1
|
Li M, Niu Y, Zhang T, Yang H, Tian L, Zhou S, Wumiti T, Sun J, Zhou Q, Zuo X, Gao T, Li J, Ma Y, Guo Y, Wang L. Wen-Shen-Tong-Luo-Zhi-Tong-Decoction inhibits bone loss in senile osteoporosis model mice by promoting testosterone production. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119033. [PMID: 39515680 DOI: 10.1016/j.jep.2024.119033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wen-Shen-Tong-Luo-Zhi-Tong-Decoction (WSTLZTD) is a traditional Chinese medicine formula, and its effectiveness in the treatment of senile osteoporosis(SOP) has been confirmed by clinical studies. However, the underlying mechanism of WSTLZTD in SOP is unclear. AIM OF THE STUDY This study aimed to clarify the unique effects of Wen-Shen-Tong-Luo-Zhi-Tong-Decoction(WSTLZTD) on senile osteoporosis(SOP) and its underlying mechanisms. MATERIALS AND METHODS SAMP6 mice were treated with varying doses of WSTLZTD as the SOP model. Bone loss was evaluated by micro-CT, HE, OCN immunohistochemistry staining, and serum Trap level. Metabolomics studies serum metabolites. ELISA, qPCR, and immunofluorescence were utilized to measure testosterone levels in mouse testis. The effect of testosterone on the mitochondrial energy metabolism of BMSCs was investigated using ROS generation, NAD+/NADH ratio, and WB. Cell senescence was examined by β-galactosidase staining and WB. The effect of TM3 cell conditioned media (CM) on mitochondrial energy metabolism and BMSCs osteogenesis were studied using ALP, ARS, ROS staining, the NAD+/NADH, and WB. RESULTS WSTLZTD effectively reversed bone loss in SOP model mice, resulting in better bone microstructure, increased BMD, BV/TV, Tb.n, Tb.Th and, and decreased Tb.Sp. WSTLZTD can increase OCN expression and decrease Trap levels. Network pharmacology data suggest that WSTLZTD regulates steroid hormone production, cellular senescence, inflammation. Metabolomic data indicate that WSTLZTD increases testosterone production or metabolism-related metabolites. WSTLZTD enhanced testosterone production and the mRNA expression of genes involved in testosterone synthesis. Testosterone inhibited the decline in osteogenic differentiation and mitochondrial energy metabolism of senescent BMSCs. The decreased testosterone production in senescent TM3 is reversed by WSTLZTD. CM derived from WSTLZTD-treated TM3 cells promoted osteogenic differentiation and mitochondrial energy metabolism of BMSCs. CONCLUSIONS By increasing testosterone production, WSTLZTD may promote mitochondrial energy metabolism and osteogenic differentiation of senescent BMSCs, thereby exerting its anti-SOP effect.
Collapse
Affiliation(s)
- Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Haomiao Yang
- NanJing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu, China, Nanjing, 210029, Jiangsu Province, China
| | - Linkun Tian
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Shijie Zhou
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Taxi Wumiti
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Jie Sun
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Qinfeng Zhou
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Xinchen Zuo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Tianle Gao
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Jiale Li
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 224000, Yancheng, Jiangsu Province, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; NanJing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu, China, Nanjing, 210029, Jiangsu Province, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China.
| |
Collapse
|
2
|
Hu YS, Zhang JQ, Xu M, Yang HY, Liu CX, Li Y, Bi QR, Yang Y, Chen QH, Guo DA. Chemical profiling and comparative analysis of different parts of Asarum heterotropoides using SPME-GC-QTOF-MS and LC- Orbitrap -MS. J Pharm Biomed Anal 2025; 252:116502. [PMID: 39405788 DOI: 10.1016/j.jpba.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024]
Abstract
Asari radix et rhizoma is the sole plant from the Aristolochiaceae family officially sanctioned for medicinal in China, primarily employed for treating colds and headaches, and is widely utilized in clinical practice. Initially, the entire plant was specified for medicinal use, but since 2005, the authorized part has been restricted to the roots and rhizomes. The chemical constituents are directly linked to its efficacy and safety, yet a comparative analysis of the chemical profiles between the overground and underground parts has not been reported. This paper represents the first comparative study of the chemical constituents in the two parts, achieved through the synergistic application of solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME-GC-MS) and liquid chromatography Orbitrap MS (LC-Orbitrap-MS). Using SPME-GC-MS, 51 constituents were identified from both parts, with 89 % being shared components, indicating a close similarity in their volatile compositions. Through LC-Orbitrap-MS, 308 constituents were identified, sharing 76 % commonality, revealing a more pronounced disparity in non-volatile components. Plant metabolomics screening pinpointed 8 volatile and 14 non-volatile components capable of distinguishing the two parts, with the latter being more stable and thus better suited as markers for differentiation. This research furnishes a scientific rationale for selecting distinct parts of Asari radix et rhizoma and for implementing monitoring strategies in clinical application.
