1
|
Wang Z, Wang X, Mou X, Wang C, Sun Y, Wang J. Rehmannia glutinosa DC.-Lilium lancifolium Thunb. in the treatment of depression: a comprehensive review and perspectives. Front Pharmacol 2024; 15:1471307. [PMID: 39539631 PMCID: PMC11557470 DOI: 10.3389/fphar.2024.1471307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background In recent years, the incidence of depression, recognized as a serious psychological disorder, has escalated rapidly. Rehmannia glutinosa DC. (Scrophulariaceae; Rehmanniae Radix, Crude drug) and Lilium lancifolium Thunb. (Liliaceae; Lilii bulbus, Crude drug) constitute a classic anti-depressant combination, exhibiting pharmacological effects that include anti-depressive, anti-anxiety, and anti-inflammatory properties. Current clinical studies have demonstrated that Baihe Dihuang Decoction, a traditional Chinese herbal compound, is effective in treating depression. However, the majority of scholars have predominantly examined Rehmannia glutinosa and Lilium in isolation, and a comprehensive elucidation of their principal active metabolites and pharmacological mechanisms remains lacking. Methods A comprehensive literature search was conducted as of 29 September 2024, utilizing databases such as PubMed, CNKI, Wanfang Data, Baidu Scholar, and Google Scholar. Additionally, classical texts on Chinese herbal medicine, the Chinese Pharmacopoeia, as well as doctoral and master's theses, were included in the collected materials. The search employed specific terms including "R. glutinosa," "Lilium," "Baihe Dihuang decoction," "application of Baihe Dihuang decoction," "pathogenesis of depression," and "pharmacological action and mechanism of depression. Results This paper reviewed the traditional applications and dosages of the R. glutinosa-Lilium as documented in Chinese medical classics, thereby establishing a foundation for the contemporary development and clinical application of the classical formula Baihe Dihuang Decoction. Additionally, recent years have seen a comprehensive review of the pharmacological effects and mechanisms of R. glutinosa-Lilium and its principal metabolites in the context of depression. Conclusion This paper has reviewed the active metabolites of R. glutinosa-Lilium and demonstrated its efficacy in the treatment of depression, as well as its role in modulating the underlying mechanisms of the disorder. The findings aim to serve as a reference for further research into the mechanisms of depression, its clinical applications, and the development of novel therapeutic agents.
Collapse
Affiliation(s)
- ZongHao Wang
- The College of Pharmacy Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoyu Wang
- The College of Pharmacy Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiangyu Mou
- The College of Chinese Medicine is Part of the Shandong University of Traditional Chinese Medicine in Jinan, Jinan, Shandong, China
| | - ChangLin Wang
- The College of Chinese Medicine is Part of the Shandong University of Traditional Chinese Medicine in Jinan, Jinan, Shandong, China
| | - Ya Sun
- Research Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - JieQiong Wang
- The College of Pharmacy Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Chen Y, Wang R, Li X, Wang Z, Cao B, Du J, Deng T, Han J, Yang M. Progress of research on the treatment of depression by traditional Chinese medicine prescriptions. Heliyon 2024; 10:e34970. [PMID: 39157399 PMCID: PMC11328063 DOI: 10.1016/j.heliyon.2024.e34970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Depression is a common psychiatric disorder that belongs to the category of "Depression Syndrome" in traditional Chinese medicine (TCM), and its etiology and pathogenesis are complex and unclear. It is characterized by high prevalence, high disability rate, and high recurrence rate, which seriously affect human health, and its treatment has become a research hotspot worldwide. At present, the antidepressants commonly used in the clinic are mainly Western medicine (WM), but there are problems such as frequent side effects and poor efficacy. Studies have found that the use of TCM prescriptions in the treatment of depression can achieve the same effect as WM; and when TCM prescriptions are combined with WM, the efficacy can be enhanced while the adverse effects of WM can be reduced. Pharmacological studies related to the treatment of depression with traditional Chinese medicine prescriptions (TCMPs) have focused on the neurobiochemical system, gut microbes, and energy metabolism in mitochondria. No one has yet reviewed the pharmacological mechanism of TCMPs for depression. So, this paper reviews the pharmacological mechanism of TCMPs for depression from the perspective of TCMPs, introduces the progress of research on classical TCMPs for depression and their antidepressant mechanism. This article aims to promote the application of TCMPs in the clinic and provide a new therapeutic idea for the clinical treatment of depression.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Ruyu Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiying Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Baorui Cao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxiang Han
