1
|
Siderhurst MS, Bartel WD, Hoover AG, Lacks S, Lehman MG. Rapid headspace analysis of commercial spearmint and peppermint teas using volatile 'fingerprints' and an electronic nose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1365-1374. [PMID: 39329335 DOI: 10.1002/jsfa.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Spearmint and peppermint teas are widely consumed around the world for their flavor and therapeutic properties. Dynamic headspace sampling (HS) coupled to gas chromatography/mass spectrometry (GC-MS) with principal component analysis (PCA) of 'fingerprint' volatile profiles were used to investigate 27 spearmint and peppermint teas. Additionally, comparisons between mint teas were undertaken with an electronic nose (enose). RESULTS Twenty compounds, all previously known in the literature, were identified using HS-GC-MS. PCA found distinct differences between the fingerprint volatile profiles of spearmint, peppermint and spearmint/peppermint combination teas. HS-GC-MS analysis performed with an achiral column allowed faster processing time and yielded tighter clustering of PCA tea groups than the analysis which used a chiral column. Two spearmint outliers were detected. One showed a high degree of variation in volatile composition and a second wholly overlapped with the peppermint PCA grouping. Enose analysis separated all treatments with no overlaps. CONCLUSION Characterizing the volatile fingerprints of mint teas is critical to quality control for this valuable agricultural product. The results of this study show that fingerprint volatile profiles and enose analysis of mint teas are distinctive and could be used to rapidly identify unknown samples. With specific volatile profiles identified for each tea, samples could be tested in the laboratory, or potentially on a farm or along the supply chain, to confirm the provenance and authenticity of mint food or beverage commodities. © 2024 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Matthew S Siderhurst
- Daniel K Inouye US Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Hilo, HI, USA
| | - William D Bartel
- Department of Chemistry, Eastern Mennonite University, Harrisonburg, VA, USA
| | - Anna G Hoover
- Department of Chemistry, Eastern Mennonite University, Harrisonburg, VA, USA
| | - Skylar Lacks
- Department of Chemistry, Eastern Mennonite University, Harrisonburg, VA, USA
| | - Meredith Gm Lehman
- Department of Chemistry, Eastern Mennonite University, Harrisonburg, VA, USA
| |
Collapse
|
2
|
Chávez-Delgado EL, Gastélum-Estrada A, Pérez-Carrillo E, Ramos-Parra PA, Estarrón-Espinosa M, Reza-Zaldívar EE, Hernández-Brenes C, Mora-Godínez S, de Los Santos BE, Guerrero-Analco JA, Monribot-Villanueva JL, Orozco-Sánchez NE, Jacobo-Velázquez DA. Bioactive properties of spearmint, orange peel, and baby sage oleoresins obtained by supercritical CO 2 extraction and their integration into dark chocolate. Food Chem 2025; 463:141306. [PMID: 39303416 DOI: 10.1016/j.foodchem.2024.141306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study investigated the potential health benefits of spearmint, orange peel, and baby sage oleoresins extracted using supercritical CO2 and subsequently emulsified. The oleoresins were incorporated into dark chocolate, and their impact on physicochemical properties was evaluated. Characterization revealed rich sources of phenolic compounds, carotenoids, and volatile compounds in these oleoresins. In vitro studies demonstrated anti-obesogenic, antioxidant, anti-inflammatory, and neuroprotective properties of the emulsified oleoresins. However, only physicochemical properties were determined for the formulations of dark chocolate with these emulsified oleoresins. Chocolate formulations fortified with these emulsions displayed a softer texture, lower water activity, and solid-like behavior. The findings suggest that these oleoresins could serve as nutraceutical agents for mitigating metabolic syndrome and associated pathologies. Incorporating them into chocolate matrices offers a practical approach to formulating functional foods. Further research is warranted to explore the preventive and therapeutic efficacy in an in vivo model.
Collapse
Affiliation(s)
- Emily Lorena Chávez-Delgado
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Alejandro Gastélum-Estrada
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Esther Pérez-Carrillo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Perla Azucena Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Mirna Estarrón-Espinosa
- Food Techology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad Zapopan, Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico
| | - Edwin Estefan Reza-Zaldívar
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Shirley Mora-Godínez
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Beatriz Estefanía de Los Santos
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - José Antonio Guerrero-Analco
- Red de estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | - Juan Luis Monribot-Villanueva
- Red de estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | | | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico.
| |
Collapse
|
3
|
Sevindik M, Gürgen A, Krupodorova T, Uysal İ, Koçer O. A hybrid artificial neural network and multi-objective genetic algorithm approach to optimize extraction conditions of Mentha longifolia and biological activities. Sci Rep 2024; 14:31403. [PMID: 39733105 DOI: 10.1038/s41598-024-83029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant. Input parameters were extraction temperature (40-70 °C), extraction time (4-10 h), and extract concentration (0.25-2 mg/mL) while total antioxidant status (TAS) and total oxidant status (TOS) values of extracts were output parameters. The mean absolute percentage error (MAPE) of selected ANN model was determined as 1.434% and 0.464% for TAS and TOS, respectively. The results showed that the optimum extraction conditions were as follows: extraction temperature of 54.260 °C, extraction time of 7.854 h, and extract concentration of 0.810 mg/mL. The biological activities and phenolic contents of the extract obtained under determined optimum extract conditions were determined. TAS and TOS values of extract were determined as 6.094 ± 0.033 mmol/L and 14.050 ± 0.063 µmol/L, respectively. Oxidative stress index (OSI) as 0.231 ± 0.002, total phenolic content (TPC) as 123.05 ± 1.70 mg/g and total flavonoid content (TFC) as 181.84 ± 1.97 mg/g. Anti- acetylcholinesterase value and anti-butyrylcholinesterase value of the extract was determined as 42.97 ± 0.87 and 60.52 ± 0.80 µg/mL, respectively. In addition, 11 phenolic compounds, namely acetohydroxamic acid, gallic acid, catechin hydrate, 4-hydroxybenzoic acid, caffeic acid, vanillic acid, syringic acid, 2-hydoxycinamic acid, quercetin, luteolin and kaempferol, were determined. It was observed that the extract of M. longifolia produced under optimum conditions exhibited strong biological activities. These results indicate that ANN coupled NSGA-II was an effective method for the optimization extraction conditions of M. longifolia.
Collapse
Affiliation(s)
- Mustafa Sevindik
- Department of Biology, Faculty of Engineering and Nature Sciences, University of Osmaniye Korkut Ata, 80000, Osmaniye, Turkey
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Ayşenur Gürgen
- Department of Industrial Engineering, Faculty of Engineering and Nature Sciences, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey
| | - Tetiana Krupodorova
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, 04123, Ukraine.
| | - İmran Uysal
- Department of Food Processing, Bahçe Vocational School, University of Osmaniye Korkut Ata, 80000, Osmaniye, Turkey
| | - Oguzhan Koçer
- Department of Pharmacy Services, Vocational School of Health Services, Osmaniye Korkut Ata University, Osmaniye, Turkey
| |
Collapse
|
4
|
Jamshidi-Kia F, Saeidi K, Lorigooini Z, Samani BH. Efficacy of foliar application of Chlorella vulgaris extract on chemical composition and biological activities of the essential oil of spearmint ( Mentha spicata L.). Heliyon 2024; 10:e40531. [PMID: 39660204 PMCID: PMC11629182 DOI: 10.1016/j.heliyon.2024.e40531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
The microalgal have an essential role in agriculture, where they are used as biofertilizers. This study aimed to determine the effect of C. vulgaris extract on the chemical composition and biological activities of the Essential Oil (EO) of Mentha spicata. The extract of C. vulgaris was prepared and applied at three different concentrations (50, 75, and 100 %). The EOs of M. spicata were analyzed by gas chromatography-mass spectrometry (GC-MS). The DPPH radical scavenging capability and Ferric Reducing Antioxidant Power (FRAP) techniques were used to assess the antioxidant activity of EOs. The antimicrobial activity of EO was evaluated using the microdilution method against Staphylococcus aureus. The results of GC-MS analysis of EOs identified 46 components, with Carvone (77.5-65.4 %), Limonene (10.31-6.9 %), β-elemene (1.56-0.98 %), and Caryophyllene (10.92-4.77 %) being the predominant constituents. From the highest concentration ranged from 100 % C. vulgaris extract to control respectively, yield and EO content ranged from 171.24 to 131.74 g/m2 and 0.34 to 0.18 %, respectively; Antioxidant activity by DPPH and FRAP methods varied from 1.56 to 4.45 mg/mL, and 405.63 to 68.68 μMFe2+/g, respectively; the Minimum Inhibitory Concentrations (MIC) ranged from 2.4 to 9.6 mg/mL in various treatments. The results indicated that the C. vulgaris extract significantly increased the yield, EO%, Carvone, Limonene, and antioxidant and antibacterial activities compared to the control. The extract of C. vulgaris showed promise as a biofertilizer to enhance the yield, chemical composition, and biological activities of M. spicata.