Collapse
Affiliation(s)
- Yun-Shu Hu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Jian-Qing Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Meng Xu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Huan-Ya Yang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Chun-Xiang Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Yun Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Qi-Rui Bi
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Yang Yang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen 518000, China
| | - Qin-Hua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen 518000, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| |
Collapse
|
3
|
Jiang L, Tian CB, Ye RH, Shi N, He XC, Zhao YL, Luo XD. Kakuol and asarinin protecting liver injury via HSP90AA1/CDK2/mTOR signaling pathway. Fitoterapia 2025; 180:106297. [PMID: 39551106 DOI: 10.1016/j.fitote.2024.106297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Drug-induced liver injury caused acute hepatic failure and hepatitis frequently. In this investigation, kakuol and asarinin reduced the levels of serum alanine transaminase (ALT), aspartate transaminase (AST) and malondialdehyde (MDA) dramatically, and ameliorated the pathological damage of liver tissues in APAP-induced mice. Furthermore, both compounds increased the viabilities of APAP-induced L-O2 cells and extracellular glutathione (GSH) levels accompanied significantly by reducing the level of intracellular ROS in vitro. In addition, HSP90AA1/CDK2/mTOR signaling pathway and five target proteins (CDK2, HSP90AA1, HRAS, MMP1, mTOR) were proposed from network pharmacology and molecular docking prediction, and then the up-regulation of protein expression of CDK2, mTOR and down-regulation of HSP90AA1, HRAS, MMP1 by kakuol and asarinin in western blotting supported their mechanism.
Collapse
Affiliation(s)
- Ling Jiang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Cai-Bo Tian
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Rui-Han Ye
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Nian Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Xing-Chao He
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
4
|
Cai F, Wang H, Xie Q, Xie Z, Xiang Z, Dang R, Liu W, Guan H, Cheng X, Wang C. Metabolic profiling and pharmacokinetic studies of alkamides, a pair of cis-trans isomers N-isobutyl-2E,4E,8Z,10E/Z-dodecatetraenamide, from Asari Radix et Rhizoma by UHPLC-Q/TOF-MS and UHPLC-MS/MS. J Pharm Biomed Anal 2024; 251:116447. [PMID: 39197205 DOI: 10.1016/j.jpba.2024.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Cis-trans isomers of N-isobutyl-2E,4E,8Z,10E-dodecatetraenamide (DDA-E) and N-isobutyl-2E,4E,8Z,10Z-dodecatetraenamide (DDA-Z) are representative alkamides with numbness of tongue, anti-inflammatory and analgesic activities of Asari Radix et Rhizoma. However, their respective metabolic pathways and pharmacokinetic behaviors are still unknown. This study aim to investigate the metabolism of the two alkamides in vitro and in vivo using ultra-high-performance liquid chromatography-quadruple-time-of-flight mass spectrometry. Furthermore, a rapid, sensitive, and selective ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed to quantify DDA-E/Z in rat plasma. Results indicated that DDA-E and DDA-Z showed significant differences in metabolism and pharmacokinetics. Across all samples, 24 metabolites of DDA-E and 21 metabolites of DDA-Z were detected. A variety of pathways were involved in the production of these metabolites, mainly hydroxylation and oxidation. The linear range of DDA-E/Z was 1-2500 ng/mL (R2 = 0.9984), and the lowest quantification limit was 1 ng/mL. Precision, accuracy, extraction recovery, matrix effect, and stability of DDA-E/Z were within acceptable limits. Pharmacokinetic research was conducted using male Sprague-Dawley rats receiving intravenous (1 mg/kg) or intragastric (40 mg/kg) administration of DDA-E or DDA-Z solution. There was a calculated absolute bioavailability of 15.67 % for DDA-E and 4.83 % for DDA-Z when consumed orally. The apparent volume of distribution of intravenous and intragastric administrations were 4.44 ± 0.41 L/kg and 5.18 ± 0.67 L/kg for DDA-E, and 1.56 ± 1.66 L/kg and 2.35 ± 0.42 L/kg for DDA-Z. The maximal plasma concentrations of DDA-E and DDA-Z were 599.84 ± 149.92 nM and 422.09 ± 69.17 nM, and the time to maximum peak were 4.33 ± 3.51 h and 0.70 ± 1.12 h, respectively. In conclusion, in subsequent pharmacodynamics and safety evaluation studies, great attention should be paid to the metabolic characteristics and pharmacokinetic differences between DDA-E and DDA-Z.
Collapse
Affiliation(s)
- Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Hanxue Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China; Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Wenkang Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
5
|
Shi Y, Wu YW, Shen QX, Cao J. Targeted metabolomics assisted rapid screening and characterization of aristolochic acids and their DNA adducts in aristolochia plants by ultra-high performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. J Chromatogr A 2024; 1734:465317. [PMID: 39216282 DOI: 10.1016/j.chroma.2024.465317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aristolochic acids are one of the major compounds in aristolochia plants, which are nephrotoxic and carcinogenic. A method was established for the detection and identification of aristolochic acids and their DNA adducts in four different herbs using ultra-high performance liquid chromatography-ion mobility quadrupole time-of flight mass spectrometry. Solid phase extraction conditions were optimized to improve the sensitivity of the experiment by using 40 mg of C18 as adsorbent and 100 μL ethanol as elution solvent. At a collision energy of 10-40 eV, these compounds and cleavage patterns were precisely identified and analyzed by secondary fragmentation and collision cross section values. The obtained mass spectrometry data were then analyzed by targeted metabolomics, including principal component analysis, partial least squares-discriminant analysis and hierarchical clustering analysis, and importing the samples in the established model, the confidence values can reach 0.61 and 0.76. All in all, this method can provide a useful tool for the detection of aristolochic acids and deoxyribonucleic acid adducts. In conclusion, this method was successfully used for the detection and identification of aristolochic acids and their DNA adducts.