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Mao Q, Zhang H, Zhang Z, Lu Y, Pan J, Guo D, Huang L, Tian H, Ma K. Co-decoction of Lilii bulbus and Radix Rehmannia Recens and its key bioactive ingredient verbascoside inhibit neuroinflammation and intestinal permeability associated with chronic stress-induced depression via the gut microbiota-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155510. [PMID: 38696921 DOI: 10.1016/j.phymed.2024.155510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Gut microbiota plays a critical role in the pathogenesis of depression and are a therapeutic target via maintaining the homeostasis of the host through the gut microbiota-brain axis (GMBA). A co-decoction of Lilii bulbus and Radix Rehmannia Recens (LBRD), in which verbascoside is the key active ingredient, improves brain and gastrointestinal function in patients with depression. However, in depression treatment using verbascoside or LBRD, mechanisms underlying the bidirectional communication between the intestine and brain via the GMBA are still unclear. PURPOSE This study aimed to examine the role of verbascoside in alleviating depression via gut-brain bidirectional communication and to study the possible pathways involved in the GMBA. METHODS Key molecules and compounds involved in antidepressant action were identified using HPLC and transcriptomic analyses. The antidepressant effects of LBRD and verbascoside were observed in chronic stress induced depression model by behavioural test, neuronal morphology, and synaptic dendrite ultrastructure, and their neuroprotective function was measured in corticosterone (CORT)-stimulated nerve cell injury model. The causal link between the gut microbiota and the LBRD and verbascoside antidepressant efficacy was evaluate via gut microbiota composition analysis and faecal microbiota transplantation (FMT). RESULTS LBRD and Verbascoside administration ameliorated depression-like behaviours and synaptic damage by reversing gut microbiota disturbance and inhibiting inflammatory responses as the result of impaired intestinal permeability or blood-brain barrier leakiness. Furthermore, verbascoside exerted neuroprotective effects against CORT-induced cytotoxicity in an in vitro depression model. FMT therapy indicated that verbascoside treatment attenuated gut inflammation and central nervous system inflammatory responses, as well as eliminated neurotransmitter and brain-gut peptide deficiencies in the prefrontal cortex by modulating the composition of gut microbiota. Lactobacillus, Parabacteroides, Bifidobacterium, and Ruminococcus might play key roles in the antidepressant effects of LBRD via the GMBA. CONCLUSION The current study elucidates the multi-component, multi-target, and multi-pathway therapeutic effects of LBRD on depression by remodeling GMBA homeostasis and further verifies the causality between gut microbiota and the antidepressant effects of verbascoside and LBRD.
Collapse
Affiliation(s)
- Qiancheng Mao
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hongxiu Zhang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Institute of Virology, Jinan Municipal Center for Disease Control and Prevention, Jinan 250021, PR China
| | - Zhe Zhang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yanting Lu
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Jin Pan
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Dongjing Guo
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Liuxuan Huang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Haoquan Tian
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
4
|
Pei Z, Guo X, Zheng F, Yang Z, Li T, Yu Z, Li X, Guo X, Chen Q, Fu C, Tang T, Feng D, Wang Y. Xuefu Zhuyu decoction promotes synaptic plasticity by targeting miR-191a-5p/BDNF-TrkB axis in severe traumatic brain injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155566. [PMID: 38565001 DOI: 10.1016/j.phymed.2024.155566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal formula known for its ability to eliminate blood stasis and improve blood circulation, providing neuroprotection against severe traumatic brain injury (sTBI). However, the underlying mechanism is still unclear. PURPOSE We aim to investigate the neuroprotective effects of XFZYD in sTBI from a novel mechanistic perspective of miRNA-mRNA. Additionally, we sought to elucidate a potential specific mechanism by integrating