Collapse
Affiliation(s)
- Fatemeh Jamshidi-Kia
- Department of Horticulture Science, Faculty of Agriculture, Shahrekord University, Iran
| | - Keramatolah Saeidi
- Department of Horticulture Science, Faculty of Agriculture, Shahrekord University, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | |
Collapse
|
5
|
Tang HP, Zhu EL, Bai QX, Wang S, Wang ZB, Wang M, Kuang HX. Mentha haplocalyx Briq. (Mint): a comprehensive review on the botany, traditional uses, nutritional value, phytochemistry, health benefits, and applications. Chin Med 2024; 19:168. [PMID: 39663516 PMCID: PMC11636048 DOI: 10.1186/s13020-024-01037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
Mentha haplocalyx Briq. (M. haplocalyx), a notable member of the Lamiaceae family, occupies a significant role in the realm of health foods and botanical medicines. Traditionally, it has been employed to address various diseases, including colds, coughs, fever, indigestion, asthma, and influenza. Recent phytochemical investigations have identified the presence of terpenoids, flavonoids, phenolic acids, anthraquinones, alkanes, and polysaccharides in M. haplocalyx, with terpenoids being the primary bioactive constituents. Notably, both in vitro and in vivo studies have demonstrated its diverse health benefits, such as neuroprotective, anti-asthmatic, anti-inflammatory, gut health improvement, hypoglycemic, anti-aging, anti-bacterial, and antioxidant effects. Additionally, M. haplocalyx is a rich source of carbohydrates, dietary fiber, amino acids, minerals, and vitamins, further underscoring its nutritional value. A thorough literature review was conducted using databases like PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure (CNKI) to consolidate existing knowledge on M. haplocalyx. This review synthesizes recent advancements in the botany, traditional uses, nutritional value, phytochemistry, health benefits, and research on the edible uses of M. haplocalyx. Furthermore, the commercial potential and future research opportunities for M. haplocalyx are briefly explored, with the goal of fostering continued interest in this multifunctional plant and inspiring future research and commercial endeavors.
Collapse
Affiliation(s)
- Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - En-Lin Zhu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
6
|
Pires PC, Motallebi M, Marques MP, Correia M, Sharma A, Damiri F, Hameed H, Singh SK, Dua K, Jha NK, Cabral C, Veiga F, Paiva-Santos AC. Mentha aquatica (Water Mint) as a Source of Active Pharmaceutical and Cosmetic Ingredients: A Critical Review. Phytother Res 2024; 38:5806-5839. [PMID: 39363549 DOI: 10.1002/ptr.8337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/21/2024] [Accepted: 09/01/2024] [Indexed: 10/05/2024]
Abstract
Mentha aquatica L., or water mint, is an important member of the Mentha genus, and has long been used in traditional medicine, mainly to treat respiratory diseases such as the common cold. Nevertheless, although over the years many studies have shown that it's potential grows beyond this use, a review that highlights M. aquatica L.'s true potential is still lacking. Thus, the main purpose of the present article is to provide a thorough and multidisciplinary critical review of M. aquatica L., including its phytochemical characterization, main bioactivities, and current marketed cosmetic products. Many compounds have been identified as part of M. aquatica L. composition, such as terpenes, phenolic acids, phenols, and terpenoids, which have been linked to a vast therapeutic potential, namely anti-inflammatory, antioxidant, antibacterial, antifungal, antiobesity, and hepatoprotection bioactivities, with additional anticancer potential for several types of tumors (breast, lung, and skin), and psycho and neuroactive potential in depression, or Alzheimer's or Parkinson's disease. Additionally, it has been proven to be suitable for cosmetic application since several cleansing, hydrating, protecting, and/or odor masking products containing it are already available, with the main functions attributed to M. aquatica including refreshing/cooling effects, calming/soothing/relaxing effects, and purifying effects, properties closely related to its anti-inflammatory and antioxidant bioactivities. Hence, M. aquatica is an extremely versatile plant, with its extracts and essential oils having great therapeutic and cosmetic potential. With many marketed cosmetic products, future studies should focus on this plant's medicinal aspects, so that 1 day it can be part of therapeutic regimens.
Collapse
Affiliation(s)
- Patrícia C Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilha, Portugal
| | - Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mário Pedro Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Mafalda Correia
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ankur Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Fouad Damiri
- Laboratory of Analytical and Molecular Chemistry (LCAM), Faculty of Sciences Ben M'Sick, Department of Chemistry, University Hassan II of Casablanca, Casablanca, Morocco
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), Beni Mellal, Morocco
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Mondal PC, Salim R, Kumar V, Kaushik P, Shakil NA, Pankaj, Rana VS. Aphidicidal activity of nano-emulsions of spearmint oil and carvone against Rhopalosiphum maidis and Sitobion avenae. Sci Rep 2024; 14:24226. [PMID: 39414889 PMCID: PMC11484702 DOI: 10.1038/s41598-024-74149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
Different species of aphids, responsible for severe yield losses of cereal crops including wheat, (Triticum aestivum L.) are managed by insecticides, which are harmful to organisms and the environment under field conditions. Therefore, an environment friendly aphidicidal product of plant origin is required. Mentha spicata oil was found to be rich in carvone (81.88%), but the use of its oil and carvone in crop protection is lacking due to their volatility, poor solubility, and stability. A nanoformulaton not only solves these problems but also improve the efficacy and dose of the bioactive compounds. Thus, nano-emulsions of the oil and carvone prepared were characterized, and evaluated against Rhopalosiphum maidis (corn aphid) and Sitobion avenae (wheat aphid) The average droplet size of nano-emulsions of the oil and carvone was found to be 22.1 and 41.21 nm. Nano-emulsion of carvone exhibited higher aphid mortality (LC50 = 0.87-1.94 mg/mL) at 24 h and acetylcholinesterase inhibitory activity (IC50 = 0.07-3.83 mg/mL) compared to the nano-emulsion of the oil (LC50 = 2.87-2.81 mg/mL; IC50 = 1.66-5.34 mg/mL). The repellence index (RI) in nano-emulsion of essential oil was found to be higher (84.73 and 81.72%) at the highest concentration (0.05 µL/cm2) than that of carvone (77.59 and 80.98%) for R. maidis and S. avenae. Further, in silico studies also revealed the favourable binding energy (- 6.6 to - 8.5 kcal/mol) of the main compounds in the oil with acetylcholinesterase, facilitated by hydrophobic interactions and hydrogen bonding. This study suggests that the nano-emulsions of the essential oil and carvone can be explored under field conditions to establish efficacy for their utilization as aphidicidal and repellent products against aphids. In the present study, aphidicial and repellent activities of its essential oil and carvone were reported for the first time against R.maidis and S.avenae.
