1
|
Tang C. Immunologic cell deaths: involvement in the pathogenesis and intervention therapy of periodontitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4957-4968. [PMID: 39718617 DOI: 10.1007/s00210-024-03732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Periodontitis is one of the most common diseases and primary causes of tooth loss. The main factor that causes periodontitis is an overactive host immunological response. An in-depth investigation into the molecular pathways that cause periodontitis can aid in creating novel therapeutic approaches for periodontitis and its related systemic disorders. Several immunologic cell death (ICD) pathways have been implicated in advancing periodontitis. Nevertheless, there is still a substantial lack of understanding surrounding the precise molecular mechanisms of ICD in periodontitis. Additionally, the beneficial feature of ICD in periodontitis, which involves its ability to eliminate pathogens, needs further confirmation. According to this, a comprehensive literature search utilizing the Web of Science™, PubMed®, and Scopus® databases was conducted. Only items published in the English language up until October 2024 were taken into account, and finally, 65 relevant papers were selected to be included in this review. In this article, we present a comprehensive analysis of the processes and outcomes of ICD activation in the progression of periodontitis. Lastly, the present difficulties linked to ICDs as a viable treatment option for periodontitis are emphasized.
Collapse
Affiliation(s)
- Chenyao Tang
- Department of Stomatology, Yongzhou Central Hospital, Yongzhou, Hunan Province, 425000, China.
| |
Collapse
|
2
|
Atlasbaf A, Kodehei AH, Bahadoran E, Zare I, Yousefzadeh S, Kesharwani P, Naderi Y, Sahebkar A. Bavachinin attenuates cerebral ischemia/reperfusion injury in rats via its anti-inflammatory and antioxidant effects. Tissue Cell 2025; 95:102886. [PMID: 40164017 DOI: 10.1016/j.tice.2025.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Cerebral ischemia is associated with memory deficits. Bavachinin, a natural flavonoid derived from Psoralea Corylifolia seeds, exhibits various pharmacological properties, including anti-inflammatory, antioxidant, anticancer, and anti-allergic activities. We looked into the neuroprotective effects of bavachinin on rats' memory impairments brought on by transient cerebral ischemia/reperfusion. Blocked carotid arteries caused transient cerebral ischemia/reperfusion injury. Wistar male rats were randomized to bavachinin, ischemia/reperfusion, and sham groups. After surgery, bavachinin (100 mg/kg) was injected intraperitoneally once a day for seven days. Spatial memory was evaluated using the Morris water maze test. The vitality of the hippocampal pyramidal neurons was assessed by Nissl staining. The production of pro-inflammatory cytokines (TNF-α and IL-1β) has been detected using ELISA. Oxidative stress was evaluated by determining the hippocampal levels of malondialdehyde (MDA). In rats with transient cerebral ischemia/reperfusion, bevacichinin markedly improved the performance of learning. The bavachinin-treated group had a higher number of surviving pyramidal neurons, as demonstrated by the Nissl staining. In the hippocampus, bevacichinin lowered MDA, TNF-α, and IL-1β levels. The antioxidant and anti-inflammatory properties of bavachinin likely protect against memory impairment caused by transient cerebral ischemia. These findings suggest that bavachinin could be a potent therapeutic agent for the prevention of cognitive deficits and neuronal damage associated with cerebral ischemia/reperfusion. More studies are needed to explore its clinical applications and mechanisms of action.