transcriptomics, bioinformatics, and conducting both in vitro and in vivo experiments. METHODS The sTBI rat model was established, and the rats were treated with XFZYD for 14 days. The neuroprotective effects of XFZYD were evaluated using a modified neurological severity score, hematoxylin and eosin staining, as well as Nissl staining. The anti-inflammatory effects of XFZYD were explored using quantitative real-time PCR (qRT-PCR), Western blot analysis, and immunofluorescence. Next, miRNA sequencing of the hippocampus was performed to determine which miRNAs were differentially expressed. Subsequently, qRT-PCR was used to validate the differentially expressed miRNAs. Target core mRNAs were determined using various methods, including miRNA prediction targets, mRNA sequencing, miRNA-mRNA network, and protein-protein interaction (PPI) analysis. The miRNA/mRNA regulatory axis were verified through qRT-PCR or Western blot analysis. Finally, morphological changes in the neural synapses were observed using transmission electron microscopy and immunofluorescence. RESULTS XFZYD exhibited significant neuroprotective and anti-inflammatory effects on subacute sTBI rats' hippocampus. The analyses of miRNA/mRNA sequences combined with the PPI network revealed that the therapeutic effects of XFZYD on sTBI were associated with the regulation of the rno-miR-191a-5p/BDNF axis. Subsequently, qRT-PCR and Western blot analysis confirmed XFZYD reversed the decrease of BDNF and TrkB in the hippocampus caused by sTBI. Additionally, XFZYD treatment potentially increased the number of synaptic connections, and the expression of the synapse-related protein PSD95, axon-related protein GAP43 and neuron-specific protein TUBB3. CONCLUSIONS XFZYD exerts neuroprotective effects by promoting hippocampal synaptic remodeling and improving cognition during the subacute phase of sTBI through downregulating of rno-miR-191a-5p/BDNF axis, further activating BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Zhuan Pei
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xuexuan Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xin Guo
- The First Affiliated Hospital, Department of Child Healthcare, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Chunyan Fu
- College of Pharmacy, Shaoyang University, Shaoyang 422100, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Dandan Feng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| |
Collapse
|
5
|
Tang L, Liu J, Yang H, Zhao HQ, Hu C, Ma SJ, Qing YH, Yang L, Zhou RR, Zhang SH. Microbiome Metabolomic Analysis of the Anxiolytic Effect of Baihe Dihuang Decoction in a Rat Model of Chronic Restraint Stress. Drug Des Devel Ther 2024; 18:2227-2248. [PMID: 38882046 PMCID: PMC11180446 DOI: 10.2147/dddt.s458983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose The Baihe Dihuang decoction (BDD) is a representative traditional Chinese medicinal formula that has been used to treat anxiety disorders for thousands of years. This study aimed to reveal mechanisms of anxiolytic effects of BDD with multidimensional omics. Methods First, 28-day chronic restraint stress (CRS) was used to create a rat model of anxiety, and the open field test and elevated plus maze were used to assess anxiety-like behavior. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining, and immunofluorescence staining were used to evaluate inflammatory response. Besides, 16S rRNA gene sequencing assessed fecal microbiota composition and differential microbiota. Non-targeted metabolomics analysis of feces was performed to determine fecal biomarkers, and targeted metabolomics was used to observe the levels of hippocampus neurotransmitters. Finally, Pearson correlation analysis was used to examine relationships among gut microbiota, fecal metabolites, and neurotransmitters. Results BDD significantly improved anxiety-like behaviors in CRS-induced rats and effectively ameliorated hippocampal neuronal damage and abnormal activation of hippocampal microglia. It also had a profound effect on the diversity of microbiota, as evidenced by significant changes in the abundance of 10 potential microbial biomarkers at the genus level. Additionally, BDD led to significant alterations in 18 fecal metabolites and 12 hippocampal neurotransmitters, with the majority of the metabolites implicated in amino acid metabolism pathways such as D-glutamine and D-glutamate, alanine, arginine and proline, and tryptophan metabolism. Furthermore, Pearson analysis showed a strong link among gut microbiota, metabolites, and neurotransmitters during anxiety and BDD treatment. Conclusion BDD can effectively improve anxiety-like behaviors by regulating the gut-brain axis, including gut microbiota and metabolite modification, suppression of hippocampal neuronal inflammation, and regulation of neurotransmitters.