Collapse
Affiliation(s)
- Partha Chandra Mondal
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajna Salim
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vijay Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Parshant Kaushik
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Najam Akhtar Shakil
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pankaj
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
8
|
Zhang Y, Zhang T, Wang X, Bian Z, Zhang X, Yang G, Lu Y. Volatiles from essential oils of three Lamiaceae plants repel the winged cotton aphid, disturb its feeding behavior and reduce its fecundity. PEST MANAGEMENT SCIENCE 2024; 80:4253-4263. [PMID: 38624184 DOI: 10.1002/ps.8130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Insects use odor detection to sense their surroundings. Use of volatile compounds, such as essential oils (EOs) of plants, to repel pests and disrupt their olfaction-driven behaviors has great practical potential for use in integrated pest management. Despite the available information on the repellent effects of EOs on herbivorous insects, the olfaction-based mechanisms remain unknown. RESULTS Y-tube olfactometer tests showed that the EOs of three Lamiaceae plants - Mentha arvensis L., Mentha piperita L. and Lavandula angustifolia Mill. - were significantly repellent to winged cotton aphid, Aphis gossypii Glover. Electrical penetration graph (EPG) tests indicated the EOs reduced phloem feeding and increased the level of non-productive probing by the aphids. The EOs also reduced the fecundity of winged Aphis gossypii. Electrophysiological bioassays and gas chromatography-mass spectrometry (GC-MS) identified five physiologically active volatiles, that is menthone, isomenthone, neomenthol and menthol from Mentha piperita; menthone and menthol from Mentha arvensis; and linalool from L. angustifolia. Behavioral tests confirmed that all five compounds repelled winged Aphis gossypii. Under field conditions, the growth rate of aphid populations after 7 days was significantly lower in fields treated with these compounds than in the control fields. CONCLUSION Our findings demonstrated that three EOs not only repelled winged Aphis gossypii but also interfered with the aphid's feeding behavior and reduced its fecundity. These EOs and their active constituents have great potential as eco-friendly control products for use against Aphis gossypii. The effects of these EOs also exceed other repellents that only keep pests away from host plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Zhang
- State Key Laboratory of IPM on Crops in Northern Region of North China, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Xinhang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhipeng Bian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofang Zhang
- State Key Laboratory of IPM on Crops in Northern Region of North China, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Guoqing Yang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Li W, Li P, Li X, Hou H, Lin H, Jin M, Liu K, Zhang X, Sheng W. Metabolomics-based profiling of anti-inflammatory compounds from Mentha spicata in shanghe, China. Heliyon 2024; 10:e35974. [PMID: 39220934 PMCID: PMC11365440 DOI: 10.1016/j.heliyon.2024.e35974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Mentha spicata is a popular herb used in foods, cosmetics, and medicines. In the present study, liquid chromatography-mass spectrometry-based metabolomics analysis and the zebrafish model were used to investigate the potential biomarkers of M. spicata growing in Shanghe County (Shandong Province, China) and their anti-inflammatory properties. Network pharmacology and molecular docking were performed to screen the main targets of the characteristic compounds to understand their mechanisms of action. Nine potential markers including sugars (1,2), polyphenolic acids (3-5), and flavonoids (6-9) were identified from the species. The inhibitory effects on leukocyte migration confirmed that compounds 1 and 3-9 played a positive role in the protective effect of Shanghe M. spicata (SM) extract against inflammation. Akt (protein kinase B), EGFR (epidermal growth factor receptor), and MMP9 (matrix metalloproteinase 9) were the core target proteins of the identified compounds in the anti-inflammatory process. The most significant Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment terms were response to abiotic stimulus (Biological Process), carbohydrate derivative binding (Molecular Function), and pathways in cancer. In docking simulations, 3-p-coumaroylquinic acid (3-PC, 4) and cirsimaritin (CN, 7) exhibited the highest potential affinity to the active sites of Akt and EGFR proteins, respectively; additionally, 5-demethylsinensetin (5-DS, 9) and luteolin (LN, 6) were considered the most suitable ligands for the MMP9 protein. The present study highlighted the use of SM resources as functional products with health benefits.
Collapse
Affiliation(s)
- Wenzhai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Hairong Hou
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Houwen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Meng Jin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
10
|
İsfendiyaroğlu H, Hanoğlu A, Yiğit Hanoğlu D, Alkaş FB, Başer KHC, Özkum Yavuz D. Chemical Characterization of the Essential Oil Compositions of Mentha spicata and M. longifolia ssp. cyprica from the Mediterranean Basin and Multivariate Statistical Analyses. Molecules 2024; 29:1970. [PMID: 38731461 PMCID: PMC11085233 DOI: 10.3390/molecules29091970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
This present study aims to characterize the essential oil compositions of the aerial parts of M. spicata L. and endemic M. longifolia ssp. cyprica (Heinr. Braun) Harley by using GC-FID and GC/MS analyses simultaneously. In addition, it aims to perform multivariate statistical analysis by comparing with the existing literature, emphasizing the literature published within the last two decades, conducted on both species growing within the Mediterranean Basin. The major essential oil components of M. spicata were determined as carvone (67.8%) and limonene (10.6%), while the major compounds of M. longifolia ssp. cyprica essential oil were pulegone (64.8%) and 1,8-cineole (10.0%). As a result of statistical analysis, three clades were determined for M. spicata: a carvone-rich chemotype, a carvone/trans-carveol chemotype, and a pulegone/menthone chemotype, with the present study result belonging to the carvone-rich chemotype. Carvone was a primary determinant of chemotype, along with menthone, pulegone, and trans-carveol. In M. longifolia, the primary determinants of chemotype were identified as pulegone and menthone, with three chemotype clades being pulegone-rich, combined menthone/pulegone, and combined menthone/pulegone with caryophyllene enrichment. The primary determinants of chemotype were menthone, pulegone, and caryophyllene. The present study result belongs to pulegone-rich chemotype.
Collapse
Affiliation(s)
- Hasan İsfendiyaroğlu
- Department of Phytotherapy, Faculty of Pharmacy, Near East University, Nicosia 99138, Cyprus
| | - Azmi Hanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia 99138, Cyprus; (A.H.); (K.H.C.B.)
| | - Duygu Yiğit Hanoğlu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Near East University, Nicosia 99138, Cyprus; (D.Y.H.); (D.Ö.Y.)
| | - Fehmi B. Alkaş
- Department of Toxicology, Faculty of Pharmacy, Near East University, Nicosia 99138, Cyprus;
| | - Kemal Hüsnü Can Başer
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia 99138, Cyprus; (A.H.); (K.H.C.B.)
| | - Dudu Özkum Yavuz
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Near East University, Nicosia 99138, Cyprus; (D.Y.H.); (D.Ö.Y.)
| |
Collapse
|
11
|
Palatty PL, Sacheendran D, Raghu SV, Arora R, Rao S, Baliga MS. Dietary agents in the prevention of radiation-induced nausea and vomiting (RINV): review addressing the scientific observations, benefits, lacunae and future direction. Int J Radiat Biol 2024; 100:1143-1154. [PMID: 38506659 DOI: 10.1080/09553002.2024.2309899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Radiation-induced Nausea and Vomiting (RINV) is an important side effect and conservative estimates are that 50-80% of the patients undergoing curative radiotherapy (RT) will experience some sought of retching, nausea, and/or vomiting during the course of their treatment. Conventionally, antiemetic drugs like the 5-hydroxytryptamine receptor antagonists and steroids are the mainstay of treatment. However, the use of these agents, especially steroids, can cause side effects and thereby negate the proposed benefits. The antiemetic effects of Centella asiatica (Indian pennywort), Hippophae rhamnoides (Sea buckthorn), oil of Mentha spicata (Spearmint) and the rhizomes of Zingiber officinale (ginger) have been addressed. CONCLUSIONS Results indicate that Indian pennywort, Sea buckthorn, Spearmint oil and ginger are beneficial in mitigating RINV. Also, of the four plants investigated in preclinical models of study, mint oil and ginger seem to be more useful and merit structured systematic translational studies to ascertain the benefit of these two agents.
Collapse
Affiliation(s)
- Princy Louis Palatty
- Department of Pharmacology, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Dhanya Sacheendran
- Department of Pharmacology, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka, India
- Division of Neuroscience, Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Rajesh Arora
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, Delhi, India
| | - Suresh Rao
- Mangalore Institute of Oncology, Mangalore, India
| | | |
Collapse
|
12
|
Aaziz H, Saffaj T, Benchekroun YH, Ihssane B. Simultaneous Quantification of Two Neonicotinoids Using QuEChERS-LC-MS/MS in Moroccan Spearmint (Mentha Spicata.L): Qualimetry of the Method by Uncertainty Estimation Using Generalized Pivotal Quantities Approach and Monte Carlo Simulation. J AOAC Int 2024; 107:217-225. [PMID: 38070149 DOI: 10.1093/jaoacint/qsad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 12/02/2023] [Indexed: 03/03/2024]
Abstract
BACKGROUND Neonicotinoids (NEOs) are used for the phytosanitary treatment of Mentha Spicata.L crops, and this practice requires precise control of these harmful substances at very low concentrations. OBJECTIVE The objective of this study is to apply an approach allowing simultaneously validation and evaluation of measurement uncertainty based on total error methodology, in order to accurately quantify the presence of two NEOs in Mentha Spicata.L utilizing a Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS)-LC-MS/MS methodology. METHODS The quantification of imidacloprid and acetamiprid employing a QuEChERS extraction method, coupled with LC-MS/MS, ensuring the accuracy of the analytical method and managing the risks associated with its routine use. A complete and exhaustive validation approach based on the "β-content, γ-confidence" tolerance interval was used for the uncertainty assessment, using the generalized pivot quantity (GPQ) concept and Monte Carlo simulation, which avoids the need for additional data while achieving intermediate precision for each concentration level within predetermined acceptable limits. RESULTS The validation procedure is based on the choice of a quadratic model for the two NEOs, allowing the validation of acetamiprid and imidacloprid by LC-MS/MS assay within the range of working concentration. The flexibility of the uncertainty profile intervals was demonstrated with a variation in β-content values (66.7, 80, and 90%) and risk values (10 and 5%), which remained within the acceptability limits of 20%, and the relative expanded uncertainty did not exceed 15 and 11%. CONCLUSION A QuEChERS-LC-MS/MS method for the analysis of two NEOs has been successfully fully validated using the uncertainty profile strategy. HIGHLIGHTS Implementation of an overall validation strategy, which involves both the validation and uncertainty assessment known as the uncertainty profile, for the quantification of two important NEOs in Mentha Spicata.L using QuEChERS-LC-MS/MS. This qualimetric approach has been conducted by computing the measurement uncertainty of the method utilizing data from analytical validation under conditions of intermediate precision at each level of concentration without additional effort. After that we have demonstrated the flexibility of this strategy for the LC-MS/MS quantification of acetamiprid and imidacloprid, using a decision tool that enables the choice and modification of β-content and γ-confidence values.