Collapse
Affiliation(s)
| | | | - Ensiyeh Bahadoran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Isareza Zare
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Salar Yousefzadeh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Yazdan Naderi
- Cellular and Molecular Research Center, Research Institute for Prevention of Noncommunicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Al-Mansour FSH, Almasoudi HH, Albarrati A. Mapping molecular landscapes in triple-negative breast cancer: insights from spatial transcriptomics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04057-3. [PMID: 40119898 DOI: 10.1007/s00210-025-04057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The tumor microenvironment (TME) of triple-negative breast cancer (TNBC) is a highly heterogeneous and very aggressive form of the disease that has few suitable treatment options; however, spatial transcriptomics (ST) is a powerful tool for elucidation of the TME in TNBC. Because of its spatial context preservation, ST has a unique capability to map tumor-stroma interactions, immune infiltration, and therapy resistance mechanisms (which are key to understanding TNBC progression), compared with conventional transcriptomics. This review shows the use of ST in TNBC, its utilization in spatial biomarker identification, intratumoral heterogeneity definition, molecular subtyping refinement, and prediction of immunotherapy responses. Recent insight from ST-driven insights has explained the key spatial patterns on immune evasion, chemotherapy resistance, racial disparities of TNBC, and aspects for patient stratification and therapeutic decision. With the integration of ST with the subjects of proteomics and imaging mass cytometry, this approach has been enlarged and is now applied in precision medicine and biomarker discovery. Recently, advancements in AI-based spatial analysis for tumor classification, identification of biomarkers, and creation of therapy prediction models have occurred. However, continued developments in ST technologies, computational tools, and partnerships amongst multiple centers to facilitate the integration of ST into clinical routine practice are needed to unlock novel therapeutic targets.
Collapse
Affiliation(s)
- Fares Saeed H Al-Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ali Albarrati
- Rehabilitation Sciences Department, College of Applied Medical Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Wu Z, Zhao Q, Hu Z, Jiao D. Lipid droplets deposition in perihematoma tissue is associated with neurological dysfunction after intracerebral hemorrhage. Neuroreport 2025; 36:239-246. [PMID: 39976011 DOI: 10.1097/wnr.0000000000002136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Secondary brain injury following intracerebral hemorrhage (ICH) significantly reduces patients' quality of life due to impaired neurological function. Lipid droplets are implicated in secondary brain injury in various central nervous system diseases. Thus, the role and mechanisms of lipid droplets in secondary brain injury post-ICH require further investigation. We analyzed the changes of genes related to lipid metabolism in brain tissue of ICH mice. Lipid droplets around the hematoma were detected by BODIPY staining. Mice received intraperitoneal injections of Triacsin C (10 mg/kg, once daily) after ICH. Subsequently, neuronal damage was evaluated using TUNEL and Nissl staining, and ethological tests assessed sensorimotor function. After ICH, notable changes occurred in lipid metabolism pathways and genes (Plin2, Ucp2, Apoe), and a large number of lipid droplets accumulated around the hematoma. Triacsin C significantly reduced lipid droplets deposition, decreased neuronal damage, and improved sensory and motor functions. Peripheral administration to prevent lipid droplets formation can greatly reduce nerve damage and enhance nerve function. Our findings indicate that targeting lipid droplets could be a promising treatment for ICH.
Collapse
Affiliation(s)
- Zhangze Wu
- Department of Neurology, Air Force Hospital of Eastern Theater, Nanjing, Jiangsu, China
| | | | | | | |
Collapse
|
5
|
Rana JN, Mumtaz S. Prunin: An Emerging Anticancer Flavonoid. Int J Mol Sci 2025; 26:2678. [PMID: 40141319 PMCID: PMC11942023 DOI: 10.3390/ijms26062678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Despite the substantial advances in cancer therapies, developing safe and effective treatment methodologies is critical. Natural (plant-derived compounds), such as flavonoids, might be crucial in developing a safe treatment methodology without toxicity toward healthy tissues. Prunin is a flavonoid with the potential to be used in biomedical applications. Prunin has yet to undergo thorough scientific research, and its precise molecular mechanisms of action remain largely unexplored. This review summarizes the therapeutic potential of prunin for the