTS The quality of the Zhiheshouwu samples met the quality standard of the Chinese Pharmacopoeia (Version 2020). The PK results showed that compared with EM alone, Cmax (239.90 ± 146.71 vs. 898.46 ± 291.62, P < 0.001), Tmax (0.26 ± 0.15 vs. 12.55 ± 1.33, P < 0.001), AUC0-t (1575.09 ± 570.46 vs. 12154.96 ± 5394.25, P < 0.001), and AUC0-∞ (4742.51 ± 1837.62 vs. 37131.34 ± 21647.39, P < 0.001) of EM in HSWE were decreased due to PH and EMG, while the values of Vd (380.75 ± 217.74 vs. 11.75 ± 7.35, P < 0.001), T1/2 (10.81 ± 1.99 vs. 6.65 ± 2.76, P < 0.05) and CL (19.30 ± 7.82 vs. 2.78 ± 1.88, P < 0.001) of EM in HSWE were increased due to PH and AE. In addition, the intestinal tissue concentration of emodin in HSWE was decreased compared with that of EM alone in 20 and 780 min (25.37 ± 5.98 vs. 43.29 ± 4.16 and 26.72 ± 4.03 vs. 43.40 ± 14.19, respectively. P < 0.05) dominantly due to RH and PH. CONCLUSION In conclusion, compared with treatment of EM alone, the AUC0-t value of EM in HSWE was decreased with different ways in rats. PH shortened Tmax, and increased Vd and CL. While AE prolonged T1/2 of EM. This indicated that the other anthraquinones in HSWE changed the PK of EM in rats and participated in the complex effects of EM on liver cancer. Besides the other anthraquinones, other components (e.g., 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside) in Zhiheshouwu may contribute in the pharmacokinetic and pharmacodynamic interactions with EM for anti-liver cancer.
Collapse
Affiliation(s)
- Dongpeng Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China; School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Jufeng Duan
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China.
| | - Xiao-Jing Chen
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China.
| | - Kaiqi Liu
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China.
| | - Yingying Guo
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China.
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Sha Li
- Shanghai Jiao Tong University School of Medicine, Chongqing South Road No. 227, Shanghai, China.
| | - Ming Liu
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China.
| | - Lijun Zhao
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China.
| | - Bei Li
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China.
| | - Hongtao Liu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China.
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China.
| |
Collapse
|
27
|
Wang X, Yang J, Cheng X, Wang Y, Gao H, Song Y, Wei F, Ma S. On-line identification of the chemical constituents of Polygoni Multiflori Radix by UHPLC-Q-ToF MS/MS. Front Chem 2023; 11:1158717. [PMID: 37153531 PMCID: PMC10160465 DOI: 10.3389/fchem.2023.1158717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: Polygoni Multiflori Radix (PMR) is a type of Chinese herbal medicine with rich chemical composition and pharmacological activity used widely in medicine and food. However, in recent years, there have been increasing numbers of negative reports about its hepatotoxicity. Identification of its chemical constituents for quality control and safe use is very important. Methods: Three solvents of different polarities (water, 70% ethanol, and 95% ethanol solution) were used to extract the compounds from PMR. Extracts were analyzed and characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-ToF MS/MS) in the negative-ion mode. Results: 152 compounds were detected and identified: 50 anthraquinones, 33 stilbene derivatives, 21 flavonoids, seven naphthalene compounds, and 41 other compounds. Eight other compounds were reported for the first time in the PMR-related literature, and eight other compounds were potentially new compounds. Discussion: This study lays a solid foundation for the screening of toxicity and quality-control indicators of PMR.