Collapse
Affiliation(s)
- Hicham Aaziz
- Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Laboratory of Applied Organic Chemistry, PB 2202, Immouzer Road, Fez, Morocco
| | - Taoufiq Saffaj
- Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Laboratory of Applied Organic Chemistry, PB 2202, Immouzer Road, Fez, Morocco
| | - Yassine Hameda Benchekroun
- Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Laboratory of Applied Organic Chemistry, PB 2202, Immouzer Road, Fez, Morocco
- Centre de Recherche REMINEX, Groupe Managem, Route Amezmiz Centre De Recherche Bp 469, Marrakech, Morocco
| | - Bouchaib Ihssane
- Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Laboratory of Applied Organic Chemistry, PB 2202, Immouzer Road, Fez, Morocco
- University Mohammed V, Ecole Normale Supérieure, Physio-Chemical Laboratory of Inorganic and Organique Materials (LPCMIO), Materials Science Center (MSC), ENS Avenue Mohamed BelHassan ElOuazzani, B.P. 5118 Takaddoum, Rabat, Morocco
| |
Collapse
|
13
|
Gruskiene R, Lavelli V, Sereikaite J. Application of inulin for the formulation and delivery of bioactive molecules and live cells. Carbohydr Polym 2024; 327:121670. [PMID: 38171683 DOI: 10.1016/j.carbpol.2023.121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Inulin is a fructan biosynthesized mainly in plants of the Asteraceae family. It is also found in edible vegetables and fruits such as onion, garlic, leek, and banana. For the industrial production of inulin, chicory and Jerusalem artichoke are the main raw material. Inulin is used in the food, pharmaceutical, cosmetic as well biotechnological industries. It has a GRAS status and exhibits prebiotic properties. Inulin can be used as a wall material in the encapsulation process of drugs and other bioactive compounds and the development of their delivery systems. In the review, the use of inulin for the encapsulation of probiotics, essential and fatty oils, antioxidant compounds, natural colorant and other bioactive compounds is presented. The encapsulation techniques, materials and the properties of final products suitable for the delivery into food are discussed. Research limitations are also highlighted.
Collapse
Affiliation(s)
- Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| |
Collapse
|
14
|
Marques SDPPM, Pinheiro RO, do Nascimento RA, Andrade EHDA, de Faria LJG. Effects of Harvest Time and Hydrodistillation Time on Yield, Composition, and Antioxidant Activity of Mint Essential Oil. Molecules 2023; 28:7583. [PMID: 38005307 PMCID: PMC10675317 DOI: 10.3390/molecules28227583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
In this study, we assessed the effects of different harvest times (9 a.m., 1 p.m., and 5 p.m.) and hydrodistillation times (60, 90, and 120 min) on the yield, chemical composition, and antioxidant activity of the spearmint (Mentha spicata L.) essential oil (EO) sourced from the Amazon region. EO yield was ≥1.55% and was not significantly influenced (p ≥ 0.05) by the different harvest times and hydrodistillation times. Thirty-one different organic compounds were identified, of which menthol (91.56-95.68%), menthone (0.6-2.72%), and isomenthone (0.55-1.46%) were the major constituents. The highest menthol content in the EO was obtained from samples collected at 9 a.m., with a hydrodistillation time of 60-90 min, compared to other harvest and hydrodistillation times. This suggests that exposure to sun and light, which is greater at harvest times of 1 p.m. and 5 p.m., decreased the menthol content and altered the chemical composition of Mentha EO. Furthermore, the sample harvested at 9 a.m. and hydrodistilled for 60 min showed the highest antioxidant activity (61.67 equivalent mg of Trolox per g of EO), indicating that antioxidant activity is strongly affected by light exposure and the contact duration of the sample with boiling water during hydrodistillation.
Collapse
Affiliation(s)
| | | | - Rafael Alves do Nascimento
- Programa de Pós-Graduação em Engenharia dos Recursos Naturais da Amazônia, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil;
| | | | - Lênio José Guerreiro de Faria
- Programa de Pós-Graduação em Engenharia dos Recursos Naturais da Amazônia, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil;
- Faculdade de Engenharia Química, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil;
| |
Collapse
|
15
|
Yi M, Cao Z, Zhou J, Ling Y, Zhang Z, Cao H. Multi-Omics Analysis of the Mechanism of Mentha Haplocalyx Briq on the Growth and Metabolic Regulation of Fattening Sheep. Animals (Basel) 2023; 13:3461. [PMID: 38003078 PMCID: PMC10668852 DOI: 10.3390/ani13223461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Mentha haplocalyx Briq (MHB) and its components have been proven to improve the growth performance of livestock and poultry. The aim of this experiment was to investigate the effects of MHB addition on growth performance, rumen and fecal microbiota, rumen fluid, serum and urine metabolism, and transcriptomics of rumen epithelial cells in meat sheep. Twelve Hu sheep were selected for the experiment and fed with basic diet (CON) and a basal diet supplemented with 80 g/kg DM of Mentha haplocalyx Briq (MHB). The experimental period was 10 weeks with the first 2 weeks as the pre-trial period. The results showed that compared with the CON group, the average daily weight gain of meat sheep in the MHB group increased by 20.1%; the total volatile fatty acid (VFA) concentration significantly increased (p < 0.05); The thickness of the cecal mucosal layer was significantly reduced (p < 0.01), while the thickness of the colonic mucosal layer was significantly increased (p < 0.05), the length of ileal villi significantly increased (p < 0.01), the thickness of colonic mucosal layer and rectal mucosal muscle layer significantly increased (p < 0.05), and the thickness of cecal mucosal layer significantly decreased (p < 0.05); The serum antioxidant capacity has increased. At the genus level, the addition of MHB changed the composition of rumen and fecal microbiota, increased the relative abundance of Paraprevotella, Alloprevotella, Marinilabilia, Saccharibacteria_genera_incertae_sedis, Subdivision5_genera_incertae_sedis and Ornatilinea in rumen microbiota, and decreased the relative abundance of Blautia (p < 0.05). The relative abundance of Prevotella, Clostridium XlVb and Parasutterella increased in fecal microbiota, while the relative abundance of Blautia and Coprococcus decreased (p < 0.05). There were significant differences in the concentrations of 105, 163, and 54 metabolites in the rumen, serum, and urine between the MHB group and the CON group (p < 0.05). The main metabolic pathways of the differences were pyrimidine metabolism, taurine and taurine metabolism, glyceride metabolism, and pentose phosphate pathway (p < 0.05), which had a significant impact on protein synthesis and energy metabolism. The transcriptome sequencing results showed that differentially expressed genes were mainly enriched in immune regulation, energy metabolism, and protein modification. Therefore, adding MHB improved the growth performance of lambs by altering rumen and intestinal microbiota, rumen, serum and urine metabolomics, and transcriptome.
Collapse
Affiliation(s)
- Mingliang Yi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
| | - Zhikun Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
| | - Jialu Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Y.); (Z.C.); (J.Z.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
16
|
Jiang M, Ni Y, Zhang J, Li J, Liu C. Complete mitochondrial genome of Mentha spicata L. reveals multiple chromosomal configurations and RNA editing events. Int J Biol Macromol 2023; 251:126257. [PMID: 37573900 DOI: 10.1016/j.ijbiomac.2023.126257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Mentha spicata L. is a valuable plant that yields spearmint oil, widely utilized in the pharmaceutical, chemical, and cosmetic industries. The mitochondrial genome (mitogenome) is an essential material for molecular breeding and evolution studies. Here, the mitogenome of M. spicata was assembled by combining Nanopore and Illumina reads. It consisted of a linear chromosome (Ch1) and two circular chromosomes (Ch2 and Ch3). Furthermore, we showed two pairs of repeats (R1 and R2) mediated recombinations resulting in multiple chromosomal configurations. The R1-mediated-recombination generated a large molecule formed by joining Ch2 and Ch1. Similarly, the R2-mediated-recombination generated a large molecule formed by joining Ch3 and Ch1. Then, we identified 17 mitochondrial plastid DNAs (MTPTs) by comparing the mitogenome and cpgenome. The MTPT14 was conserved in multiple species, which has undergone the same evolutionary process as the two organellar genomes among M. spicata, Hesperelaea palmeri and Castilleja paramensis. Based on the RNA-seq reads, 246 RNA editing sites were predicted, resulting in the conversion of cytosine to uracil bases. Furthermore, we successfully validated 40 out of 43 predicted sites. This project reported a complex structure of the M. spicata mitogenome resulting from repeat-mediated recombinations, which will provide valuable information for gene function study and the breeding of different varieties.