Collapse
Affiliation(s)
- Lin Tang
- Hospital-Made Preparations Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Jian Liu
- Medical Innovation Experiment Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Hui Yang
- Medical Innovation Experiment Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Hong-Qing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Chao Hu
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Si-Jing Ma
- The Affiliated Hospital, Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Yu-Hui Qing
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Lei Yang
- Hospital-Made Preparations Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Rong-Rong Zhou
- The Affiliated Hospital, Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Shui-Han Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
6
|
Tang L, Zhao HQ, Yang H, Hu C, Ma SJ, Xiao WZ, Qing YH, Yang L, Zhou RR, Liu J, Zhang SH. Spectrum-effect relationship combined with bioactivity evaluation to discover the main anxiolytic active components of Baihe Dihuang decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117090. [PMID: 37640258 DOI: 10.1016/j.jep.2023.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anxiety disorders leads to a decline in quality of life and increased risk of morbidity and mortality. The Baihe Dihuang decoction (BDD) is a classic Chinese medical formula that has been widely used to treat anxiety disorders for thousands of years in China. However, the pharmacodynamic material that is responsible for the antianxiety of BDD remains unclear. AIM OF THE STUDY To screen the main ingredients of anti-anxiety in BDD based on the establishment of spectrum-effect relationship and verified experiment. METHODS The UPLC-Q-TOF/MS technique was utilized to establish fingerprints of various fractions of BDD and identify the main compounds. The anti-anxiety effects of BDD were comprehensively evaluated through multiple assessments, including the open field test, elevated plus maze test, and neurotransmitters tests. Then, the spectrum-effect relationship was established through Pearson correlation analysis, gray correlation analysis, orthogonal partial least squares regression analysis. The spectrum-effect relationship results were confirmed through various measures on an anxiety condition cell model, induced by a corticosterone and lipopolysaccharide intervention. These measures included assessing neuronal cell viability, morphology, apoptosis, synaptic damage, and the expression of neurotransmitters and inflammatory factors. RESULTS In the UPLC-Q-TOF-MS fingerprint, 46 common peaks were identified. The pharmacological results indicated that different fractions of BDD have strong effects on improving anxiety-like behavior and regulating neurotransmitters. Among them, butanol fraction has the highest comprehensive evaluation score of anti-anxiety efficacy, which is main active fraction of BDD for anti-anxiety. The analysis of the spectrum-effect relationship revealed that the 46 peaks exhibited varying degrees of correlation with the anti-anxiety efficacy indicators of BDD. Among them, 14 components have a high correlation with the anti-anxiety efficacy indicators, which may be the potential anti-anxiety efficacy components of BDD. The in vitro activity verification of active components verified our prediction, regaloside A, B, C, D, H, acteoside, and isoacteoside improved neuronal cell viability, cell morphology, apoptosis, and synaptic damage. Additionally, regaloside A, B, C, D, H and acteoside regulated the neurotransmitter levels, while regaloside A, B, C, D, acteoside and isoacteoside inhibited the levels of inflammatory cytokines. CONCLUSION The butanol fraction was found to be the main active fraction of BDD, and 14 compounds were the major anxiolytic active components. The results of verifying the major active components were consistent with the predicted results of the spectrum-effect analysis. The developed spectrum-effect analysis in this study demonstrates high accuracy and reliability for screening active components in TCMs.
Collapse
Affiliation(s)
- Lin Tang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hong-Qing Zhao
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hui Yang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Chao Hu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Si-Jing Ma
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China
| | - Wang-Zhong Xiao
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yu-Hui Qing
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Lei Yang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Rong-Rong Zhou
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
7
|
Xie Y, Chen L, Wang L, Liu T, Zheng Y, Si L, Ge H, Xu H, Xiao L, Wang G. Single-nucleus transcriptomic analysis reveals the relationship between gene expression in oligodendrocyte lineage and major depressive disorder. J Transl Med 2024; 22:109. [PMID: 38281050 PMCID: PMC10822185 DOI: 10.1186/s12967-023-04727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/13/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a common mental illness that affects millions of people worldwide and imposes a heavy burden on individuals, families and society. Previous studies on MDD predominantly focused on neurons and employed bulk homogenates of brain tissues. This paper aims to decipher the relationship between oligodendrocyte lineage (OL) development and MDD at the single-cell resolution level. METHODS Here, we present the use of a guided regularized random forest (GRRF) algorithm to explore single-nucleus RNA sequencing profiles (GSE144136) of the OL at four developmental stages, which contains dorsolateral prefrontal cortex of 17 healthy controls (HC) and 17 MDD cases, generated by Nagy C et al. We prioritized and ordered differentially expressed genes (DEGs) based on Nagy et al., which could predominantly discriminate cells in the four developmental stages and two adjacent developmental stages of the OL. We further screened top-ranked genes that distinguished between HC and MDD in four developmental stages. Moreover, we estimated the performance of the GRRF model via the area under the curve value. Additionally, we validated the pivotal candidate gene Malat1 in animal models. RESULTS We found that, among the four developmental stages, the onset development of OL (OPC2) possesses the best predictive power for distinguishing HC and MDD, and long noncoding RNA MALAT1 has top-ranked importance value in candidate genes of four developmental stages. In addition, results of fluorescence in situ hybridization assay showed that Malat1 plays a critical role in the occurrence of depression. CONCLUSIONS Our work elucidates the mechanism of MDD from the perspective of OL development at the single-cell resolution level and provides novel insight into the occurrence of depression.
