1
|
Nazir N, Waqar A, Zaib Khan A, Ali Khan A, Aziz T, Alasmari AF. Antiangiogenic potential of Elaeagnus umbellata extracts and molecular docking study by targeting VEGFR-2 pathway. Open Med (Wars) 2025; 20:20241083. [PMID: 39831267 PMCID: PMC11742088 DOI: 10.1515/med-2024-1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/26/2024] [Accepted: 10/15/2024] [Indexed: 01/22/2025] Open
Abstract
Background Anti-angiogenesis or inhibition of blood vessel formation is the best way to prevent the growth and metastasis of tumors. Natural sources like plants are currently being explored for its antiangiogenic activity as they are factories of various phytochemicals. The goal of the current study is to investigate the antiangiogenic potential of Elaeagnus umbellata (E. umbellata) by using chorioallantoic membrane (CAM) assay and molecular docking. Methods Based on our previous research, the antiangiogenic activity was carried out using active fractions including crude methanol (Eu-Met), ethyl acetate (Eu-EtAc), and chloroform (Eu-Chf) extracts using CAM assay. Furthermore, to understand the binding mechanism of identified compounds, molecular docking was performed against vascular endothelial growth factor receptor 2 (VEGFR-2) using AutoDock vina as docking software. VEGFR-2 is overexpressed in pathological angiogenesis. Results In CAM assay, Eu-Met, Eu-EtAc, and Eu-Chf extracts showed antiangiogenic activities but notable antiangiogenic activities were exhibited by Eu-Chf with IC50 value of 65.02 μg/mL. In molecular docking, five compounds, catechin, catechin hydrate, morin, quercetin, and rutin, reported in the extract and active fractions (Eu-Met, Eu-EtAc, and Eu-Chf) of E. umbellata showed strong interactions with VEGFR-2 with binding affinities of -9.4, -9.3, -9.9, -10.2, and -9.4 kcal/mol. Conclusion Based on our results, we can claim that E. umbellata possess antiangiogenic activity which needs to be explored further.
Collapse
Affiliation(s)
- Nausheen Nazir
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower18800, Pakistan
| | - Arbaz Waqar
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower18800, Pakistan
| | - Amir Zaib Khan
- Department of Biochemistry, University of Malakand, Chakdara Dir Lower18800, Pakistan
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower18800, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, Arta, Greece
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Punjab, Pakistan
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Orabi MAA, Abouelela ME, Darwish FMM, Abdelkader MSA, Elsadek BEM, Al Awadh AA, Alshahrani MM, Alhasaniah AH, Aldabaan N, Abdelhamid RA. Ceiba pentandra ethyl acetate extract improves doxorubicin antitumor outcomes against chemically induced liver cancer in rat model: a study supported by UHPLC-Q-TOF-MS/MS identification of the bioactive phytomolecules. Front Pharmacol 2024; 15:1337910. [PMID: 38370475 PMCID: PMC10871037 DOI: 10.3389/fphar.2024.1337910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent cancer worldwide. Late-stage detection, ineffective treatments, and tumor recurrence contribute to the low survival rate of the HCC. Conventional chemotherapeutic drugs, like doxorubicin (DOX), are associated with severe side effects, limited effectiveness, and tumor resistance. To improve therapeutic outcomes and minimize these drawbacks, combination therapy with natural drugs is being researched. Herein, we assessed the antitumor efficacy of Ceiba pentandra ethyl acetate extract alone and in combination with DOX against diethylnitrosamine (DENA)-induced HCC in rats. Our in vivo study significantly revealed improvement in the liver-function biochemical markers (ALT, AST, GGT, and ALP), the tumor marker (AFP-L3), and the histopathological features of the treated groups. A UHPLC-Q-TOF-MS/MS analysis of the Ceiba pentandra ethyl acetate extract enabled the identification of fifty phytomolecules. Among these are the dietary flavonoids known to have anticancer, anti-inflammatory, and antioxidant qualities: protocatechuic acid, procyanidin B2, epicatechin, rutin, quercitrin, quercetin, kaempferol, naringenin, and apigenin. Our findings highlight C. pentandra as an affordable source of phytochemicals with possible chemosensitizing effects, which could be an intriguing candidate for the development of liver cancer therapy, particularly in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Faten M. M. Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Bakheet E. M. Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Nayef Aldabaan