Collapse
Affiliation(s)
- Mei Jiang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yang Ni
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Jianjie Zhang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jingling Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
17
|
Yousefian S, Esmaeili F, Lohrasebi T. A Comprehensive Review of the Key Characteristics of the Genus Mentha, Natural Compounds and Biotechnological Approaches for the Production of Secondary Metabolites. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3605. [PMID: 38269203 PMCID: PMC10804064 DOI: 10.30498/ijb.2023.380485.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/16/2023] [Indexed: 01/26/2024]
Abstract
Context The genus Mentha is one of the most aromatic and well-known members of the Lamiaceae family. A wide range of bioactive compounds has been reported in mints. Regarding the high economic importance of Mentha plants due to the presence of valuable metabolites, the demand for their products is growing exponentially. Therefore, to supply such demand, new strategies should be adopted to improve the yield and medicinal quality of the products. Evidence Acquisition The current review is written based on scientific literature obtained from online databases, including Google Scholar, PubMed, Scopus, and Web of Science regarding the characteristic features of some species of the genus Mentha, their distribution and cultivation, main uses and benefits, phytochemical composition, biotechnological approaches for the production of secondary metabolites, and strategies for enhanced production of mints secondary metabolites. Results In this article, we offer an overview of the key characteristics, natural compounds, biological properties, and medicinal uses of the genus Mentha. Current research describes biotechnological techniques such as in vitro culture methods for the production of high-value secondary metabolites. This review also highlights the strategies such as elicitation, genetic, and metabolic engineering to improve the secondary compounds production level in mint plants. Overall, it can be concluded that identifying the biosynthetic pathways, leading to the accumulation of pharmaceutically important bioactive compounds, has paved the way for developing highly productive mint plants with improved phytochemical profiles.
Collapse
Affiliation(s)
| | | | - Tahmineh Lohrasebi
- Department of Plant Bioproducts, National Institude of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
18
|
Milani F, Bottoni M, Bardelli L, Colombo L, Colombo PS, Bruschi P, Giuliani C, Fico G. Remnants from the Past: From an 18th Century Manuscript to 21st Century Ethnobotany in Valle Imagna (Bergamo, Italy). PLANTS (BASEL, SWITZERLAND) 2023; 12:2748. [PMID: 37514363 PMCID: PMC10386062 DOI: 10.3390/plants12142748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND This project originated from the study of an 18th century manuscript found in Valle Imagna (Bergamo, Italy) which contains 200 plant-based medicinal remedies. A first comparison with published books concerning 20th century folk medicine in the Valley led to the designing of an ethnobotanical investigation, aimed at making a thorough comparison between past and current phytotherapy knowledge in this territory. METHODS The field investigation was conducted through semi-structured interviews. All data collected was entered in a database and subsequently processed. A diachronic comparison between the field results, the manuscript, and a 20th century book was then performed. RESULTS A total of 109 interviews were conducted and the use of 103 medicinal plants, belonging to 46 families, was noted. A decrease in number of plant taxa and uses was observed over time, with only 42 taxa and 34 uses reported in the manuscript being currently known by the people of the valley. A thorough comparison with the remedies in the manuscript highlighted similar recipes for 12 species. Specifically, the use of agrimony in Valle Imagna for the treatment of deep wounds calls back to an ancient remedy against leg ulcers based on this species. CONCLUSIONS The preliminary results of this study allow us to outline the partial passage through time fragments of ancient plant-based remedies once used in the investigated area.
Collapse
Affiliation(s)
- Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Laura Bardelli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Lorenzo Colombo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Paola Sira Colombo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Piero Bruschi
- Department of Agricultural, Environmental, Food and Forestry Science and Technology, University of Florence, 50144 Florence, Italy
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| |
Collapse
|
19
|
Biltekin S, Karadağ AE, Demirci F, Demirci B. In Vitro Anti-Inflammatory and Anticancer Evaluation of Mentha spicata L. and Matricaria chamomilla L. Essential Oils. ACS OMEGA 2023; 8:17143-17150. [PMID: 37214687 PMCID: PMC10193545 DOI: 10.1021/acsomega.3c01501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Spearmint, Mentha spicata L., and the German chamomile, Matricaria chamomilla L., preparations are used against inflammatory conditions traditionally and in modern medicinal applications. This present study aimed to evaluate pharma-grade essential oils for their in vitro anti-inflammatory and anticancer effects using COX-1, COX-2, and 5-LOX enzyme assays, as well as their apoptosis potential through the caspase pathway. In addition, the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay was applied to evaluate the in vitro cytotoxic effects using HEK293/A549, MCF7, and PC3 cell lines. Major components of M. spicata essential oil were confirmed both by gas chromatography (GC)-flame ionization detector (FID) and GC/mass spectrometry (MS) as 72.8% carvone, 12.6% limonene, 2.2% 1,8-cineole, 1.3% myrcene, and 1% trans-dihydrocarvone. The major components of M. chamomilla essential oil were also confirmed as 47.9% α-bisabolol oxide A, 16.8% α-bisabolol, 13.8%, (Z)-β-farnesene, 5.8% α-bisabolol oxide, and 4.7% α-bisabolene oxide A. The IC50 values for M. chamomilla essential oil on A549, MCF7, PC3, and HEK293 cells were calculated as 208.54 ± 1.39, 315.44 ± 1.17, 197.52 ± 0.98, and 638.79 ± 1.15 μg/mL, respectively, whereas the IC50 values for M. spicata essential oil on A549, MCF7, and PC3 cells were 672.13 ± 2.57, 708.27 ± 2.05, and 206.49 ± 1.48 μg/mL, respectively. For M. spicata essential oil, no cytotoxic effects on healthy HEK293 cells were observed at the tested concentrations. The essential oils increased the apoptotic activity, where all results were statistically significant. According to the anti-inflammatory evaluation, both M. chamomilla and M. spicata oils showed selective COX-2 inhibitions, where the SI values were calculated as 0.30 and 0.67, respectively. Overall, both M. spicata and M. chamomilla essential oils showed selective inhibition on the COX-2 enzyme and apoptosis against the selected cancer cell lines for the first time, to the best of our knowledge, with this specific dual mode of action. The initial results encourage further detailed in vivo experimental evaluations.
Collapse
Affiliation(s)
- Sevde
Nur Biltekin
- Department
of Pharmaceutical Microbiology, School of Pharmacy, Istanbul Medipol University, 34815 Istanbul, Türkiye
- Department
of Molecular Biology and Genetics, Institute of Graduate Studies in
Sciences, Istanbul University, 34452 Istanbul, Türkiye
| | - Ayşe Esra Karadağ
- Department
of Pharmacognosy, İstanbul Medipol
University, Faculty of Pharmacy, 34815 İstanbul, Türkiye
| | - Fatih Demirci
- Department
of Pharmacognosy, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Türkiye
- Faculty
of Pharmacy, Eastern Mediterranean University, 99450 Famagusta, Northern Cyprus, Türkiye
| | - Betül Demirci
- Department
of Pharmacognosy, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Türkiye
| |
Collapse
|
20
|
Bencze B, Temesfői V, Das S, Papp H, Kaltenecker P, Kuczmog A, Jakab F, Kocsis B, Kőszegi T. Development of a novel, entirely herbal-based mouthwash effective against common oral bacteria and SARS-CoV-2. BMC Complement Med Ther 2023; 23:138. [PMID: 37127611 PMCID: PMC10150350 DOI: 10.1186/s12906-023-03956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Parallel to the growth of the oral healthcare market, there is a constantly increasing demand for natural products as well. Many customers prefer products that contain fewer toxic agents, therefore providing an environmentally friendly solution with the benefit of smaller risk to the user. Medieval and early modern medicinal knowledge might be useful when looking for natural, herbal-based components to develop modern products. Along with these considerations we created, tested, and compared an entirely natural mouthwash, named Herba Dei. METHODS The manufacturing procedure was standardized, and the created tincture was evaluated by GC/MS analysis for active compounds, experimentally tested in cell-based cytotoxicity, salivary protein integrity, cell-free antioxidant activity, anti-bacterial and anti-viral assays, and compared with three market-leading mouthwashes. RESULTS Our tincture did not show significant damage in the cytotoxicity assays to keratinocyte and Vero E6 cells and did not disrupt the low molecular weight salivary proteins. Its radical scavenging capacity surpassed that of two tested, partly natural, and synthetic mouthwashes, while its antibacterial activity was comparable to the tested products, or higher in the bacterial aerobic respiratory assay. The active compounds responsible for the effects include naturally occurring phenylpropanoids, terpenes, and terpenoids. Our mouthwash proved to be effective in vitro in lowering the copy number of SARS-CoV-2 in circumstances mimicking the salivary environment. CONCLUSIONS The developed product might be a useful tool to impede the transmission and spread of SARS-CoV-2 in interpersonal contact and aerosol-generating conditions. Our mouthwash can help reduce the oral bacterial flora and has an antioxidant activity that facilitates wound healing and prevents adverse effects of smoke in the oral cavity.