Collapse
Affiliation(s)
- Yinping Xie
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Leimin Wang
- School of Automation, China University of Geosciences, Wuhan, China
| | - Tongou Liu
- The First Clinical College of Hubei University of Chinese Medicine, Wuhan, China
| | - Yage Zheng
- Judicial Appraisal Institute, Renmin Hospital of Hubei Province, Wuhan, China
| | - Lujia Si
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hailong Ge
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Gaohua Wang
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Pan J, Lu Y, Wang S, Ma T, Xue X, Zhang Z, Mao Q, Guo D, Ma K. Synergistic neuroprotective effects of two natural medicinal plants against CORT-induced nerve cell injury by correcting neurotransmitter deficits and inflammation imbalance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155102. [PMID: 37748389 DOI: 10.1016/j.phymed.2023.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Lilium henryi Baker (Liliaceae) and Rehmannia glutinosa (Gaertn.) DC. (Plantaginaceae) were the traditional natural medicinal plants for the treatment of depression, but the antidepression mechanism of two plants co-decoction (Also known as Lily bulb and Rehmannia decoction (LBRD) drug-containing serum (LBRDDS) has not been elucidated in the in vitro model of depression. MATERIAL AND METHODS Here, UHPLC-Q-TOF/MS was used to identify the active components of LBRDDS and the potential effector substance was identified by bioinformatics analysis. CORT-induced nerve cells cytotoxicity was used to investigate the neuroprotection effect of LBRDDS and the underlying pharmacological mechanisms were explored by multiple experimental methods such as molecular docking, immunofluorescence, gain- or loss-of function experiments. RESULTS Bioactive compounds in LBRDDS absorbed from intestinal tract were transformed or metabolized by the gut microbiota including palmitic acid, adrenic acid, linoleic acid, arachidonic acid and docosapentaenoic acid. Network pharmacology analysis and molecular docking of showed fatty acid metabolism, neurotransmitter synthesis and neuroinflammation may be potential therapeutic targets of LBRDDS. LBRDDS can improve the activity of model cells, reduce cytotoxicity of lactate dehydrogenase, recover neurotransmitter imbalance, relieve inflammatory damage, down-regulate the expression of miRNA-144-3p, increase the mRNAs and protein expression level of Gad-67 and VGAT, and promote the synthesis and transport of GABA. CONCLUSION Therefore, LBRDDS exerts neuroprotective effects by correcting neurotransmitter deficits and inflammation imbalance in the CORT-induced nerve cell injury model.
Collapse
Affiliation(s)
- Jin Pan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yanting Lu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Sijia Wang
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ting Ma
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiaoyan Xue
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhe Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Qiancheng Mao
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Dongjing Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ke Ma
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
9
|
Jia J, Chen J, Wang G, Li M, Zheng Q, Li D. Progress of research into the pharmacological effect and clinical application of the traditional Chinese medicine Rehmanniae Radix. Biomed Pharmacother 2023; 168:115809. [PMID: 37907043 DOI: 10.1016/j.biopha.2023.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
The traditional Chinese medicine (TCM) Rehmanniae Radix (RR) refers to the fresh or dried root tuber of the plant Rehmannia glutinosa Libosch of the family Scrophulariaceae. As a traditional Chinese herbal medicine (CHM), it possesses multiple effects, including analgesia, sedation, anti-inflammation, antioxidation, anti-tumor, immunomodulation, cardiovascular and cerebrovascular regulation, and nerve damage repair, and it has been widely used in clinical practice. In recent years, scientists have extensively studied the active components and pharmacological effects of RR. Active ingredients mainly include iridoid glycosides (such as catalpol and aucuboside), phenylpropanoid glycosides (such as acteoside), other saccharides, and unsaturated fatty acids. In addition, the Chinese patent medicine (CPM) and Chinese decoction related to RR have also become major research subjects for TCM practitioners; one example is the Bolus of Six Drugs, which includes Rehmannia, Lily Bulb and Rehmannia Decoction, and Siwu Decoction. This article reviews recent literature on RR; summarizes the studies on its chemical constituents, pharmacological effects, and clinical applications; and analyzes the progress and limitations of current investigations to provide reference for further exploration and development of RR.