Collapse
Affiliation(s)
- Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yi-Wen Wu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qian-Xue Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
6
|
Li H, Wang Z, Zhao G, Wang Y, Xu X, Wang Y, Zhang Z, Wang G. Comparative Biochemical and Pharmacodynamic Analyses of Asarum heterotropoides Fr. Schmidt var. Mandshuricum (Maxim) Kitag and Asarum sieboldii Miq var. Seoulense Nakai Roots. Pharmaceuticals (Basel) 2024; 17:1301. [PMID: 39458942 PMCID: PMC11509884 DOI: 10.3390/ph17101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background:Asarum heterotropoides and Asarum sieboldii are commonly used in traditional Chinese medicine. However, little is known about how they differ in terms of essential oil (EO) and ethanol extract (EE) content and composition. Moreover, the effect of various geographical locations on the essential oil (EO), ethanol extract (EE), and asarinin content of different Asarum samples remains unknown. We tested four root-drying methods, i.e., soil removal and shade drying (P1), water washing and shade drying (P2), and water washing and drying at 30 °C (P3) and 40 °C (P4). We used LC-MS and GC-MS to investigate these differences. We also investigated the pharmacodynamic effects of EO and EE. Results: Overall, the EO, EE and asarinin contents of the analysed samples were 19.21-51.53 μL.g-1, 20.00-45.00 μL.g-1, and 1.268-2.591 mg.g-1, respectively. P1 treatment yielded the lowest volatile oil content compared to the other three treatments. GC-MS analysis revealed 78 EO components. Among the six major EO components, eucarvone, 3,5-dimethoxytoluene, and methyl eugenol were higher in A. heterotropoides than in A. sieboldii. However, the latter had a higher myristicin content. LC-MS analysis identified 888 EE components in roots and leaves of A. heterotropoides and A. sieboldii; 317 differentially accumulated metabolites were identified. EO and EE showed a dose-dependent reduction in the degree of swelling and an increase in the inhibition rate of drug concentration on acetic acid writhing in mice. Asarum EO proved to be more effective than EE in the pharmacodynamic study. Conclusions: We conclude that Asarum species show inter- and intra-specific differences in EO and EE content and composition, which may influence the pharmacodynamics of Asarum root extracts.
Collapse
Affiliation(s)
- Huiling Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Zhiqing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Guangyuan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Yanhong Wang
- Ginseng and Antler Product Quality and Safety Risk Assessment Laboratory, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (X.X.)
| | - Xuanwei Xu
- Ginseng and Antler Product Quality and Safety Risk Assessment Laboratory, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (X.X.)
| | - Yingping Wang
- State & Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ze Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Guanghui Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| |
Collapse
|
7
|
Liao G, Yan Q, Zhang M, Zhang X, Yang J, Huang H, Liu X, Jiang Y, Gong J, Zhan S, Li D, Huang X. Integrative analysis of network pharmacology and proteomics reveal the protective effect of Xiaoqinglong Decotion on neutrophilic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118102. [PMID: 38561057 DOI: 10.1016/j.jep.2024.118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.
Collapse
Affiliation(s)
- Gang Liao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Qian Yan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Miaofen Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xinxin Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jing Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Huiting Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Jing Gong
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Shaofeng Zhan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Detang Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiufang Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
8
|
Choi YR, Kim SC, Kim TH, Ha YH, Kim HJ. Complete chloroplast genome of Asarum chungbuensis (C.S. Yook & J.G. Kim) B.U. Oh 2005 (Aristolochiaceae), a Korean endemic species. Mitochondrial DNA B Resour 2024; 9:1005-1009. [PMID: 39113748 PMCID: PMC11305027 DOI: 10.1080/23802359.2024.2387262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Asarum chungbuensis, a species endemic to Korea, has a limited distribution across the Korean Peninsula and is used in traditional medicine. Despite its importance, the genome structure, genetic composition, and phylogenetic relationships based on its chloroplast genome have not been documented. In this study, the complete chloroplast genome of A. chungbuensis was newly assembled. The chloroplast genome is 190,179 base pairs (bp) long, and the overall GC content (%) of the plastid was 36.8%. The chloroplast genome size of A. chungbuensis is longer than that of the normal chloroplast genome (160 kb) because of an inverted small single-copy (SSC) duplication that incorporates the SSC into an inverted repeat (IR) region. By extension, this duplication event causes this chloroplast genome to lack an SSC, unlike other formal structures. The chloroplast genome, with a tripartite structure, consisted of a single-copy region of 93,351 bp with a 34.6% GC content and two IR regions, each with a length of 48,414 bp and a 38.8% GC content. Additionally, it was found to have 113 genes, including 79 PCG genes, 30 tRNA genes, and four rRNA genes. Phylogenetic analysis revealed that A. chungbuensis was grouped with A. heterotropoides var. seoulense, which diverged from the clade comprising A. koreanum and A. patens. The newly sequenced A. chungbuensis chloroplast genome could provide valuable genomic information for determining unique genome structures, especially for the assessment of genetic diversity, phylogenetic relationships, species conservation, and biogeographic studies of the genus Asarum.