first time, focusing on its underlying mechanisms as an anticancer compound. Prunin has gained significant attention due to its antioxidant, anti-inflammatory, and anticancer effects. This review aims to unlock how prunin functions at the molecular level to exert its anticancer effects, primarily modulating key cellular pathways. Furthermore, we have discussed the prunin's potential as an adjunctive therapy with conventional treatments, highlighting its ability to strengthen treatment responses while decreasing drug resistance. Moreover, the discussion probes into innovative delivery methods, particularly nanoformulations, that might address prunin's bioavailability, solubility, and stability limitations and optimize its therapeutic application. By providing a comprehensive analysis of prunin's properties, this review aims to stimulate further exploration of using prunin as an anticancer agent, thereby progressing the development of targeted, selective, safe, and effective therapeutic methods.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sohail Mumtaz
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
6
|
Nayyab BF, Shah M, Asad MH, Zaidi A, Alam F, Mannan A, Rashid U. Design, synthesis, and molecular docking studies of thiazole derivatives against phospholipase A 2 ( Naja oxiana) venom. Future Med Chem 2025; 17:659-667. [PMID: 40091794 PMCID: PMC11938964 DOI: 10.1080/17568919.2025.2478807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
AIM Cobra venom phospholipase A2 (PLA2) has been known to induce life threatening effects post-envenomation in the victims. Being the most abundant and noxious component of snake venom, present study was envisaged to investigate new drug candidates against PLA2 enzyme. METHODS Amide and sulfonamide thiazole derivatives were synthesized and characterized using FTIR, 1HNMR and 13CNMR followed by docking targeted protein techniques. Furthermore, synthetic analogues were evaluated in vitro for their potentials to neutralize PLA2 activity. RESULTS Among the pool of synthetic derivatives, compound (7) (ethyl 2-(2-(4-isobutylphenyl)propanamido)thiazole-4-carboxylate) was found to be completely effective (p > 0.05; IC50 = 1 nM) to mask cent percent PLA2 activity. Moreover, Ramachandran plot further conferred about the location of amino acid residues in the most favored region and, therefore, attributed to confiscate PLA2 activity. Furthermore, ADME profile suggested that compound (7) possesses systemic bioavailability and efficacy with favorable safety profile (high solubility, membrane permeability, metabolic stability, and low potential for off-target results). CONCLUSION Present study highlighted compound (7) as a potential PLA2 inhibitor to reverse PLA2-induced snake venom poisoning in future.
Collapse
Affiliation(s)
- Bibi F. Nayyab
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad H.H.B. Asad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
- Institute of Fundamental Medicine and Biology, Department of Genetics, Kazan Federal University, Kazan, Russia
| | - Asma Zaidi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Fiaz Alam
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Abdul Mannan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
7
|
Wang X, Wang M, Dong Y, Yu S, Zhang S, Sun P, Wang L, Liu J, Lin H, Pan X, Li X. Antithrombotic Effect of Chenopodium album L. Extract and Its Fractions via Regulating TLRs and the Downstream MAPKs and PI3K/AKT Signaling Pathways in Zebrafish. Int J Mol Sci 2025; 26:2118. [PMID: 40076740 PMCID: PMC11900136 DOI: 10.3390/ijms26052118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Chenopodium album L., as a folkloric herb, is traditionally used to treat poisonous insect bites, vitiligo, and other ailments. However, its impact on thrombosis remains unknown. In this study, we discovered that the ethanol extract of C. album exhibited a remarkable antithrombotic effect using a zebrafish thrombosis model for the first time. Activity evaluation showed that fraction CA-C could improve thrombus aggregation in the caudal vein, increase blood return in the heart, and alleviate the slowing of blood flow compared with those in the model group. Then, analysis by ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass (UPLC-Q-TOF-MS) identified 58 constituents of CA-C, with most of them belonging to flavonoids, alkaloids, and steroidal saponin components. Moreover, using a comprehensive strategy of network pharmacological analysis, transcriptomic assay, and RT-qPCR validation, we found that CA-C could mediate the TLR's signaling pathway and its downstream MAPKs and PI3K/AKT signaling pathways to exert an antithrombotic effect. This study broadens the clinical application of plant C. album and provides new insight into the chemical profile, pharmacodynamics, and potential mechanisms of CA-C as candidate agents for treating thrombosis.