Collapse
Affiliation(s)
- Jinhao Jia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Jianfei Chen
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003 Xinjiang, PR China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003 Xinjiang, PR China.
| |
Collapse
|
10
|
Yuan HM, Pu XF, Wu H, Wu C. ENTPD1-AS1–miR-144-3p-mediated high expression of COL5A2 correlates with poor prognosis and macrophage infiltration in gastric cancer. World J Gastrointest Oncol 2023; 15:1182-1199. [PMID: 37546560 PMCID: PMC10401471 DOI: 10.4251/wjgo.v15.i7.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/30/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumor with high morbidity and mortality. Expression of COL5A2 is significantly elevated in GC. Abnormal expression of noncoding RNAs (ncRNAs) have been found in GC, including microRNA (miRNA) and long noncoding RNA (lncRNA). Competing endogenous RNA network plays an important regulatory role in GC. However, its specific regulatory mechanism has not been elucidated.
AIM To gain insight into the ncRNA regulatory mechanism and immune microenvironment related to COL5A2 in GC.
METHODS RNA sequencing data and clinical information from The Cancer Genome Atlas data portal were used to analyze the expressions of COL5A2, miRNA and lncRNA related to the prognosis of GC. Cox regression analysis and Kyoto Encyclopedia of Genes and Genomes analysis were performed to assess the risk factors and relevant function of COL5A2. StarBase was used to predict the interaction of miRNA–lncRNA or miRNA–mRNA in GC. The relationship between COL5A2, miR-144-3p and ENTPD1-AS1 were verified by dual luciferase reporter assay. The association of COL5A2 with immune cell infiltration were analyzed using the Tumor Immune Estimation Resource database and single sample gene set enrichment analysis. The expression of COL5A2 and macrophages in paired GC tissues were detected by immunohistochemical staining.
RESULTS We verified that the upregulation of COL5A2 expression was associated with the prognosis of GC and was an independent risk factor for GC. miR-144-3p was downregulated and correlated with the prognosis of GC. miR-144-3p regulated the expression of COL5A2 through direct interaction with COL5A2. ENTPD1-AS1 was elevated in GC and competitively bound to miR-144-3p, thus inhibiting the expression of miR-144-3p. ENTPD1-AS1 enhanced the expression of COL5A2 through sponging miR-144-3p. Compared to paired normal tissue, COL5A2 expression was upregulated at the protein level, especially in the middle and late stages of GC. The high expression of COL5A2 was positively linked to macrophage infiltration in GC.
CONCLUSION COL5A2 regulated by ENTPD1-AS1–miR-144-3p was associated with poor prognosis and macrophage infiltration in GC. This could be a new biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Han-Mei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Xiao-Feng Pu
- Department of Clinical Laboratory, The General Hospital of Western Theater Command, Chengdu 610000, Sichuan Province, China
| | - Hui Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
11
|
Zhong XL, Du Y, Chen L, Cheng Y. The emerging role of long noncoding RNA in depression and its implications in diagnostics and therapeutic responses. J Psychiatr Res 2023; 164:251-258. [PMID: 37385004 DOI: 10.1016/j.jpsychires.2023.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Depression is one of the most common mental illnesses, affecting more than 350 million people worldwide. However, the occurrence of depression is a complex process involving genetic, physiological, psychological, and social factors, and the underlying mechanisms of its pathogenesis remain unclear. With advances in sequencing technology and epigenetic studies, increasing research evidence suggests that long noncoding RNAs (lncRNAs) play nonnegligible roles in the development of depression and may be involved in the pathogenesis of depression through multiple pathways, including regulating neurotrophic factors and other growth factors and affecting synaptic function. In addition, significant alterations in lncRNA expression profiles in peripheral blood and different brain regions of patients and model animals with depression suggest that lncRNAs may function as biomarkers for the differential diagnosis of depression and other psychiatric disorders and may also be potential therapeutic targets. In this paper, the biological functions of lncRNAs are briefly described, and the functional roles and abnormal expression of lncRNAs in the development, diagnosis and treatment of depression are reviewed.