Collapse
Affiliation(s)
- Xueting Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
- Xinjiang Uygur Autonomous Region Drug Inspection and Research Institute NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Uyghur) Medicine Urumqi, Urumqi, China
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Huiyu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yunfei Song
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Feng Wei, ; Shuangcheng Ma,
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Feng Wei, ; Shuangcheng Ma,
| |
Collapse
|
28
|
Song Y, Yang J, Hu X, Gao H, Wang P, Wang X, Liu Y, Cheng X, Wei F, Ma S. A stepwise strategy integrating metabolomics and pseudotargeted spectrum–effect relationship to elucidate the potential hepatotoxic components in Polygonum multiflorum. Front Pharmacol 2022; 13:935336. [PMID: 36091795 PMCID: PMC9459084 DOI: 10.3389/fphar.2022.935336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Polygonummultiflorum (PM) Thunb., a typical Chinese herbal medicine with different therapeutic effect in raw and processed forms, has been used worldwide for thousands of years. However, hepatotoxicity caused by PM has raised considerable concern in recent decades. The exploration of toxic components in PM has been a great challenge for a long time. In this study, we developed a stepwise strategy integrating metabolomics and pseudotargeted spectrum–effect relationship to illuminate the potential hepatotoxic components in PM. First, 112 components were tentatively identified using ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS). Second, based on the theory of toxicity attenuation after processing, we combined the UPLC-Q-TOF-MS method and plant metabolomics to screen out the reduced differential components in PM between raw and processed PM. Third, the proposed pseudotargeted MS of 16 differential components was established and applied to 50 batches of PM for quantitative analysis. Fourth, the hepatocytotoxicity of 50 batches of PM was investigated on two hepatocytes, LO2 and HepG2. Last, three mathematical models, gray relational analysis, orthogonal partial least squares analysis, and back propagation artificial neural network, were established to further identify the key variables affecting hepatotoxicity in PM by combining quantitative spectral information with toxicity to hepatocytes of 50 batches of PM. The results suggested that 16 components may have different degrees of hepatotoxicity, which may lead to hepatotoxicity through synergistic effects. Three components (emodin dianthrones, emodin-8-O-β-D-glucopyranoside, PM 14-17) were screened to have significant hepatotoxicity and could be used as toxicity markers in PM as well as for further studies on the mechanism of toxicity. Above all, the study established an effective strategy to explore the hepatotoxic material basis in PM but also provides reference information for in-depth investigations on the hepatotoxicity of PM.
Collapse
Affiliation(s)
- Yunfei Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaowen Hu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Huiyu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Pengfei Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xueting Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Feng Wei, ; Shuangcheng Ma,
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Feng Wei, ; Shuangcheng Ma,
| |
Collapse
|
29
|
Song Y, Yang J, Wang X, Chen J, Si D, Gao H, Sun M, Cheng X, Wei F, Ma S. Pharmacokinetics and metabolism of trans-emodin dianthrones in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115123. [PMID: 35183691 DOI: 10.1016/j.jep.2022.115123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb. (PM) is a common traditional Chinese medicine with diverse biological activities of resolving toxins, nourishing livers and promoting hairs. Nevertheless, in recent years hepatotoxic adverse reactions caused by the administration of PM have raised worldwide concerns. In our previous study, we found that emodin dianthrones showed hepatotoxicity and may be potential toxicity markers. However, the metabolic transformation and pharmacokinetic behavior of emodin dianthrones in vivo have still not been elucidated. AIM OF THE STUDY Taking trans-emodin dianthrones (TED) as an example, the present study was conducted to investigate the pharmacokinetics and bioavailability of TED in rats and characterized its metabolic transformation in the plasma, urine and feces of rats. MATERIALS AND METHODS A rapid and sensitive UPLC-qqq-MS/MS method was developed for accurate quantification of TED in plasma and successfully applied to the pharmacokinetic evaluation of TED in rats after intravenous and oral administration. A reliable UFLC-Q-TOF-MS high resolution mass spectrometry combined with a scientific metabolite identification strategy was used to comprehensively characterize the metabolic transformation of TED in plasma, urine and feces in rats. RESULTS The established UPLC-qqq-MS/MS method had a linear range of 1-500 ng/mL, and the method was accurate and reliable to meet the quantitative requirements. When 20 mg/kg TED was given by gavage rats, it was rapidly absorbed into the circulatory system and had a long half-life time of 6.44 h and wide tissue distribution in vivo. While intravenous injection of 0.4 mg/kg TED in rats, it was rapidly metabolized and eliminated with a half-life time of 1.82 h. The oral absorption bioavailability of TED was only 2.83%. Furthermore with a sensitive UFLC-Q-TOF-MS technique and metabolite identification strategy, 21 metabolites were successfully identified, including 11 in plasma, 12 in urine and 18 in feces. The main Ⅰ and Ⅱ phase metabolic processes involved glucuronidation, oxidation, carbonylation, (de)methylation, sulfation and hydrogenation. CONCLUSION TED could be rapidly absorbed into the blood circulation and widely distributed and slowly metabolized in the body and underwent extensive cleavage and metabolic transformation in vivo. The study provided a basis for in-depth elucidation of the toxicology and mechanism research of TED, but also laid the foundation for further research on the material basis of hepatotoxicity of PM.