Collapse
Affiliation(s)
- Xiyue Wang
- Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, China; (X.W.); (P.S.); (L.W.)
| | - Miaoyunhuan Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China; (M.W.); (Y.D.); (S.Y.); (S.Z.); (J.L.); (H.L.)
| | - Yuqing Dong
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China; (M.W.); (Y.D.); (S.Y.); (S.Z.); (J.L.); (H.L.)
| | - Shuqing Yu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China; (M.W.); (Y.D.); (S.Y.); (S.Z.); (J.L.); (H.L.)
| | - Shanshan Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China; (M.W.); (Y.D.); (S.Y.); (S.Z.); (J.L.); (H.L.)
| | - Pinghua Sun
- Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, China; (X.W.); (P.S.); (L.W.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lu Wang
- Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, China; (X.W.); (P.S.); (L.W.)
| | - Jibin Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China; (M.W.); (Y.D.); (S.Y.); (S.Z.); (J.L.); (H.L.)
| | - Houwen Lin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China; (M.W.); (Y.D.); (S.Y.); (S.Z.); (J.L.); (H.L.)
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinhui Pan
- Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, China; (X.W.); (P.S.); (L.W.)
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China; (M.W.); (Y.D.); (S.Y.); (S.Z.); (J.L.); (H.L.)
| |
Collapse
|
8
|
Sadat Razavi Z, Sina Alizadeh S, Sadat Razavi F, Souri M, Soltani M. Advancing neurological disorders therapies: Organic nanoparticles as a key to blood-brain barrier penetration. Int J Pharm 2025; 670:125186. [PMID: 39788400 DOI: 10.1016/j.ijpharm.2025.125186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) plays a vital role in protecting the central nervous system (CNS) by preventing the entry of harmful pathogens from the bloodstream. However, this barrier also presents a significant obstacle when it comes to delivering drugs for the treatment of neurodegenerative diseases and brain cancer. Recent breakthroughs in nanotechnology have paved the way for the creation of a wide range of nanoparticles (NPs) that can serve as carriers for diagnosis and therapy. Regarding their promising properties, organic NPs have the potential to be used as effective carriers for drug delivery across the BBB based on recent advancements. These remarkable NPs have the ability to penetrate the BBB using various mechanisms. This review offers a comprehensive examination of the intricate structure and distinct properties of the BBB, emphasizing its crucial function in preserving brain balance and regulating the transport of ions and molecules. The disruption of the BBB in conditions such as stroke, Alzheimer's disease, and Parkinson's disease highlights the importance of developing creative approaches for delivering drugs. Through the encapsulation of therapeutic molecules and the precise targeting of transport processes in the brain vasculature, organic NP formulations present a hopeful strategy to improve drug transport across the BBB. We explore the changes in properties of the BBB in various pathological conditions and investigate the factors that affect the successful delivery of organic NPs into the brain. In addition, we explore the most promising delivery systems associated with NPs that have shown positive results in treating neurodegenerative and ischemic disorders. This review opens up new possibilities for nanotechnology-based therapies in cerebral diseases.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| |
Collapse
|
9
|
Singh A, Maheshwari S, Yadav JP, Kumar R, Verma A, Singh S, Prajapati BG. Bioactive Compound-Fortified Nanocarriers in the Management of Neurodegenerative Disease: A Review. Chem Biodivers 2025:e202402018. [PMID: 39928755 DOI: 10.1002/cbdv.202402018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/12/2025]
Abstract
Individual around the globe faces enormous problems from illnesses of the neurological system and the cerebrum, including neurodegenerative conditions and brain tumors. There are still no demonstrated viable treatments for neurological conditions, despite advances in drug delivery technologies such as solid lipid nanoparticles, nanostructured lipid carriers, and nano-liposomes. To address this, there is growing interest in leveraging naturally occurring bioactive substances for their therapeutic potential. However, challenges such as limited bioavailability and metabolism hinder their efficacy, particularly in the brain. Although various pharmaceutical interventions exist for neurodegenerative diseases, they often come with significant side effects, and there is currently no specific treatment to cure or slow down disease progression. Challenges such as the blood-brain barrier and blood-cerebrospinal fluid barrier present significant obstacles to deliver drugs into the brain. Strategies to improve drug penetration across these barriers include targeting specific transport systems and developing innovative drug delivery approaches. Hence, the development of nanocarriers capable of targeting bioactive compounds to the brain represents a promising approach for neurodegenerative disease therapy. This review explores the potential of bioactive compound-fortified nano-delivery systems for treating neurodegenerative diseases, with various compounds offering unique avenues for investigating neurodegeneration pathways and strategies in overcoming associated challenges.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Shubhrat Maheshwari