Collapse
Affiliation(s)
- Xiao-Lin Zhong
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
12
|
Zhuang W, Liu SL, Xi SY, Feng YN, Wang K, Abduwali T, Liu P, Zhou XJ, Zhang L, Dong XZ. Traditional Chinese medicine decoctions and Chinese patent medicines for the treatment of depression: Efficacies and mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116272. [PMID: 36791924 DOI: 10.1016/j.jep.2023.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression is a major mental disorder and it is currently recognized as the second-leading cause of disability worldwide. However, the therapeutic effect of antidepressants remains unsatisfactory. Traditional Chinese medicine (TCM) has been widely used for centuries, including commonly-used complementary and alternative medical therapies for depression. Recent clinical trials have been carried out to assess the efficacy and safety of TCM, and to explore the mechanisms of action in relation to the treatment of depression. AIM OF THE STUDY To summarize frequently used TCM decoctions and Chinese patent medicines (CPM) for treating depression, review their clinical therapeutic effects in treating depressive disorders, consider their possible mechanisms, and characterize the relationships between their efficacy and mechanisms. MATERIALS AND METHODS We performed a computerized literature search using the electronic databases such as PubMed, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang databases, with the keywords "depression", "traditional Chinese medicine decoction", "Chinese patent medicine", "application", "mechanism", and their combinations, from January 1, 2000 to August 8, 2022 (inclusive). RESULTS A total of 51 papers were identified. We reviewed studies on six each TCM decoctions and CPMs, which demonstrated their significant clinical efficacy for treating depression and examined their mechanisms of action. The anti-depressive effects were related to: 1) increased monoamine neurotransmitter levels, 2) inhibiting hyperactivity of the hypothalamic-pituitary-adrenal axis, 3) regulating hippocampal neurons and neurotrophic factors, 4) regulating immune cytokines, 5) counteracting excitatory amino acid toxicity, and 6) regulating microbe-gut-brain axis function. CONCLUSION TCM plays an increasingly important role in the management of depression by enhancing the therapeutic effects and alleviating the side effects of antidepressant chemicals.
Collapse
Affiliation(s)
- Wei Zhuang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, 100053, China.
| | - Shao-Li Liu
- Department of Pharmacy, Haiyang People's Hospital, Haiyang, 265100, China.
| | - Sheng-Yan Xi
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Ying-Nan Feng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, 100053, China.
| | - Ke Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, 100053, China.
| | - Teliebald Abduwali
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, 100053, China.
| | - Ping Liu
- Department of Clinical Pharmacology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Jiang Zhou
- Department of Clinical Pharmacology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, 100053, China.
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing, 100053, China.
| |
Collapse
|
13
|
Zhao Y, Zhang Q, Yan Y, Wang X, Shao Y, Mei C, Zou T. Antidepressant-like effects of geniposide in chronic unpredictable mild stress-induced mice by regulating the circ_0008405/miR-25-3p/Gata2 and Oip5os1/miR-25-3p/Gata2 networks. Phytother Res 2023; 37:1850-1863. [PMID: 36515407 DOI: 10.1002/ptr.7702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/01/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022]
Abstract
Evidence exists suggesting the anti-depressive activities of geniposide (GP), a major compound in Gardenia jasminoides Ellis. Accordingly, the present study attempts to explore the anti-depressive mechanism of GP in chronic unpredictable mild stress (CUMS)-induced depression-like behaviors of mice. CUMS-induced mice were given GP daily and subjected to behavioral tests to observe the effect of GP on the depression-like behaviors. It was noted that GP administration reduced depression-like behaviors in CUMS mice. Transcriptome sequencing was conducted in three control and three CUMS mice. Differentially expressed circRNAs, lncRNAs and mRNAs were then screened by bioinformatics analyses. Intersection analysis of the transcriptome sequencing results with the bioinformatics analysis results was followed to identify the candidate targets. We found that Gata2 alleviated depression-like behaviors via the metabolism- and synapse-related pathways. Gata2 was a target of miR-25-3p, which had binding sites to circ_0008405 and Oip5os1. circ_0008405 and Oip5os1 competitively bound to miR-25-3p to release the expression of Gata2. GP administration ameliorated depression-like behaviors in CUMS mice through regulation of the circ_0008405/miR-25-3p/Gata2 and Oip5os1/miR-25-3p/Gata2 crosstalk networks. Taken together, GP may exert a potential antidepressant-like effect on CUMS mice, which is ascribed to regulation of the circ_0008405/miR-25-3p/Gata2 and Oip5os1/miR-25-3p/Gata2 crosstalk networks.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Qian Zhang