Collapse
Affiliation(s)
- Yunfei Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Xueting Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Junmiao Chen
- SCIEX China, Jiuxianqiao Middle Road, Chaoyang District, Beijing, 100015, China.
| | - Dandan Si
- SCIEX China, Jiuxianqiao Middle Road, Chaoyang District, Beijing, 100015, China.
| | - Huiyu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
30
|
Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. PHYTOCHEMISTRY 2022; 197:113128. [PMID: 35183567 DOI: 10.1016/j.phytochem.2022.113128] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Stilbenes are some of the important phenolic compounds originating from plant families like Vitaceae, Leguminaceae, Gnetaceae, and Dipterocarpaceae. Structurally, they have a C6-C2-C6 skeleton, usually with two isomeric forms. Stilbenes are biosynthesized due to biotic and abiotic stresses such as microbial infections, high temperatures, and oxidation. This review aims to provide a comprehensive overview of stilbenes' botanical sources, chemistry, biosynthetic pathways, pharmacology, and clinical applications and challenges based on up-to-date data. All included studies were collected from PubMed, ScienceDirect, Google Scholar, and CNKI, and the presented data from these indexed studies were analyzed and summarized. A total of 459 natural stilbene compounds from 45 plant families and 196 plant species were identified. Pharmacological studies also show that stilbenes have various activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, anti-degenerative diseases, anti-diabetic, neuroprotective, anti-aging, and cardioprotective effects. Stilbene synthase (STS) is the key enzyme involved in stilbene biosynthetic pathways. Studies on the therapeutic application of stilbenes pinpoint that challenges such as low bioavailability and isomerization are the major bottlenecks for their development as therapeutic drugs. Although the medicinal uses of several stilbenes have been demonstrated in vivo and in vitro, studies on the development of stilbenes deserve more attention in the future.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiaoyan Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Yanjie Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
31
|
Kong WS, Zhou G, Xu LW, Wang K, Feng YM, Tao LY, Xie RF, Yang M, Zhou X. Beware of the Potential Risks for Polygoni Multiflori Caulis-Induced Liver Injury. Front Pharmacol 2022; 13:868327. [PMID: 35431961 PMCID: PMC9010879 DOI: 10.3389/fphar.2022.868327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Reynoutria multiflora (Thunb.) Moldenke (PM) is a widely-used medicinal plant in China, whose root and stem are included in the Chinese Pharmacopoeia as Polygoni Multiflori Radix (RPM), Polygoni Multiflori Radix Preparata (PMP), and Polygoni Multiflori Caulis (PMC). The hepatotoxicity of RPM and PMP is concerned by the public, while the risk of PMC is ignored. Purpose: Here, we investigate the potential risks for PMC-induced liver injury from clinical, chemical, and animal features. Study design: First, we analyzed the 12-month usage of RPM, PMP, and PMC in Longhua Hospital. Second, we determined the contents of gallic acid, cis-2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside (cis-SG), trans-2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside (trans-SG), emodin-8-O-β-D-glucoside (EG), physcion-8-O-β-D-glucoside (PG), emodin, and physcion in the water extracts from 15 batches of RPM, PMP, and PMC. Third, we probed the hepatotoxic effect of RPM, PMP, and PMC in mice and explored the mechanism of cis-SG and trans-SG causing the liver injury at the dosages based on our results from the first and second parts. Results: PMC had nearly five times the amount of usage in both outpatient prescriptions and inpatient orders than RPM and PMP. Overall, 68% dosage of PMC was 30 g. The contents of cis-SG, trans-SG, and emodin in PMC water extracts were significantly lower than those in RPM and PMP water extracts. PMC induced milder idiosyncratic liver injury for its lower content of cis-SG and trans-SG than its root counterparts. Conclusion: The potential risks for PMC-induced liver injury should be fully aware of.