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Jagat Pal Yadav
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Ravi Kumar
- Institute of pharmaceutical sciences, J.S. University, Shikohabad, Uttar Pradesh, India
| | - Amita Verma
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttrakhand, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
10
|
Balaraman AK, Afzal M, Moglad E, Babu MA, Priya GP, Bansal P, Rajotiya S, Kondapavuluri BK, Kazmi I, Alzarea SI, Goyal K, Ali H. The interplay of p16INK4a and non-coding RNAs: bridging cellular senescence, aging, and cancer. Biogerontology 2025; 26:50. [PMID: 39907830 DOI: 10.1007/s10522-025-10194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
p16INK4a is a crucial tumor suppressor and regulator of cellular senescence, forming a molecular bridge between aging and cancer. Dysregulated p16INK4a expression is linked to both premature aging and cancer progression, where non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs) play key roles in modulating its function. These ncRNAs interact with p16INK4a through complex post-transcriptional and epigenetic mechanisms, influencing pathways critical to senescence and tumor suppression. In this review, we explore ncRNAs, including ANRIL, MIR31HG, UCA1, MALAT1, miR-24, miR-30, and miR-141, which collectively regulate p16INK4a expression, promoting or inhibiting pathways associated with cancer and aging. ANRIL and MIR31HG modulate p16INK4a silencing via interactions with polycomb repressive complexes (PRC), while miRNAs such as miR-24 and miR-30 target p16INK4a to influence cellular proliferation and senescence. This regulatory interplay underscores the therapeutic potential of ncRNA-targeted strategies to restore p16INK4a function. We summarize recent studies supporting that ncRNAs that control p16INK4a may be diagnostic biomarkers and therapeutic targets for age-related diseases and cancer.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - G Padma Priya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Benod Kumar Kondapavuluri
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India.
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
11
|
Rushendran R, Singh S A, Begum RF, Chitra V, Ali N, Prajapati BG. Bioinformatics Exploration of the Therapeutic Potential of Lotus Seed Compounds in Multiple Sclerosis: A Network Analysis of c-Jun Pathway. Drug Dev Res 2025; 86:e70038. [PMID: 39756059 DOI: 10.1002/ddr.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025]
Abstract
The central nervous system is affected by multiple sclerosis (MS), a chronic autoimmune illness characterized by axonal destruction, demyelination, and inflammation. This article summarizes the state of the field, highlighting its complexity and significant influence on people's quality of life. The research employs a network pharmacological approach, integrating systems biology, bioinformatics, and pharmacology to identify biomarkers associated with MS. Utilizing Nelumbo Nucifera (Lotus) seeds, the study involves toxicity assessments, biomolecule screening, and target prediction. Advanced computational methodologies are employed, including molecular docking and dynamic simulations, to assess potential therapeutic interactions. Biomolecule screening identifies eight active compounds from Lotus seeds, including Anonaine and Liriodenine. Target prediction reveals 264 common targets with MS-related genes. Protein-protein interaction analysis establishes a complex network, identifying central targets like SRC and AKT1. Bioinformatics enrichment analysis uncovers potential therapeutic candidates and pathways. A Biomolecule-Target-Pathway network diagram visualizes interactions, with Anonaine and Liriodenine exhibiting strong binding affinities in molecular docking studies. Molecular dynamics simulations provide insights into dynamic interactions. In conclusion, through advanced computational techniques, it unveils molecular interactions, potential therapies, and pathways, bridging predictions with practical applications. Anonaine and Liriodenine show promise in curbing MS biomarkers.