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Reda A. Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
3
|
Andleeb A, Khan H, Andleeb A, Khan M, Tariq M. Advances in Chronic Wound Management: From Conventional Treatment to Novel Therapies and Biological Dressings. Crit Rev Biomed Eng 2024; 52:29-62. [PMID: 38884212 DOI: 10.1615/critrevbiomedeng.2024053066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Chronic wounds can be classified as diabetic foot ulcers, pressure ulcers, or venous leg ulcers. Chronic wound management has become a threat to clinicians and constitutes a major healthcare burden. The healing process of chronic wounds requires many factors to work in concert to achieve optimal healing. Various treatment options, ranging from hypoxia to infection, have evolved considerably to address the challenges associated with chronic wound healing. The conventional and accelerating treatments for chronic wounds still represent an unmet medical need due to the complex pathophysiology of the chronic wound microenvironment. In clinical settings, traditional chronic wound care practices rely on nonspecific topical treatment, which can reduce pain and alleviate disease progression with varying levels of success but fail to completely cure the wounds. Conventional wound dressings, such as hydrocolloids, gauze, foams, and films, have also shown limited success for the treatment of chronic wounds and only act as a physical barrier and absorb wound exudates. Emerging advances in treatment approaches, including novel therapies (stem cells, microRNAs, and nanocarrier-based delivery systems) and multifunctional biological dressings, have been reported for chronic wound repair. This review summarizes the challenges offered by chronic wounds and discusses recent advancements in chronic wound treatment.
Collapse
Affiliation(s)
- Anisa Andleeb
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Hamza Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aneeta Andleeb
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Khan
- Centre for Biotechnology and Microbiology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
4
|
Kour R, Sharma N, Showkat S, Sharma S, Nagaiah K, Kumar S, Kaur S. Methanolic fraction of Cassia fistula L. bark exhibits potential to combat oxidative stress and possess antiproliferative activity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:296-312. [PMID: 36919564 DOI: 10.1080/15287394.2023.2189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cassia fistula L. is well known for its traditional medicinal properties as an anti-inflammatory, hepatoprotective, antifungal, antibacterial, antimutagenic, and wound healing agent. The aim of the present study was to determine antioxidant, genoprotective, and cytotoxic potential of different fractions of C. fistula bark including hexane (CaMH), chloroform (CaMC), ethyl acetate (CaME), and methanol (CaMM). Among all the fractions studied, CaMM exhibited maximal radical scavenging activity in antioxidant DPPH assay, Superoxide anion radical scavenging assay and nitric oxide radical scavenging assay displayed an IC50 value of 18.95, 29.41, and 13.38 µg/ml, respectively. CaMM fraction possessed the highest phenolic (130.37 mg gallic acid equivalent/g dry weight of extract) and flavonoid (36.96 mg rutin equivalent/g dry weight of fraction) content. Data demonstrated significant positive correlation between polyphenol levels and radical scavenging activity. Single cell gel electrophoresis (Comet assay) exhibited genoprotective potential of C. fistula bark fractions against DNA damage induced by hydrogen peroxide (H2O2) in human lymphocytes. CaMM fraction displayed highest protective ability against H2O2 induced-toxicity as evidenced by significant decrease in % tail DNA content from 30 to 7% at highest concentration (200 µg/ml). CaMM was found to be rich in catechin, gallic acid, chlorogenic acid, and kaempferol. The phenolic content and antioxidant ability of the fractions was markedly negatively correlated with H2O2- induced DNA damage in human lymphocytes. Cytotoxic potential was evaluated against dermal epidermoid carcinoma (A431), pancreatic (MIA PaCa-2) and brain glioblastoma (LN-18) cancer cell lines using MTT assay. Results showed that C. fistula bark fractions possessed highest toxicity against the skin carcinoma cells. CaMM fraction reduced over 50% cell growth at the concentration of 76.72 µg/ml in A431 cells. These findings suggest that fractions of C. fistula bark exhibit potential to be considered as therapeutic agents in various carcinomas.