Collapse
Affiliation(s)
- Ye-Rim Choi
- Forest Biodiversity Division, Korea National Arboretum, Pocheon-si, Republic of Korea
| | - Sang-Chul Kim
- Forest Biodiversity Division, Korea National Arboretum, Pocheon-si, Republic of Korea
| | - Tae-Hee Kim
- Forest Biodiversity Division, Korea National Arboretum, Pocheon-si, Republic of Korea
| | - Young-Ho Ha
- Forest Biodiversity Division, Korea National Arboretum, Pocheon-si, Republic of Korea
| | - Hyuk-Jin Kim
- Forest Biodiversity Division, Korea National Arboretum, Pocheon-si, Republic of Korea
| |
Collapse
|
9
|
Chun-peng ZHANG, Tian CAO, Xue YANG. Pharmacological mechanisms of Taohe Chengqi decoction in diabetic cardiovascular complications: A systematic review, network pharmacology and molecular docking. Heliyon 2024; 10:e33308. [PMID: 39044965 PMCID: PMC11263673 DOI: 10.1016/j.heliyon.2024.e33308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Background Diabetic cardiovascular complications are the leading cause of diabetes-related deaths. These complications place an enormous and growing burden on global health systems and economies. The objective of this study was to conduct a systematic review on the therapeutic mechanisms of Taohe Chengqi Decoction (THCQD) in the treatment of diabetic cardiovascular complications. To predict the potential mechanisms of action of THCQD on diabetic cardiovascular complications using network pharmacology, and to validate these predictions through molecular docking analysis. Methods To collect relevant animal experiments, we searched a total of 6 databases. Eligibility for the study was determined based on inclusion and exclusion criteria. Data extraction was then performed on the literature. Methodological quality of animal studies was assessed using SYRCLE criteria. Based on network pharmacology, intersecting genes for THCQD and diabetic cardiovascular complications were obtained using Venny, PPI analysis and topology analysis of intersecting genes were performed; GO and KEGG were used for enrichment analysis and prediction of new targets of action. Molecular docking techniques were employed to model the interactions between drug components and target genes, thereby validating the results of network pharmacology predictions. Results A total of 16 studies were finally identified that fit the direction of this review. Included 6 studies of the myocardium, 1 study of the aortic arch, 5 studies of the femoral artery, 4 studies of the thoracic aorta. THCQD exhibited anti-inflammatory, anti-fibrotic and anti-atherosclerotic effects on cardiovascular complications in diabetic rats. Network pharmacology results showed that C0363 (Resveratrol), C0041 (Emodin), and C1114 (Baicalein) were the key components in the treatment of diabetic cardiovascular complications by THCQD. PPI results showed that INS, AKT1, TNF, ALB, IL6, IL1B as the genes that interact with the top 6. KEGG enrichment analysis identified the AGE-RAGE signaling pathway in diabetic complications as the most prominent pathway enriched by THCQD for diabetic cardiovascular complications genes. The results of molecular docking showed that the key active components demonstrated favorable interactions with their corresponding target genes. Conclusion In conclusion, the results of both basic and web-based pharmacological studies support the beneficial effects of the natural herbal formulation THCQD on diabetic cardiovascular complications. This decoction has anti-inflammatory and antifibrotic properties and is effective in ameliorating diabetic cardiovascular disease. The network pharmacology results further support these ideas and identify the AGE-RAGE signaling pathway in diabetic complications as possibly the most relevant pathway for THCQD in the treatment of diabetic cardiovascular complications. The extent of the therapeutic potential of all-natural herbal components in the treatment of diabetic cardiovascular disease merits further investigation.
Collapse
Affiliation(s)
- ZHANG Chun-peng
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - CAO Tian
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - YANG Xue
- Department of Traditional Chinese Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| |
Collapse
|
10
|
Huang P, Xiang T, Wang Q, Han L, Zheng S, Zhang D, Huang F, Duan B, Li J, Li H, Huang T. Protective effect of Xixin-Ganjiang herb pair for warming the lungs to dissolve phlegm in chronic obstructive pulmonary disease rats based on integrated network pharmacology and metabolomics. Biomed Chromatogr 2024; 38:e5851. [PMID: 38449348 DOI: 10.1002/bmc.5851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Xixin-Ganjiang herb pair (XGHP) is a classic combination for warming the lungs to dissolve phlegm and is often used to treat a variety of chronic lung diseases; it can treat the syndrome of cold phlegm obstruction of lungs. First, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to examine the composition of XGHP, and network pharmacology was used to predict its potential core targets and signaling pathways in the current study. Second, a rat model of chronic obstructive pulmonary disease (COPD) was established for assessing the anti-COPD activity of XGHP, and metabolomics was used to explore the biomarkers and metabolic pathways. Finally, the sample was validated using molecular docking and Western blotting. The integration of metabolomics and network pharmacology results identified 11 targets, 3 biomarkers, 3 pathways, and 2 metabolic pathways. Western blotting showed that XGHP effectively regulated the expression of core proteins via multiple signaling pathways (downregulation of toll-like receptor 4 [TLR4] and upregulation of serine/threonine-protein kinase 1 [p-AKT1] and nitric oxide synthase 3 [NOS3]). Molecular docking results showed that the 10 potentially active components of XGHP have good affinity with tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase 9 (MMP-9), TLR4, p-AKT1, and NOS3. Our findings suggest that XGHP may regulate glucolipid metabolism, improve energy supply, and inhibit inflammatory responses (TNF-α, IL-6, and MMP-9) via the PI3K-Akt signaling pathway and HIF-1 signaling pathway in the management of COPD.
Collapse
Affiliation(s)
- Ping Huang
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ting Xiang
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Qiong Wang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| | - Sili Zheng
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bailu Duan
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jingjing Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Huamao Li
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, China
| | - Tao Huang
- Department of Orthopedics, Wuhan Red Cross Hospital, Wuhan, China
| |
Collapse
|
11
|
Wang F, Zhao Z, Han Y, Li S, Bi X, Ren S, Pan Y, Wang D, Liu X. The Bacterial and Fungal Compositions in the Rhizosphere of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. in a Typical Planting Region. Microorganisms 2024; 12:692. [PMID: 38674636 PMCID: PMC11051765 DOI: 10.3390/microorganisms12040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Asarum is a traditional Chinese medicinal plant, and its dried roots are commonly used as medicinal materials. Research into the traits of the bacteria and fungus in the Asarum rhizosphere and how they relate to the potency of medicinal plants is important. During four cropping years and collecting months, we used ITS rRNA gene amplicon and sequencing to assess the population, diversity, and predominant kinds of bacteria and fungus in the rhizosphere of Asarum. HPLC was used to determine the three bioactive ingredients, namely asarinin, aristolochic acid I, and volatile oil. The mainly secondary metabolites of Asarum, relationships between microbial communities, soil physicochemical parameters, and possible influences on microbial communities owing to various cropping years and collecting months were all statistically examined. The cropping years and collecting months affected the abundance and diversity of rhizosphere bacteria and fungi, but the cropping year had a significant impact on the structures and compositions of the bacterial communities. The rhizosphere microorganisms were influenced by both the soil physicochemical properties and enzyme activities. Additionally, this study revealed that Trichoderma was positively correlated with the three bioactive ingredients of Asarum, while Tausonia showed entirely opposite results. Gibberella and Leptosphaeria demonstrated a significantly negative correlation with asarinin and violate oil, but they were weakly correlated with the aristolochic acid I content. This study revealed variations in the Asarum rhizosphere microorganism population, diversity, and dominant types across four cropping years and collecting months. The relationship between Asarum secondary metabolites, the soil physicochemical properties, enzyme activities, and rhizosphere microorganisms was discussed. Our results will guide the exploration of the soil characteristics and rhizosphere microorganisms' structures by regulating the microbial community to enhance Asarum quality.