Collapse
Affiliation(s)
- Wei-Song Kong
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gui Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Wei Xu
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, China
| | - Kun Wang
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Traditional Chinese Hospital of Lu’an, Anhui University of Chinese Medicine, Lu’an, China
| | - Yi-Ming Feng
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Yu Tao
- Department of Hepatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Fang Xie
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Yang
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Ultrasonic Solvent Extraction Followed by Dispersive Solid Phase Extraction (d-SPE) Cleanup for the Simultaneous Determination of Five Anthraquinones in Polygonum multiflorum by UHPLC-PDA. Foods 2022; 11:foods11030386. [PMID: 35159536 PMCID: PMC8834015 DOI: 10.3390/foods11030386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
A rapid and effective ultra-high performance liquid chromatography (UHPLC) method was developed for the determination of five anthraquinones (emodin, physcion, aloe-emodin, rhein, and chrysophanol) in Polygonum multiflorum. The target compounds were ultrasonically extracted with 70% methanol, followed by dispersive solid-phase extraction (d-SPE) with HC-C18 and desorption with acetonitrile. The five anthraquinones were separated on an ACQUITY UPLC® HSS T3 column (2.1 × 100 mm, 1.8 μm) and detected by a photodiode array detector (PDA) at 254 nm. Under the optimized conditions, linear relationships were achieved in the range of 0.3~100 mg/L for emodin, 0.3~40 mg/L for physcion, 0.1~20 mg/L for aloe-emodin, and 0.05~20 mg/L for rhein and chrysophanol. The limits of detection of the five analytes ranged from 0.01 to 0.08 mg/L, and the recoveries were within the range of 82.8~118.4% with an RSD (n = 6) of 1.0~10.3%. The intra-day and inter-day precision (n = 5) of the five targets were in the range of 1.0~1.8% and 3.0~3.1%, respectively. Furthermore, this method was applied to analyses of Polygonum multiflorum samples collected from different regions in China with satisfactory results. All the results indicated that this method is suitable for the detection of five anthraquinones in Polygonum multiflorum.
Collapse
|
33
|
Wang L, Wang Z, Xing Y, Liu E, Gao X, Wang L, Fu Z. Biomarkers and Mechanism Analysis for Polygoni Multiflori Radix Preparata-Induced Liver Injury by UHPLC-Q-TOF-MS-Based Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7677392. [PMID: 34858511 PMCID: PMC8632464 DOI: 10.1155/2021/7677392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Polygonum Multiflorum Radix Preparata (PMP), prepared from Polygonum multiflorum Thunb. (PM), is traditionally valued for its liver and kidney-tonifying effects. However, the previous studies showed that PMP was hepatotoxic, which limited its clinical use. Unfortunately, the potential hepatotoxic ingredients and the molecular mechanism are still uncertain. OBJECTIVE The aim of this study was to find out potential biomarkers of hepatotoxicity using metabolomics profile. MATERIALS AND METHODS 60% ethanol extract of PMP (PMPE) was prepared. Subsequently, an untargeted metabolomics technology in combination with ROC curve analysis method was applied to investigate the alteration of plasma metabolites in rats after oral administration of PMPE (40 g/kg/d) for 28 days. RESULTS Compared to the control group, the significant difference in metabolic profiling was observed in the PMPE-induced liver injury group, and sixteen highly specific biomarkers were identified. These metabolites were mainly enriched into bile acids, lipids, and energy metabolisms, indicating that PMPE-induced liver injury could be related to cholestasis and dysregulated lipid metabolism. CONCLUSIONS This study is contributed to understand the potential pathogenesis of PMP-induced liver injury. The metabonomic method may be a valuable tool for the clinical diagnosis of PMP-induced liver injury.