Collapse
Affiliation(s)
- Rasdeep Kour
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neha Sharma
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sheikh Showkat
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sunil Sharma
- Aquatic toxicology lab, Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Kommu Nagaiah
- Centre for natural products and Traditional knowledge, CSIR- Indian Institute of Chemical Technology, Hyderabad, India
| | - Subodh Kumar
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
5
|
Alghamdi AH, Ahmed AA, Bashir M, Abdalgadir H, Khalid A, Gul S. The use of medicinal plants in common ophthalmic disorders: A systematic review with meta-analysis. Heliyon 2023; 9:e15340. [PMID: 37151714 PMCID: PMC10161615 DOI: 10.1016/j.heliyon.2023.e15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose This study aimed to assess and compile the available research articles about medicinal plants used for ocular diseases. Principal results A total of 2949 articles were retrieved, 35 full-text articles were assessed for eligibility, and seven studies (4 observational and three experimental) with low to moderate quality were eligible and involved in the systematic review, with a total of 600 plants from 4 countries. Among the 600 plants, only 24 (4%) were used to assess the status. Both the fixed and random models of the studies showed that the included studies tended to predict the results for the observational studies (OR = 0.062, CI = 0.043-0.090 OR = 0.039, CI = 0.012-0.122) for different plants used for ocular diseases. High heterogeneity (estimated as I2 = 87.078, Tau2 = 1.161 and Q-value = 23.217 with a p-value of 0.000), while for experimental studies (I2 = 94.928, Tau2 = 23.211 and Q-value = 39.434 with a p-value of 0.000) and publication bias were reported. Conclusion Few articles representing approximately 600 plants of low to moderate quality reported using medicinal plants for ocular diseases. The meta-analysis confirmed the systematic review findings regarding the plants' traditional use with high heterogeneity and publication bias. A considerable gap was proven in the use of medicinal plants in ocular diseases requiring intensive research.
Collapse
Affiliation(s)
- Ali Hendi Alghamdi
- Surgery Department, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Aimun A.E. Ahmed
- Pharmacology Department, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
- Pharmacology Department, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Mahadi Bashir
- Surgery Department, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Haidar Abdalgadir
- Biology Department, Faculty of Science, Al Baha University, Al Baha, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P. O. Box: 114, Jazan, Saudi Arabia
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, D-22525 Hamburg, Germany
| |
Collapse
|
6
|
Xiao G, Xu Z, Luo F. Combinational antitumor strategies of exosomes as drug carriers: Mini review. Front Pharmacol 2023; 13:1107329. [PMID: 36744207 PMCID: PMC9897293 DOI: 10.3389/fphar.2022.1107329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Cancer therapies have made tremendous progress in the last decade, but monotherapy still has apparent limitations and lacks therapeutic efficacy. Thus, the simultaneous administration of multiple drugs has been widely explored and has shown better outcomes. Exosomes, deriving from almost all living cells, are natural nanocarriers designed to deliver drugs to tumor sites. Therefore, combinational antitumor therapies based on exosomes, such as engineered exosomes and different combinations of chemotherapeutic agents, therapeutic nucleic acids, photosensitizers, immunotherapy and phytochemicals, have considerable prospects and potential for clinical translation. Here, we summarize current strategies of cancer combination therapy in exosomes and propose opportunities and challenges in the future.