- Department of Acupuncture, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yuzhu Yan
- Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Xinbo Wang
- Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yin Shao
- Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Cheng Mei
- Department of Encephalopathy, Heilongjiang Academy of Chinese Medical Sciences, Harbin, PR China
| | - Tianyu Zou
- Department of Encephalopathy, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, PR China
| |
Collapse
|
14
|
Li B, Xu M, Wang Y, Feng L, Xing H, Zhang K. Gut microbiota: A new target for traditional Chinese medicine in the treatment of depression. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116038. [PMID: 36529248 DOI: 10.1016/j.jep.2022.116038] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE The causes of depression are complex. Many factors are involved in its pathogenesis, including the individual's biological and social environment. Although numerous studies have reported that the gut microbiota plays a significant role in depression, drugs that regulate the gut microbiota to treat depression have not yet been comprehensively reviewed. At the same time, more and more attention has been paid to the characteristics of traditional Chinese medicine (TCM) in improving depression by regulating gut microbiota. In ancient times, fecal microbiota transplantation was recorded in TCM for the treatment of severe diseases. There are also records in Chinese ancient books about the use of TCM to adjust gut microbiota to treat diseases, which has opened up a unique research field in TCM. Therefore, this article focuses on the pharmacological effects, targets, and mechanisms of TCM in improving depression by mediating the influence of gut microbiota. AIM OF THIS REVIEW To summarize the role the gut microbiota plays in depression, highlight potential regulatory targets, and elucidate the anti-depression mechanisms of TCMs through regulation of the gut microbiota. METHODS A systematic review of 256 clinical trials and pharmaceutical studies published until June 2022 was conducted in eight electronic databases (Web of Science, PubMed, SciFinder, Research Gate, ScienceDirect, Google Scholar, Scopus, and China Knowledge Infrastructure), according to the implemented PRISMA criteria, using the search terms "traditional Chinese medicine," "depression," and "gut microbiota." RESULTS Numerous studies reported the effects of different gut bacteria on depression and that antidepressants work through the gut microbiota. TCM preparations based on compound Chinese medicine, the Chinese Materia Medica, and major bioactive components exerted antidepressant-like effects by improving levels of neurotransmitters, short-chain fatty acids, brain-derived neurotrophic factor, kynurenine, and cytokines via regulation of the gut microbiota. CONCLUSION This review summarized the anti-depression effects of TCM on the gut microbiota, providing evidence that TCMs are safe and effective in the treatment of depression and may provide a new therapeutic approach.
Collapse
Affiliation(s)
- Boru Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meijing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Jiangsu Kanion Pharmaceutical Co, Ltd, Lianyungang, 222001, China.
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Tianjin UBasio Biotechnology Group, Tianjin, 300457, China.
| |
Collapse
|
15
|
Huang D, Li M, Wang H, Fu M, Hu S, Wan X, Wang Z, Chen Q. Combining gas chromatography-ion mobility spectrometry and olfactory analysis to reveal the effect of filled-N2 anaerobic treatment duration on variation in the volatile profiles of gabaron green tea. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
16
|
Liu S, Fan M, Ma MD, Ge JF, Chen FH. Long non-coding RNAs: Potential therapeutic targets for epilepsy. Front Neurosci 2022; 16:986874. [PMID: 36278003 PMCID: PMC9582525 DOI: 10.3389/fnins.2022.986874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a common and disastrous neurological disorder characterized by abnormal firing of neurons in the brain, affecting about 70 million people worldwide. Long non-coding RNAs (LncRNAs) are a class of RNAs longer than 200 nucleotides without the capacity of protein coding, but they participate in a wide variety of pathophysiological processes. Alternated abundance and diversity of LncRNAs have been found in epilepsy patients and animal or cell models, suggesting a potential role of LncRNAs in epileptogenesis. This review will introduce the structure and function of LncRNAs, summarize the role of LncRNAs in the pathogenesis of epilepsy, especially its linkage with neuroinflammation, apoptosis, and transmitter balance, which will throw light on the molecular mechanism of epileptogenesis, and accelerate the clinical implementation of LncRNAs as a potential therapeutic target for treatment of epilepsy.
Collapse
Affiliation(s)
- Sen Liu
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Meng-Die Ma
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- *Correspondence: Jin-Fang Ge,
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- Fei-Hu Chen,
| |
Collapse
|