Collapse
Affiliation(s)
- Bálint Bencze
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary
| | - Viktória Temesfői
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary.
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary.
- Hungarian National Laboratory On Reproduction, University of Pécs, Pécs, 7624, Hungary.
| | - Sourav Das
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
| | - Henrietta Papp
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság Útja 6, Pécs, 7624, Hungary
| | - Péter Kaltenecker
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Hungarian National Laboratory On Reproduction, University of Pécs, Pécs, 7624, Hungary
| | - Anett Kuczmog
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság Útja 6, Pécs, 7624, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság Útja 6, Pécs, 7624, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Clinical Centre, Medical School, University of Pécs, Szigeti Út 12, Pécs, 7624, Hungary
| | - Tamás Kőszegi
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Hungarian National Laboratory On Reproduction, University of Pécs, Pécs, 7624, Hungary
| |
Collapse
|
21
|
Van Haute S, Nikkhah A, Malavi D, Kiani S. Prediction of essential oil content in spearmint (Mentha spicata) via near-infrared hyperspectral imaging and chemometrics. Sci Rep 2023; 13:4261. [PMID: 36918607 PMCID: PMC10014940 DOI: 10.1038/s41598-023-31517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Spearmint (Mentha spicata L.) is grown for its essential oil (EO), which find use in food, beverage, fragrance and other industries. The current study explores the ability of near infrared hyperspectral imaging (HSI) (935 to 1720 nm) to predict, in a rapid, nondestructive manner, the essential oil content of dried spearmint (0.2 to 2.6% EO). Spectral values of spearmint samples varied considerably with spatial coordinates, and so the use of averaging the spectral values of a surface scan was warranted. Data preprocessing was done with Multiplicative Scatter Correction (MSC) or Standard Normal Variate (SNV). Selection of spectral input variables was done with Least Absolute Shrinkage and Selection Operator (LASSO), Principal Component Analysis (PCA) or Partial Least Squares (PLS). Regression was executed with linear regression (LASSO, PLS regression, PCA regression), Support Vector Machine (SVM) regression, and Multilayer Perceptron (MLP). The best prediction of EO concentration was achieved with the combination of MSC or SNV preprocessing, PLS dimension reduction, and MLP regression (1 hidden layer with 6 nodes), achieving a good prediction with a ratio of performance to deviation (RPD) of 2.84 ± 0.07, an R2 of prediction of 0.863 ± 0.008, and a RMSE of prediction of 0.219 ± 0.005% EO. These results show that NIR-HSI is a viable method for rapid, nondestructive analysis of EO concentration. Future work should explore the use of NIR in the visible spectrum, the use of HSI for determining EO in other plant materials and the potential of HSI to determine individual compounds in these solid plant/food matrices.
Collapse
Affiliation(s)
- Sam Van Haute
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium. .,Department of Molecular Biotechnology, Environmental Technology, and Food Technology, Ghent University Global Campus, 119, Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 21985, South Korea.
| | - Amin Nikkhah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Department of Molecular Biotechnology, Environmental Technology, and Food Technology, Ghent University Global Campus, 119, Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 21985, South Korea.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Derick Malavi
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Department of Molecular Biotechnology, Environmental Technology, and Food Technology, Ghent University Global Campus, 119, Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 21985, South Korea
| | - Sajad Kiani
- Biosystems Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| |
Collapse
|
22
|
Morphology and mass spectrometry-based chemical profiling of peltate glandular trichomes on Mentha haplocalyx Briq leaves. Food Res Int 2023; 164:112323. [PMID: 36737916 DOI: 10.1016/j.foodres.2022.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Mentha haplocalyx Briq (M. haplocalyx) is a herbaceous plant that has long been used as a food, medicinal spice, and flavoring agent in traditional Chinese medicine. Its secondary metabolites, having high commercial values, are mainly produced in tiny specialized structures called glandular trichomes (GTs). The primary purpose of this study was to examine the morphology and metabolites of peltate GTs in M. haplocalyx.Peltate GTs possessed globular dome shapes and intense auto-fluorescence on the surfaces of M. haplocalyx leaves. Structure subsidence and cuticle rupture were found throughout the aging stage of peltate GTs. According to histochemical staining results, the secretion of peltate GTs contained anthraquinone, flavonoids, phenolic acid and terpenoids. In M. haplocalyx peltate GTs and leaf tissues without peltate glandular trichomes, ten and two volatile compounds were identified respectively. Peltate GTs contained 42 non-volatile chemicals with a variety of structural types, including 20 flavonoids, 17 phenolic acids,1 diterpene, 3 anthraquinone and 1 alkane. Meanwhile, 15 non-volatile compounds were discovered in leaf tissues without peltate glandular trichomes, and they were all included in the list of peltate GTs' 41 components. Therefore, Peltate GTs were shown to be the primary site of not just volatile compounds but also non-volatile chemicals in M. haplocalyx. This study provides an important theoretical basis and technical approach for clarifying the bio-active metabolite biosynthesis in M. haplocalyx.
Collapse
|
23
|
Chatterjee A, Singh N, Chanu WK, Singh CB, Nagaraj VA. Phytochemical screening, cytotoxicity assessment and evaluation of in vitro antiplasmodial and in vivo antimalarial activities of Mentha spicata L. methanolic leaf extract. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115636. [PMID: 35998785 DOI: 10.1016/j.jep.2022.115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria causes extensive morbidity and mortality, and the decreasing efficacy of artemisinin and its partner drugs has posed a serious concern. Therefore, it is important to identify new antimalarials, and the natural compounds from plants provide a promising platform. Mentha spicata L. representing the Lamiaceae family has been used in traditional medicine for various diseases including malaria. AIM OF THE STUDY This study was aimed at evaluating the antiplasmodial activity of M. spicata methanolic leaf extract using Plasmodium falciparum (Pf) cultures (Pf3D7 and artemisinin (ART)-resistant PfCam3.IR539T strains) and antimalarial activity using Plasmodium berghei (Pb)-infected mice. Dry leaf powder and methanolic leaf extract were examined for in vivo antimalarial activity and the efficacy of oral versus parenteral administration was compared. MATERIALS AND METHODS Leaves of M. spicata were collected and extracted using 70% methanol in water (v/v). [3H]-hypoxanthine incorporation assays and Giemsa-stained smears were used to assess the in vitro antiplasmodial activity of M. spicata methanolic extract against Pf3D7 and ART-resistant PfCam3.IR539T strains. Cytotoxicity was evaluated in HeLa and HEK-293T cell lines using MTT assays. Hemolysis assays were performed using red blood cells (RBCs). In vivo antimalarial activities of M. spicata dry leaf powder and methanolic leaf extract were examined in P. berghei-infected mice by Rane's curative test and Peters' 4-day suppressive test. RESULTS Phytochemical screening of M. spicata methanolic leaf extract indicated the presence of reducing sugars, phenolic compounds, flavonoids, glycosides, sterols, saponins, alkaloids, coumarins, tannins, carbohydrates, and proteins. In vitro studies carried out using Pf cultures showed that M. spicata methanolic leaf extract had significant antiplasmodial activity against Pf3D7 cultures with a 50% inhibitory concentration (IC50) of 57.99 ± 2.82 μg/ml. The extract was also effective against ART-resistant PfCam3.IR539T strain with an IC50 of 71.23 ± 3.85 μg/ml. The extract did not show significant in vitro cytotoxicity, hemolysis, and in vivo toxicity. In vivo studies performed using Pb-infected mice treated with M. spicata dry leaf powder and methanolic leaf extract showed ∼50% inhibition in parasite growth at 1500 mg/kg and 1000 mg/kg doses, respectively. There was also a significant delay in the mortality of treated mice. Parenteral administration was found to be appropriate for the in vivo treatment. CONCLUSIONS Our in vitro and in vivo findings from Pf and Pb parasites suggested the therapeutic potential of M. spicata leaf extract as an antimalarial. M. spicata leaf extract could also inhibit the growth of ART-resistant Pf strain. Further studies on fractionation and active component analysis of M. spicata leaf extract would be required to identify the bioactive phytochemicals having pharmaceutical and therapeutic values. Such efforts would help us in developing new antimalarials to combat malaria.
Collapse
Affiliation(s)
- Aditi Chatterjee
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India.