Collapse
Affiliation(s)
- Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Zhida Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Linlin Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| |
Collapse
|
34
|
Hu M, Lin L, Liu J, Zhong Y, Liang B, Huang Y, Li Z, Lin X, Wang B, Zhang B, Meng H, Ye R, Du J, Dai M, Peng Y, Li H, Wu Q, Gao H, Yang X, Huang Z. Aurantio-obtusin induces hepatotoxicity through activation of NLRP3 inflammasome signaling. Toxicol Lett 2021; 354:1-13. [PMID: 34718095 DOI: 10.1016/j.toxlet.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/08/2022]
Abstract
Aurantio-obtusin (AO) is a major anthraquinone (AQ) compound derived from Cassiae semen (CS). Although pharmacological studies have shown that the CS extracts can serve as effective agents in preclinical and clinical practice, AQ-induced hepatotoxicity in humans has attracted widespread attention. To explore whether AO induces hepatotoxicity and its underlying mechanisms, we exposed larval zebrafish and mice to AO. We found that AO delayed yolk sac absorption, and increased liver area and inflammation in the larval zebrafish. This inflammation was manifested as an increase in liver neutrophils and the up-regulated mRNA expression of interleukin-6 (Il-6) and tumor necrosis factor-α (Tnf-α) in the larval zebrafish. Furthermore, a pharmacokinetics study showed that AO was quickly absorbed into the blood and rapidly metabolized in the mice. Of note, AO induced hepatotoxicity in a gender-dependent manner, characterized by liver dysfunction, increased hepatocyte necrosis with inflammatory infiltration, and up-regulated mRNAs of Il-6, Tnf-α and monocyte chemotactic protein 1(Mcp1) in the female mice after 28-day oral administration. It also highlighted that AO triggered NOD-like receptor protein (NLRP) signaling in the female mice, as evidenced by the increased NLRP3, Caspase-1, pro-IL-1β, IL-1β and IL-18. Finally, we found that AO led to a significant increase in potassium calcium-activated channel, subfamily N, member 4 (KCNN4) and reactive oxygen species (ROS) levels, along with decreased nuclear factor kappa B p65 (NF-κB p65), in the female mouse livers. In conclusion, AO induced hepatotoxicity by activating NLRP3 inflammasome signaling, at least in part, through increased KCNN4 and ROS production, and NF-κB inhibition.
Collapse
Affiliation(s)
- Manjiang Hu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Li Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jun Liu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xi Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bo Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Hao Meng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Yi Peng
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Hongqun Li
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Qinghong Wu
- Laboratory Animal Management Center, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Hongbin Gao
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
35
|
Zhou G, Feng YM, Li ZC, Tao LY, Kong WS, Xie RF, Zhou X. Fingerprinting and Determination of Hepatotoxic Constituents in Polygoni Multiflori Radix Praeparata of Different Producing Places by HPLC. J Chromatogr Sci 2021; 60:440-449. [PMID: 34240129 DOI: 10.1093/chromsci/bmab086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 04/08/2021] [Indexed: 12/18/2022]
Abstract
Polygoni Multiflori Radix Praeparata (PMRP) is used as Chinese herbal medicine with long history. However, reports about PMRP hepatotoxicity have increased recently, and producing area might be one reason. This article aims to figure out the relationship between producing area and hepatotoxic ingredients in PMRP. HPLC fingerprint for PMRP was established and the contents of gallic acid, trans-stilbene glycoside (TSG), emodin-8-O-β-D-glucoside (EG), emodin and physcion were determined. Clustering heatmap was implemented by TCMNPAS software,and principal component analysis was implemented by SPSS and SIMCA-P software. Hepatotoxic constituents' contents of PMRP from separate producing area were different. PMRP from Guangxi had the highest content of gallic acid, TSG, EG, emodin and physcion, followed by Hubei, Guangdong, Guizhou, Yunnan. PMRP from Henan had the lowest contents of hepatotoxic components. Hepatotoxic components' contents of PMRP in southern were higher than central China. This study carried out a preliminary qualitative and quantitative investigation on the PMRP from different producing places, which provided a basis for safe medication of PMRP.
Collapse
Affiliation(s)
- Gui Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road, Xuhui District, Shanghai 200032, China
| | - Yi-Ming Feng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road, Xuhui District, Shanghai 200032, China
| | - Zhi-Cheng Li
- Pudong Hospital, Fudan University, Gongwei Road, Pudong New District, Shanghai 201300, China
| | - Li-Yu Tao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong New District, Shanghai 201203, China
| | - Wei-Song Kong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road, Xuhui District, Shanghai 200032, China
| | - Rui-Fang Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road, Xuhui District, Shanghai 200032, China
| | - Xin Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|