Collapse
Affiliation(s)
- Fuqi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Zilu Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Yangyang Han
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Shiying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinhua Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shumeng Ren
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Yingni Pan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoqiu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| |
Collapse
|
12
|
Mangotra A, Singh SK. Volatile organic compounds: A threat to the environment and health hazards to living organisms - A review. J Biotechnol 2024; 382:51-69. [PMID: 38242502 DOI: 10.1016/j.jbiotec.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/10/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Volatile organic compounds (VOCs) are the organic compounds having a minimum vapor pressure of 0.13 kPa at standard temperature and pressure (293 K, 101 kPa). Being used as a solvent for organic and inorganic compounds, they have a wide range of applications. Most of the VOCs are non-biodegradable and very easily become component of the environment and deplete its purity. It also deteriorates the water quality index of the water bodies, impairs the physiology of living beings, enters the food chain by bio-magnification and degrades, decomposes and manipulates the physiology of living organisms. To unveil the adverse impacts of volatile organic compounds (VOCs) and their rapid eruption and interference in the living world, a review has been designed. This review presents an insight into the currently available VOCs, their sources, applications, sampling methods, analytic procedures, imposition on the health of aquatic and terrestrial communities and their contamination of the environment. Elaboration has been done on representation of toxicological effects of VOCs on vertebrates, invertebrates, and birds. Subsequently, the role of environmental agencies in the protection of environment has also been illustrated.
Collapse
Affiliation(s)
- Anju Mangotra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, 144411 Punjab, India.
| | - Shailesh Kumar Singh
- School of Agriculture, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, 144411 Punjab, India.
| |
Collapse
|
13
|
Zhao L, Zhou S, Wang S, Wu R, Meng Q, Li Z, Peng J, Liu Y, Lu M, Li M, Zhu C, Sun Y, He Y, Jin Y, Gao J, Zhang S, Li P, Liao R, Liu W, Zhang G. Zhuifeng Tougu capsules in the treatment of knee osteoarthritis (cold dampness obstruction syndrome): a randomized, double blind, multicenter clinical study. Chin Med 2024; 19:18. [PMID: 38273399 PMCID: PMC10809488 DOI: 10.1186/s13020-024-00880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/01/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND In Traditional Chinese Medicine (TCM) theory, cold dampness obstruction is one of the common syndromes of osteoarthritis. Therefore, in clinical practice, the main treatment methods are to dispel wind, remove dampness, and dissipate cold, used to treat knee osteoarthritis (KOA). This report describes a mulitercenter clinical study to assess Zhuifeng Tougu Capsule's efficacy and safety in the treatment of patients who are cold dampness obstruction syndrome in KOA, and to provide evidence-based medical for the rational use of Zhuifeng Tougu Capsules in clinical practice. METHODS This randomized, parallel group controlled, double-blind, double dummy trial will include a total of 215 KOA patients who meet the study criteria. 215 patients underwent 1:1 randomisation, with 107 cases assigned the experimental group (Zhuifeng Tougu Capsules + Glucosamine Sulfate Capsules Simulator) and 108 assigned the control group (Glucosamine Sulfate Capsules + Zhuifeng Tougu Capsules Simulator). After enrolment, patients received 12 weeks of treatment. The main efficacy measure is the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) pain score. Visual analogue scale (VAS) pain score, Self-condition assessment VAS score, WOMAC KOA score, TCM syndrome score and TCM syndrome efficacy, ESR level, CRP level, suprapatellar bursa effusion depth, use of rescue drugs, and safety indicators are secondary efficacy indicators. RESULTS Compared with before treatment, WOMAC pain score, VAS pain score, Self-condition assessment VAS score, WOMAC KOA score, and TCM syndrome score decreased significantly in both groups (P < 0.01). Also, the experimental group showed significant differences in the above indicators compared to control (P < 0.01). However, after treatment, no significant differences were showed in the ESR level, CRP level, and suprapatellar bursa effusion depth between the two groups (P > 0.05). No any serious adverse effects showed in the experimental group and control group. CONCLUSIONS Zhuifeng Tougu Capsules can effectively improve knee joint function and significantly alleviate the pain of KOA. TRIAL REGISTRATION Clinical trial registration was completed with the China Clinical Trial Registration Center for this research protocol (No. ChiCTR2000028750) on January 2, 2020.