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| | - Wahengbam Kabita Chanu
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, 795001, Manipur, India.
| | - Chingakham Brajakishor Singh
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, 795001, Manipur, India.
| | | |
Collapse
|
24
|
Pathaw N, Devi KS, Sapam R, Sanasam J, Monteshori S, Phurailatpam S, Devi HC, Chanu WT, Wangkhem B, Mangang NL. A comparative review on the anti-nutritional factors of herbal tea concoctions and their reduction strategies. Front Nutr 2022; 9:988964. [PMID: 36276812 PMCID: PMC9581206 DOI: 10.3389/fnut.2022.988964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Tea is an important beverage consumed worldwide. Of the different types of tea available, herbal tea is an important beverage consumed owing to its popularity as a drink and stress relieving factors, several different herbal concoctions made from seeds, leaves, or roots are currently consumed and sold as herbal teas. The herbal teas are not the usual tea but "tisanes." They are caffeine free and popular for their medicinal property or immune boosters. Herbal tea formulations are popularly sold and consumed by millions owing to their health benefits as they are rich in antioxidants and minerals. However, plants are also known to contain toxic and anti-nutritional factors. Anti-nutritional factors are known to interfere with the metabolic process and hamper the absorption of important nutrients in the body. These anti-nutritional factors include saponins, tannins, alkaloids, oxalates, lectins, goitrogens, cyanogens, and lethogens. These chemicals are known to have deleterious effects on human health. Therefore, it is important to understand and assess the merits and demerits before consumption. Also, several techniques are currently used to process and reduce the anti-nutrients in foods. This review is focused on comparing the contents of various anti-nutritional factors in some underutilized plants of North-East India used as herbal tea along with processing methods that can be used to reduce the level of these anti-nutrients.
Collapse
Affiliation(s)
- Neeta Pathaw
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Konjengbam Sarda Devi
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Redina Sapam
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Jyotsana Sanasam
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Sapam Monteshori
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Sumitra Phurailatpam
- Multi Technology Testing Centre and Vocational Training Centre, College of Agriculture, Central Agricultural University, Imphal, Manipur, India
| | | | | | - Baby Wangkhem
- College of Agriculture, Central Agricultural University, Imphal, Manipur, India
| | - Naorem Loya Mangang
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| |
Collapse
|
25
|
Khan S, Bibi G, Dilbar S, Iqbal A, Ahmad M, Ali A, Ullah Z, Jaremko M, Iqbal J, Ali M, Haq I, Ali I. Biosynthesis and characterization of iron oxide nanoparticles from Mentha spicata and screening its combating potential against Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2022; 13:1001499. [PMID: 36226302 PMCID: PMC9548704 DOI: 10.3389/fpls.2022.1001499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 05/19/2023]
Abstract
Plant pathogens cause serious diseases to agricultural crops which lead to food insecurity in the world. To combat plant pathogens, various strategies have been developed including the use of agrochemicals. The overuse of these chemicals is now leading to the pesticide-resistant capability of pathogens. To overcome this problem, modern nanobiotechnology offers the production of alternative nano drugs. In this study, we used Mentha spicata for the synthesis of iron oxide nanoparticles using the green synthesis method. The synthesis of Fe2O3 NPs was confirmed through various characterizations. UV-Vis analysis detected a characteristic absorbance at the spectral range of 272 nm. The SEM micrographic analysis at various magnifications displayed circular or rod-shaped nanoparticles with a size ranging from 21 to 82 nm. The elemental EDX characterization showed intense peaks with a weight percent of 57, 34.93, and 8.07 for Fe, O, and, Cl respectively. TGA analysis showed that weight loss at 44-182, 500, and 660°C with no further modification indicates the thermal stability of iron oxide nanoparticles. FTIR spectrum of uncalined detects various bands at 3331, 1625, and 1,437 cm-1 for the hydroxyl group. After calcination two bands at 527 and 434 cm-1 were observed for Fe-O. The antimicrobial in vitro study showed maximum growth inhibition of Phytophthora infestans by the concentration of 100 μg ml-1 of Fe2O3-PE and Fe2O3 NPs. Therefore, this study resulted that bio-stable iron oxide nanoparticles can be used as alternative antimicrobial agents.
Collapse
Affiliation(s)
- Sidra Khan
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Gulfam Bibi
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Shazia Dilbar
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Aneela Iqbal
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Maaz Ahmad
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Ahmad Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Ullah
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Ihtishamul Haq
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Iftikhar Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
The Potential of Lamiaceae Herbs for Mitigation of Overweight, Obesity, and Fatty Liver: Studies and Perspectives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155043. [PMID: 35956991 PMCID: PMC9370348 DOI: 10.3390/molecules27155043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Numerous plants, plant extracts, and plant-derived compounds are being explored for their beneficial effects against overweight and liver diseases. Obesity is associated with the increased prevalence of non-alcoholic fatty liver disease (NAFLD), becoming the most common liver disease in Western countries. Obesity and NAFLD are closely associated with many other metabolic alternations such as insulin resistance, diabetes mellitus, and cardiovascular diseases. Many herbs of the Lamiaceae family are widely employed as food and spices in the Mediterranean area, but also in folk medicine, and their use for the management of metabolic disorders is well documented. Hereby, we summarized the scientific results of the medicinal and nutraceutical potential of plants from the Lamiaceae family for prevention and mitigation of overweight and fatty liver. The evidence indicates that Lamiaceae plants may be a cost-effective source of nutraceuticals and/or phytochemicals to be used in the management of metabolic-related conditions such as obesity and NAFLD. PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets.
Collapse
|
27
|
Henao-Rojas JC, Osorio E, Isaza S, Madronero-Solarte IA, Sierra K, Zapata-Vahos IC, Betancur-Pérez JF, Arboleda-Valencia JW, Gallego AM. Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113559. [PMID: 35684496 PMCID: PMC9182276 DOI: 10.3390/molecules27113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Spearmint (Mentha spicata L.) has been widely studied for its diversity of compounds for product generation. However, studies describing the chemical and biological characteristics of commercial spearmint materials from different origins are scarce. For this reason, this research aimed to bioprospecting spearmint from three origins: Colombia (Col), Mexico (Mex), and Egypt (Eg). We performed a biological activity analysis, such as FRAP, DPPH, and ABTS, inhibition potential of S. pyogenes, K. pneumoniae, E. coli, P. aeuroginosa, S. aureus, S aureus Methicillin-Resistant, and E. faecalis. Furthermore, we performed chemical assays, such as total polyphenol and rosmarinic acid, and untargeted metabolomics via HPLC-MS/MS. Finally, we developed a causality analysis to integrate biological activities with chemical analyses. We found significant differences between the samples for the total polyphenol and rosmarinic acid contents, FRAP, and inhibition analyses for Methicillin-Resistant S. aureus and E. faecalis. Also, clear metabolic differentiation was observed among the three commercial materials evaluated. These results allow us to propose data-driven uses for the three spearmint materials available in current markets.
Collapse
Affiliation(s)
- Juan Camilo Henao-Rojas
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación La Selva, Kilómetro 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro 054048, Colombia;
- Correspondence: (J.C.H.-R.); (A.M.G.)
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Cl. 70 No. 52-21, Medellin 0500100, Colombia; (E.O.); (K.S.)
| | - Stephanie Isaza
- Hierbas y Plantas Tropicales SAS-HIPLANTRO, Cra. 56a No. 72a 101, Itagüí 055410, Colombia;
| | - Inés Amelia Madronero-Solarte
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación La Selva, Kilómetro 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro 054048, Colombia;
| | - Karina Sierra
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Cl. 70 No. 52-21, Medellin 0500100, Colombia; (E.O.); (K.S.)
| | - Isabel Cristina Zapata-Vahos
- Facultad de Ciencias de la Salud, Atención Primaria en Salud, Universidad Católica de Oriente, Rionegro 054040, Colombia;
| | - Jhon Fredy Betancur-Pérez
- Centro de Investigaciones en Medio Ambiente y Desarrollo—CIMAD, Facultad de Ciencias Contables, Económicas y Administrativas, Universidad de Manizales, Cra. 9 No 19-03, Manizales 170001, Colombia; (J.F.B.-P.); (J.W.A.-V.)
| | - Jorge W. Arboleda-Valencia
- Centro de Investigaciones en Medio Ambiente y Desarrollo—CIMAD, Facultad de Ciencias Contables, Económicas y Administrativas, Universidad de Manizales, Cra. 9 No 19-03, Manizales 170001, Colombia; (J.F.B.-P.); (J.W.A.-V.)