Collapse
Affiliation(s)
- Guixiu Xiao
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zihan Xu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Feng Luo
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China,*Correspondence: Feng Luo,
| |
Collapse
|
7
|
Elkhateeb OM, Badawy MEI, Noreldin AE, Abou-Ahmed HM, El-Kammar MH, Elkhenany HA. Comparative evaluation of propolis nanostructured lipid carriers and its crude extract for antioxidants, antimicrobial activity, and skin regeneration potential. BMC Complement Med Ther 2022; 22:256. [PMID: 36192714 PMCID: PMC9528112 DOI: 10.1186/s12906-022-03737-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Propolis extracted from beehives has been conferred with natural antimicrobial and antioxidant properties. Hence, it has been recommended as a wound healing therapy. This study investigated the additive value of nanotechnology to the herbal extract, (propolis rebuts), after which we examined its efficacy in wound healing. Methods Propolis nanostructured lipid carriers (NLCs) were first prepared using the emulsion-evaporation-solidification method at three concentrations. Then, we compared their flavonoid and phenolic contents and phenolic contents. Their antioxidant, antibacterial, and antifungal effects were also investigated after which, the skin regenerative capacity of propolis-NLCs was assessed using full-thickness skin wounds in rabbits. Results This study showed that propolis-NLCs had increased the phenolic and flavonoid contents compared to the raw propolis extract (EXTR) (9-fold and 2-fold, respectively). This increase was reflected in their antioxidant activities, which dramatically increased by 25-fold higher than the propolis-EXTR. Also, propolis-NLCs exhibited a 2-fold higher potent inhibitory effect than propolis-EXTR on Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), Gram-negative bacterium (Salmonella spp.), and fungus (Candida albicans) microbes (p < 0.0001). Investigations also revealed that treatment of full-thickness skin injuries with propolis-NLCs resulted in significantly higher wound closure compared to propolis-EXTR and the control after two weeks (p < 0.0001). Conclusion With a prominent broad-spectrum antibacterial effect propolis-NLCs exhibited higher skin regenerative potency than propolis-EXTR. We also highlighted the additive impact of nanotechnology on herbal extract, which accounted for the increased flavonoid content and hence a better antioxidant and antimicrobial effect and propose it as a potential therapy for wound healing. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03737-4.
Collapse
Affiliation(s)
- Ola M. Elkhateeb
- grid.7155.60000 0001 2260 6941Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785 Egypt
| | - Mohamed E. I. Badawy
- grid.7155.60000 0001 2260 6941Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545 Egypt
| | - Ahmed E. Noreldin
- grid.449014.c0000 0004 0583 5330Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, the Scientific Campus, Damanhour, 22511 Egypt
| | - Howaida M. Abou-Ahmed
- grid.7155.60000 0001 2260 6941Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785 Egypt
| | - Mahmoud H. El-Kammar
- grid.7155.60000 0001 2260 6941Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785 Egypt
| | - Hoda A. Elkhenany
- grid.7155.60000 0001 2260 6941Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785 Egypt
| |
Collapse
|
8
|
Alterations in Bacterial Metabolism Contribute to the Lifespan Extension Exerted by Guarana in Caenorhabditis elegans. Nutrients 2022; 14:nu14091986. [PMID: 35565952 PMCID: PMC9105138 DOI: 10.3390/nu14091986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
Guarana (Paullinia cupana) is a widely consumed nutraceutical with various health benefits supported by scientific evidence. However, its indirect health impacts through the gut microbiota have not been studied. Caenorhabditis elegans is a useful model to study both the direct and indirect effects of nutraceuticals, as the intimate association of the worm with the metabolites produced by Escherichia coli is a prototypic simplified model of our gut microbiota. We prepared an ethanoic extract of guarana seeds and assessed its antioxidant capacity in vitro, with a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and in vivo, utilizing C. elegans. Additionally, we studied the impact of this extract on C. elegans lifespan, utilizing both viable and non-viable E. coli, and assessed the impact of guarana on E. coli folate production. The extract showed high antioxidant capacity, and it extended worm lifespan. However, the antioxidant and life-extending effects did not correlate in terms of the extract concentration. The extract-induced life extension was also less significant when utilizing dead E. coli, which may indicate that the effects of guarana on the worms work partly through modifications on E. coli metabolism. Following this observation, guarana was found to decrease E. coli folate production, revealing one possible route for its beneficial effects.
Collapse
|