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Chennai, India
| | - Ankul Singh S
- Department of Pharmacology, Dr. M.G.R Educational and Research Institute, Faculty of Pharmacy, Chennai, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Chennai, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bhupendra G Prajapati
- Department of Pharmaceutics, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, India
- Department of Industrial Pharmacy, Faculty of Pharmacy, Sanam Chandra Palace Campus, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
12
|
Gang R, Okello D, Ban Y, Kang Y. A systematic review of Aspilia africana (Pers.) C.D. adams traditional medicinal uses, phytoconstituents, bioactivities, and toxicities. Pharmacol Res 2025; 212:107590. [PMID: 39778640 DOI: 10.1016/j.phrs.2025.107590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Aspilia africana (Pers.) C. D. Adams, popularly referred to as wild sunflower, has been used for generations across several African communities to treat various diseases, including malaria, wounds, osteoporosis, diabetes mellitus, gastric ulcers, measles, tuberculosis, stomach ache, rheumatic pains, and gonorrhea. This study aimed to systematically and critically compile data on the traditional medicinal uses, phytochemistry, bioactivities, botanical descriptions, and toxicities of A. africana. Relevant research findings were retrieved and organized from various databases, including PubMed and ScienceDirect, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. To date, 149 phytochemicals have been identified from various A. africana parts and they primarily belong to the classes of terpenoids, lipids, hydrocarbons, phenolics, and esters. The extracts and bioactive phytochemicals of A. africana have revealed several pharmacological properties, including antimalarial, anticancer, wound healing, anti-inflammatory, antidiabetic, and antimicrobial activities. However, the major components responsible for these bioactivities and their mechanisms of action in some diseases have not yet been clearly identified. Additionally, toxicity and clinical trial data for A. africana are limited with most toxicological assessments being acute in nature. Therefore, further research on the mechanisms of action of the pure bioactive phytochemicals and toxicity of A. africana are necessary to better understand its efficacy and safety. Taken together, this study provides comprehensive information on the traditional medicinal uses, phytochemistry, bioactivities, and toxicity of A. africana, and a reference for future studies, relevant to the development of therapeutic products.
Collapse
Affiliation(s)
- Roggers Gang
- Korean Convergence Medical Science Major, Korea National University of Science and Technology (UST), Daejeon 34113, South Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea; National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Denis Okello
- Department of Biological Sciences, Kabale University, PO Box 317, Kabale, Uganda
| | - Yeongjun Ban
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Youngmin Kang
- Korean Convergence Medical Science Major, Korea National University of Science and Technology (UST), Daejeon 34113, South Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea.
| |
Collapse
|
13
|
Lei B, Su Y, Chen R, Chen Z, Liu B, Chen Y, Zhou M, Wang X, Ma Q. Uncovering the Mechanisms of BaBaoWuDanYaoMo Against Influenza A Virus and Virus-Induced Inflammation Based on Network Pharmacology and Pharmacological Evaluation. Infect Drug Resist 2025; 18:567-587. [PMID: 39902273 PMCID: PMC11789520 DOI: 10.2147/idr.s491101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/11/2025] [Indexed: 02/05/2025] Open
Abstract
Purpose The pro-inflammatory response triggered by influenza viruses can contribute to viral pneumonia, even death. The effect and mechanism of BaBaoWuDanYaoMo (BB) against influenza virus remains obscure. To predict its therapeutic targets via network pharmacology and verify the therapeutic effect and the mechanism of BB against influenza virus in vitro and in vivo. Material and Methods The potential active and underlying mechanism of BB in the treatment of influenza virus was predicted through network pharmacological strategies and Molecular Docking. The protective and anti-inflammatory effects of BB were determined by cytopathic effect (CPE), quantitative real-time PCR, mitochondrial membrane potentials and Western blotting assay in vitro. BALB/c mice were intranasally infected