- Grupo de Investigación FITOBIOL, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Cl. 67 No 53-108, Medellin 050010, Colombia
| | - Adriana M. Gallego
- Biomasnest, Medellin 050010, Colombia
- Correspondence: (J.C.H.-R.); (A.M.G.)
| |
Collapse
|
28
|
Zamaniahari S, Jamshidi A, Moosavy MH, Khatibi SA. Preparation and evaluation of Mentha spicata L. essential oil nanoemulsion: physicochemical properties, antibacterial activity against foodborne pathogens and antioxidant properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01436-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Sierra K, Naranjo L, Carrillo-Hormaza L, Franco G, Osorio E. Spearmint ( Mentha spicata L.) Phytochemical Profile: Impact of Pre/Post-Harvest Processing and Extractive Recovery. Molecules 2022; 27:molecules27072243. [PMID: 35408640 PMCID: PMC9000270 DOI: 10.3390/molecules27072243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to chemically compare samples of Mentha spicata (marketing byproducts, production byproducts, and export material), cultivated in the open field and under greenhouse, using an integrated approach by HPLC/DAD and GC/MS analysis. The presence of phenolic compounds was higher in the marketing byproducts cultivated in the open field. Marketing byproducts also had the highest amount of carvone. For this reason, this byproduct was selected as a candidate for the development of natural ingredients. With the best selected material, the optimization of simultaneous high-intensity ultrasound-assisted extraction processes was proposed for the recovery of the compounds of interest. This extraction was defined by Peleg’s equation and polynomial regression analysis. Modeling showed that the factors amplitude, time, and solvent were found to be significant in the recovery process (p < 0.005). The maximum amount of compounds was obtained using 90% amplitude for 5 min and ethanol/water mixture (80:20) for extraction to simultaneously obtain phenolic and terpenoid compounds. This system obtained the highest amount of monoterpenoid and sesquiterpenoid compounds from the essential oil of M. spicata (64.93% vs. 84.55%). Thus, with an efficient and eco-friendly method, it was possible to optimize the extraction of compounds in M. spicata as a starting point for the use of its byproducts.
Collapse
Affiliation(s)
- Karina Sierra
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 0500100, Colombia; (K.S.); (L.N.); (L.C.-H.)
| | - Laura Naranjo
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 0500100, Colombia; (K.S.); (L.N.); (L.C.-H.)
| | - Luis Carrillo-Hormaza
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 0500100, Colombia; (K.S.); (L.N.); (L.C.-H.)
- Bioingred Tech S.A.S., Tech Innovation Group, Calle 46 No. 41-69, Itagüí 055412, Colombia
| | - German Franco
- Corporación Colombiana de Investigación Agropecuaria Agrosavia, Centro de Investigación La Selva, Rionegro, Llanogrande 054048, Colombia;
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 0500100, Colombia; (K.S.); (L.N.); (L.C.-H.)
- Correspondence: ; Tel.: +57-6042196590
| |
Collapse
|
30
|
Bekka-Hadji F, Bombarda I, Djoudi F, Bakour S, Touati A. Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essential Oils and Antibiotic against Multi-Drug Resistant Bacteria. Molecules 2022; 27:1095. [PMID: 35164360 PMCID: PMC8839733 DOI: 10.3390/molecules27031095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
The essential oils were obtained by hydrodistillation from aerial parts of Mentha pulegium L. (M. pulegium L.) and Artemisia herba alba (A. herba alba) Asso. and analyzed by gas chromatography-flame ionization detector chromatograpy (GC-FID) and gaz chromatography-mass spectrometry (GC-MS). The antibacterial activities of the oils were determined by the disk diffusion method and a microdilution broth assay against six bacteria stains. The combinations of these essential oils with antibiotics were evaluated against two multi-drug-resistant bacteria strains: imipenem-resistant Acinetobacter baumannii (IRAB S3310) and methicillin-resistant Staphylococcus aureus (MRSA S19). The chemical analysis of M. pulegium essential oil revealed the presence of pulegone (74.8%) and neoisomenthol (10.0%). A. herba alba essential oil was characterized by camphor (32.0%), α-thujone (13.7%), 1,8-cineole (9.8%), β-thujone (5.0%), bornéol (3.8%), camphene (3.6%), and p-cymene (2.1%). All strains tested except Pseudomonas aeruginosa were susceptible to these oils. The combinations of essential oils with antibiotics exerted synergism, antagonism, or indifferent effects. The best effect was observed with A. herba alba essential oil in association with cefoxitin (CX) against MRSA S19. However, for IRAB S3310, the strongest synergistic effect was observed with M. pulegium in association with amikacin (AK). This study demonstrated that M. pulegium and A. herba alba essential oils have antibacterial activities which could be potentiated by antibiotics especially in the case of IRAB S3310.
Collapse
Affiliation(s)
- Fahima Bekka-Hadji
- Département de Microbiologie Appliquée et Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie, Université de Jijel, Jijel 18000, Algeria;
- Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (F.D.); (A.T.)
| | - Isabelle Bombarda
- Aix Marseille Univ, Université Avignon, CNRS, IRD, IMBE, 13013 Marseille, France
| | - Ferhat Djoudi
- Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (F.D.); (A.T.)
| | - Sofiane Bakour
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13013 Marseille, France;
| | - Abdelaziz Touati
- Laboratoire d’Ecologie Microbienne, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (F.D.); (A.T.)
| |
Collapse
|
31
|
Zengin G, Ak G, Ceylan R, Uysal S, Llorent-Martínez E, Di Simone SC, Rapino M, Acquaviva A, Libero ML, Chiavaroli A, Recinella L, Leone S, Brunetti L, Cataldi A, Orlando G, Menghini L, Ferrante C, Balaha M, di Giacomo V. Novel Perceptions on Chemical Profile and Biopharmaceutical Properties of Mentha spicata Extracts: Adding Missing Pieces to the Scientific Puzzle. PLANTS (BASEL, SWITZERLAND) 2022; 11:233. [PMID: 35050121 PMCID: PMC8779166 DOI: 10.3390/plants11020233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 05/27/2023]
Abstract
Mentha spicata is one of the most popular species in the genus, and it is of great interest as a gastrointestinal and sedative agent in the folk medicine system. In this study, different M. spicata extracts, obtained by the use of four solvents (hexane, chloroform, acetone and acetone/water) were chemically characterized using HPLC-ESI-MS n, which allowed for identification of 27 phenolic compounds. The extracts' antioxidant and enzyme inhibitory properties were investigated. In addition, neuroprotective effects were evaluated in hypothalamic HypoE22 cells, and the ability of the extracts to prevent the hydrogen peroxide-induced degradation of dopamine and serotonin was observed. The best antioxidant effect was achieved for all the extraction methods using acetone/water as a solvent. These extracts were the richest in acacetin, eriodictyol, hesperidin, sagerinic acid, naringenin, luteolin, chlorogenic acid, chrysoeriol and apigenin. The intrinsic antioxidant and enzyme inhibition properties of the acetone/water extract could also explain, albeit partially, its efficacy in preventing prostaglandin E2 overproduction and dopamine depletion (82.9% turnover reduction) in HypoE22 cells exposed to hydrogen peroxide. Thus, our observations can provide a scientific confirmation of the neuromodulatory and neuroprotective effects of M. spicata.
Collapse
Affiliation(s)
- Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (G.Z.); (G.A.); (R.C.)
| | - Gunes Ak
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (G.Z.); (G.A.); (R.C.)
| | - Ramazan Ceylan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (G.Z.); (G.A.); (R.C.)
| | - Sengul Uysal
- Halil Bayraktar Health Services Vocational College, Erciyes University, 38280 Kayseri, Turkey;
- Drug Application and Research Center, Erciyes University, 38280 Kayseri, Turkey
| | - Eulogio Llorent-Martínez
- Department of Physical and Analytical Chemistry, Campus Las Lagunillas, University of Jaén, E-23071 Jaen, Spain;
| | - Simonetta Cristina Di Simone
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| | - Monica Rapino
- Genetic Molecular Institute of CNR, Unit of Chieti, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Alessandra Acquaviva
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| | - Maria Loreta Libero
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| | - Annalisa Chiavaroli
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| | - Lucia Recinella
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| | - Sheila Leone
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| | - Luigi Brunetti
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| | - Amelia Cataldi
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| | - Giustino Orlando
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| | - Luigi Menghini
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| | - Claudio Ferrante
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| | - Marwa Balaha
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Viviana di Giacomo
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (A.A.); (M.L.L.); (A.C.); (L.R.); (S.L.); (L.B.); (A.C.); (G.O.); (L.M.); (M.B.); (V.d.G.)
| |
Collapse
|
32
|
Zhang L, Chen Y, Li Z, Li X, Fan G. Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: a review. Food Funct 2022; 13:3110-3132. [DOI: 10.1039/d1fo04080d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spearmint belongs to the genus Mentha in the family Labiateae (Lamiaceae), which is wildly cultivated worldwide for its remarkable aroma and commercial value. The aromatic molecules of spearmint essential oil,...
Collapse
|