Collapse
Affiliation(s)
- Longmei Zhao
- Ordos Traditional Chinese Medicine Hospital, Ordos, 017010, Inner Mongolia, China
| | - Shasha Zhou
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Hunan Engineering Technology Research Center of Osteoarticular Drugs, Changsha, 410300, Hunan, China
| | - SiWei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Rui Wu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qingliang Meng
- Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, 450053, Henan, China
| | - Zhenbin Li
- Bethune International Peace Hospital, People's Liberation Army, Shijiazhuang, 050082, Hebei, China
| | - Jiangyun Peng
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, 650032, Yunnan, China
| | - Ying Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Min Lu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Ming Li
- Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Caifeng Zhu
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, Anhui, China
| | - Yue Sun
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Yanlin He
- Hunan Engineering Technology Research Center of Osteoarticular Drugs, Changsha, 410300, Hunan, China
| | - Yue Jin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Jingyue Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Shumin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Peihao Li
- The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, 412008, Hunan, China
| | - Rongjun Liao
- The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Zhuzhou, 412008, Hunan, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| | - Guoming Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
14
|
Nenni M, Karahuseyin S. Medicinal Plants, Secondary Metabolites, and Their Antiallergic Activities. BIOTECHNOLOGY OF MEDICINAL PLANTS WITH ANTIALLERGY PROPERTIES 2024:37-126. [DOI: 10.1007/978-981-97-1467-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Xiao JJ, Weng YP, Luo LB, Wang JQ, Lin HZ, Zhang GM, Yue L, Yao YX. The study of different markers among Chuanxiong Chatiao dosage forms based on bioactive components and antiplatelet aggregation biopotency integrated with chemometrics. ARAB J CHEM 2024; 17:105421. [DOI: 10.1016/j.arabjc.2023.105421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
16
|
Pan L, Yang N, Sui Y, Li Y, Zhao W, Zhang L, Mu L, Tang Z. Altitudinal Variation on Metabolites, Elements, and Antioxidant Activities of Medicinal Plant Asarum. Metabolites 2023; 13:1193. [PMID: 38132875 PMCID: PMC10745449 DOI: 10.3390/metabo13121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum's plant growth are significantly affected by altitude. Although most studies on Asarum have concentrated on its pharmacological activities, little is known about its growth and metabolites with respect to altitude. In this study, the physiology, ionomics, and metabolomics were investigated and conducted on the leaves and roots of Asarum along an altitude gradient, and the content of its medicinal components was determined. The results showed that soil pH and temperature both decreased along the altitude, which restricts the growth of Asarum. The accumulation of TOC, Cu, Mg, and other mineral elements enhanced the photosynthetic capacity and leaf plasticity of Asarum in high-altitude areas. A metabolomics analysis revealed that, at high altitude, nitrogen metabolism in leaves was enhanced, while carbon metabolism in roots was enhanced. Furthermore, the metabolic pathways of some phenolic substances, including syringic acid, vanillic acid, and ferulic acid, were altered to enhance the metabolism of organic acids. The study uncovered the growth and metabolic responses of Asarum to varying altitudes, providing a theoretical foundation for the utilization and cultivation of Asarum.
Collapse
Affiliation(s)
- Liben Pan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
| | - Nan Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yushu Sui
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yi Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Wen Zhao
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Liqiu Zhang
- School of Medicine and Pharmacy, Tonghua Normal University, Tonghua 134002, China;
| | - Liqiang Mu
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Zhonghua Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
17
|
Liu Y, Wang F, Guo H, Zhang D, Zhang X, Wu Z, Li H, Xian Y, Yue P, Yang M. Effect of molecular distillation on the anti-inflammatory activity and neurotoxicity of Asarum essential oil. Front Pharmacol 2023; 14:1196137. [PMID: 37284321 PMCID: PMC10239799 DOI: 10.3389/fphar.2023.1196137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Asarum essential oil (AEO) has been shown to have good pharmacological activities for the anti-inflammatory and analgesic effects, but increasing the dose may cause toxicity. Therefore, we studied the toxic and pharmacodynamic components of AEO by molecular distillation (MD). Anti-inflammatory activity was assessed using RAW264.7 cells. Neurotoxicity was assessed in PC12 cells and the overall toxicity of AEO was evaluated in the mouse acute toxicity assay. The results showed that AEO is primarily composed of safrole, methyl eugenol, and 3,5-dimethoxytoluene. After MD, three fractions were obtained and contained different proportions of volatile compounds relative to the original oil. The heavy fraction had high concentrations of safrole and methyl eugenol, while the light fraction contained high concentrations of α-pinene and β- pinene. The original oil and all three fractions exhibited anti-inflammatory effects, but the light fraction demonstrated more excellent anti-inflammatory activity than the other fractions. Asarum virgin oil and MD products are all neurotoxic. The exposure of PC12 cells to high concentrations of AEO resulted in abnormal nuclei, an increased number of apoptotic cells, increased ROS formation, and decreased SOD levels. Moreover, the results of acute toxicity tests in mice revealed that the light fractions were less toxic than virgin oils and other fractions. In summary, the data suggest that the MD technology enables the enrichment and separation of essential oil components and contributes to the selection of safe concentrations of AEO.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fang Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - HuiWen Guo
- College of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Dingkun Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yang Xian
- College of Continuing Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
18
|
Zhang N, Zhang D, Zhang Q, Zhang R, Wang Y. Mechanism of Danggui Sini underlying the treatment of peripheral nerve injury based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e33528. [PMID: 37171334 PMCID: PMC10174355 DOI: 10.1097/md.0000000000033528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Danggui Sini is a traditional Chinese medicine prescription for treating peripheral nerve injury (PNI). We studied the mechanisms of this decoction through network pharmacology analysis and molecular docking. Using R language and Perl software, the active components and predicted targets of Danggui Sini, as well as the related gene targets of PNI, were mined through TCMSP, GeneCards, OMIM, TTD, and DrugBank. The network diagram of active components and intersection targets was constructed using Cytoscape software and the STRING database. The CytoNCA plug-in was used to screen out the core compounds and key targets. The genes were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. AutoDock was used to analyze the molecular docking of key targets and core compounds of diseases. The drug component disease target regulatory network showed that the key components included quercetin, kaempferol, naringenin, and licochalcone A, which play key roles in the whole network and may be the primary compounds associated with the action of Danggui Sini against PNI. PPI network topology analysis showed high degree values for RELA, JUN, MAPK1, RB1, and FOS. Enrichment analysis showed that the core targets of Danggui Sini participated in pathways associated with neurogenesis-multiple diseases. Molecular docking showed that the active ingredients in Danggui Sini had a good binding ability with key targets. We conclude that many active components of Danggui Sini play therapeutic roles in PNI treatment by regulating RELA, JUN, MAPK1, RB1, and FOS, and multiple other targets in inflammation, immunity, and lipid metabolism.
Collapse
Affiliation(s)
- Ning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Dalian Port Hospital, Dalian, China
| | - Dandan Zhang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Dalian Women and Children's MedicalGroup, Dalian, China
| | - Qian Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruisu Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Liu M, Wang L, Qin S, Zhao Y, Liu S, Yi Y, Li C, Tian J, Liu C, Meng J, Wang Y, Zhang Y, Wang F, Pan C, Han J, Tang X, Wang L, Liang A. Long-term oral administration of Asarum heterotropoides f. mandshuricum (Maxim.) Kitag. decoction and its aristolochic acid analogs do not cause renal toxicity in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116202. [PMID: 36708883 DOI: 10.1016/j.jep.2023.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asarum heterotropoides f. mandshuricum (Maxim.) Kitag. (AH) is widely used to treat influenza, COVID-19, allergic rhinitis, headache, toothache, rheumatoid arthritis, and peptic ulcer. However, its clinical use is controversial due to the concern of aristolochic acid nephropathy (AAN) caused by its component aristolochic acid analogs (AAs). AIM OF THE STUDY The chronic toxicity of AH decoction and its main components AA IVa (AA-IVa) and aristolactam I (AL-I) was evaluated in mice. MATERIALS AND METHODS AAs contents in AH were quantitated by liquid chromatography-mass spectrometry. A parallel design was employed to examine the potential chronic toxicity of AH decoction at doses equivalent to 0.5, 1.6, and 5.0 g/kg AH (approximately 10-100 times the clinical doses for humans) and its major AA components at doses equivalent to that in 5.0 g/kg AH to mice after consecutive daily oral administration for 12 and 24 weeks, and at 32 weeks after withdrawal for 8 weeks. RESULTS AH crude herb contained 2.18 μg/g of AA-I, 48.49 μg/g of AA-IVa, and 14.0 μg/g of AL-I. AH decoction contained 5.45 μg/g of AA-IVa and 2.71 μg/g of AL-I. None of AA-II and AA-IIIa were detected in AH. After long-term administration of AH decoction and its major components AA-IVa and AL-I, mice showed no signs of illness or body weight changes. In addition, biochemical and pathohistological examinations showed that long-term administration of AH decoction and its major components AA-IVa and AL-I did not alter 1) serum levels of glutamic-pyruvic transaminase, glutamic oxalacetic transaminase, alkaline phosphatase, creatinine, and urea nitrogen, 2) renal tissue mRNA expression of kidney injury molecule 1 and neutrophil gelatinase-associated lipocalin, and 3) pathological morphology in the mouse liver, kidney, stomach, and bladder. CONCLUSIONS AH has no obvious toxicity to mice and is relatively safe when it is used in the form of decoction. AA-IVa and AL-I, the two major AAs in AH, are not toxic to mice at the dose equivalent to that in the high dose of AH decoction. Considering the limited toxicological data on AH, we recommend that AH decoction medication should not overdose and the duration should not be too long.
Collapse
Affiliation(s)
- Meiting Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China; Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, China.
| | - Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Shasha Qin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Suyan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Chunying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Chenyue Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Yuan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Fang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Xuan Tang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| |
Collapse
|
20
|
Gu EY, Jung J, Back SM, Lim KH, Kim W, Min BS, Han KH, Kim SK, Kim YB. Evaluation of genotoxicity and 13-week subchronic toxicity of root of Asarum heterotropoides var. seoulense (Nakai) Kitag. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116012. [PMID: 36567041 DOI: 10.1016/j.jep.2022.116012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asarum heterotropoides var. seoulense (Nakai) Kitag is a traditional herbal medicine used in Korea and China. It is effective in aphthous stomatitis, local anesthesia, headache, toothache, gingivitis, and inflammatory diseases. However, information on the toxicity of the root of Asarum heterotropoides var. seoulense (Nakai) Kitag (AR) is limited. Therefore, preclinical toxicity studies on AR are needed to reduce the risk of excessive intake. AIM OF THE STUDY We aimed to evaluate genotoxicity and the potential toxicity due to repeated administration of AR powder. MATERIALS AND METHODS In vitro bacterial reverse mutation assay (Ames), in vitro chromosomal aberration assay (CA), and in vivo micronucleus (MN) assay in ICR mice were conducted. As positive results were obtained in Ames and CA assays, alkaline comet assay and pig-a gene mutation test were conducted for confirmation. For evaluating the general toxicity of AR powder, a 13-week subchronic toxicity test was conducted, after determining the dose by performing a single and a 4-week dose range finding (DRF) test. A total of 152 Sprague-Dawley (SD) rats were orally administered AR powder at doses of 0, 150, 350, 500, 1000, and 2000 mg/kg/day in the 13-week subchronic toxicity test. Hematology, clinical chemistry, urinalysis, organ weight, macro-, and microscopic examination were conducted after rat necropsy. RESULTS AR powder induced genotoxicity evidenced in the Ames test at 187.5, 750, 375, and 1500 μg/plate of TA100, TA98, TA1537, and E. coli WP2uvrA in the presence and absence of S9, respectively; CA test at 790 μg/mL for 6 h in the presence of S-9; 75 μg/mL for 6 h in the absence of S-9, and 70 μg/mL for 22 h in the absence of S-9 in the stomach in the comet assay but not in MN and pig-a assays. In the 13-week subchronic toxicity study, clinical signs including irregular respiration, noisy respiration, salivation, and decreased body weight or food consumption were observed in males and females in the 2000 mg/kg/day group. In hematology tests, clinical chemistry, urinalysis, organ weight, and macroscopic examination, changes were observed in the dose groups of 500 mg/kg/day and above. Microscopic examination revealed hyperplasia of the stomach as a test-related change. Hepatocellular adenoma and changes in liver-related clinical chemistry parameters were observed. The rat No Observed Adverse Effect Level (NOAEL) was 150 mg/kg/day in males and <150 mg/kg/day in females. CONCLUSIONS AR powder is potentially toxic to the liver and stomach and should be used with caution in humans. A long-term study on carcinogenicity is necessitated because DNA damage or changes in tissue lesions were observed in SD rats.
Collapse
Affiliation(s)
- Eun-Young Gu
- College of Pharmacy, Chung-Nam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea; Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Jina Jung
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Seng-Min Back
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Kwang-Hyun Lim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Woojin Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Byung Sun Min
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Gyeongbuk, 38430, Republic of Korea.
| | - Kang-Hyun Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chung-Nam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
21
|
Chemical Composition and Biological Activities of Essential Oils of Four Asarum Species Growing in Vietnam. Molecules 2023; 28:molecules28062580. [PMID: 36985550 PMCID: PMC10053891 DOI: 10.3390/molecules28062580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The essential oils (EOs) of the aerial parts of four Asarum species (A. geophilum, A. yentunensis, A. splendens and A. cordifolium) were isolated by steam distillation and analyzed by the GC/MS method. The A. cordifolium EO contains 33 constituents with the main component being elemicine (77.20%). The A. geophilum EO was contains 49 constituents with the main components being determined as 9-epi-(E)-caryophyllene (18.43%), eudesm-7(11)-en-4-ol (13.41%), β-caryophyllene (8.05%) and phytol (7.23%). The A. yentunensis EO contains 26 constituents with the main components being safrole (64.74%) and sesquicineole (15.34%). The EO of A. splendens contains 41 constituents with the main components being 9-epi-(E)-caryophyllene (15.76%), eudesm-7(11)-en-4-ol (14.21%), β-caryophyllene (9.52%) and trans-bicyclogermacrene (7.50%). For antimicrobial activity, the A. yentunensis EO exhibited the highest inhibition activity against Staphylococcus aureus and the A. cordifolium EO against Bacillus subtillis (MIC values of 100 μg/mL). For antioxidant activity, the A. geophilum EO showed the highest potential with an SC (%) value of 63.34 ± 1.0%, corresponding to an SC50 value of 28.57 µg/mL. For anti-inflammatory activity, the A. splendens EO exhibited the highest potential with an IC50 value of 21.68 µg/mL, corresponding to an inhibition rate of NO production of 69.58 ± 1.3% and the percentage of cell life was 81.85 ± 0.9%.
Collapse
|
22
|
Liu Y, May BH, Hyde AJ, He Y, Guo X, Zhang AL, Lu C, Xue CC, Zhang H. Topical Traditional Chinese Medicines for Cancer Pain: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Integr Cancer Ther 2023; 22:15347354231210870. [PMID: 37962002 PMCID: PMC10647965 DOI: 10.1177/15347354231210870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Safe and effective management of cancer-related pain is a worldwide challenge. In the search for treatment options, natural products used in Chinese herbal medicines (CHMs) have received attention in clinical studies for their effects on cancer-related pain. The objective of this systematic review is to evaluate the clinical evidence for topically applied CHMs as adjunctive treatments for cancer pain management. METHODS Nine biomedical databases and 4 clinical trial registries were searched for randomized-controlled trials (RCTs) that reported measures of pain and/or quality of life. Risk of bias was assessed using the Cochrane tool. Meta-analysis employed mean difference (MD) with 95% confidence intervals (random effects). RESULTS Twenty (20) RCTs (1636 participants) met the inclusion criteria. Meta-analyses were grouped based on the comparisons and outcome measures. For pain intensity, there was a greater reduction in the topical CHM group versus placebo (MD -0.72 [-1.04, -0.40]), no difference when compared to tramadol (MD -0.15 [-0.38, 0.08]), and a greater reduction when topical CHMs were combined with conventional analgesic medications (MD -0.67 [-0.93, -0.40]). Analgesic onset time was reduced in the CHM group compared to tramadol (MD -26.02 [-27.57, -24.47] minutes), and for CHMs combined with conventional medications (MD -19.17 [-21.83, -16.52] minutes). When CHMs were combined with analgesic medications, improvements were found for duration of analgesia (MD 1.65 [0.78, 2.51] hours), analgesic maintenance dose (MD -31.72 [-50.43, -13.01] milligrams/day), and quality of life. CONCLUSION Addition of topical CHMs to conventional analgesic medications was associated with improved outcomes for pain intensity, some other pain-related outcomes, and measures of quality of life. Limitations included methodological issues in some studies and considerable heterogeneity in some pooled results.
Collapse
Affiliation(s)
- Yihong Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Brian H. May
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Anna J. Hyde
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Yihan He
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinfeng Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Anthony Lin Zhang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Chuanjian Lu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Charlie Changli Xue
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Haibo Zhang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|