with A/PR/8/34 (H1N1) (PR8) and orally administrated BB (500 mg/kg, 250 mg/kg and 125 mg/kg) or oseltamivir daily. The normal group was orally administrated PBS for 5 days. Lung indexes, histological changes and cytokines were determined on the 6th day. Results BB could effectively inhibit A/Puerto Rico/8/1934 (H1N1), A/GZ/GIRD07/09 (H1N1), A/HK/Y280/97 (H9N2) and A/Aichi/68 (H3N2) with IC50 values of 116.5 ± 2.2, 59.86 ± 8.33, 102.87 ± 6.66 and 66.43 ± 6.785 μg/mL, respectively. It could inhibit PR8-induced apoptosis and inhibit the expression of apoptosis markers (cleaved PARP). BB inhibited the mRNA expression of MCP-1/CCL-2, IL-6, CXCL-8/IL-8, TNF-α and CXCL-10/IP-10, and downregulated the protein expression of phosphorylated AKT/p38 and TLR3 in vitro. BB (500 and 250 mg/kg) could improve pulmonary histopathological changes, decrease the lung index and suppress the mRNA expression of CXCL1/KC, TNF-α, CXCL9/MIG and IL-1β in vivo. Conclusion BB has a protective effect on PR8-induced acute lung injury (ALI) probably via inhibition of apoptosis process and interfering with TLR3, p38 MAPK and PI3K-AKT signaling pathways. This study provided a potential treatment for influenza from BB, and network pharmacology provided a strategy to explore active components and mechanism of TCMs against influenza virus infection.
Collapse
Affiliation(s)
- Biao Lei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yongjie Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ruihan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zexing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Bin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuou Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
- King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Meihua Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
- Institute of Integration of Traditional and Western Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
14
|
Rubio C, López-Landa A, Romo-Parra H, Rubio-Osornio M. Impact of the Ketogenic Diet on Neurological Diseases: A Review. Life (Basel) 2025; 15:71. [PMID: 39860011 PMCID: PMC11767209 DOI: 10.3390/life15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The ketogenic diet (KD), high in fat and low in carbohydrates, was introduced in the 1920s as a non-pharmacological treatment for refractory epilepsy. Although its mechanism of action is not fully understood, beneficial effects have been observed in neurological diseases such as epilepsy, Alzheimer's disease, and Parkinson's disease. OBJECTIVE This review examines the impact of the ketogenic diet and its molecular and neuroglial effects as a complementary therapy for neurological diseases. DISCUSSION KD is associated with neuroprotective and antioxidant effects that improve mitochondrial function, regulate neurotransmitter flow, and reduce neuroinflammation and oxidative stress. Glial cells play an essential role in the utilization of ketone bodies (KBs) within the central nervous system's metabolism, particularly during ketosis induced by the KD. Thus, the KD represents a broad and promising strategy that involves both neurons and glial cells, with a molecular impact on brain metabolism and neuroinflammatory homeostasis. CONCLUSION Multiple molecular mechanisms have been identified to explain the benefits of the KD in neurological diseases; however, further experimental and clinical studies are needed to address various molecular pathways in order to achieve conclusive results.
Collapse
Affiliation(s)
- Carmen Rubio
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
| | - Alejandro López-Landa
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla City 72000, Mexico
| | - Hector Romo-Parra
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- Psychology Department, Universidad Iberoamericana, Mexico City 01376, Mexico
| | - Moisés Rubio-Osornio
- Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
15
|
Liu CY, Li Z, Cheng FE, Nan Y, Li WQ. Radix Codonopsis: a review of anticancer pharmacological activities. Front Pharmacol 2025; 15:1498707. [PMID: 39840099 PMCID: PMC11747557 DOI: 10.3389/fphar.2024.1498707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Radix Codonopsis (Dangshen), derived from the dried root of plants in the Campanulaceae family, is a widely used Chinese herbal medicine. It is renowned for its pharmacological effects, including tonifying the middle qi, invigorating the spleen, benefiting the lungs, enhancing immunity, and nourishing the blood. Codonopsis extract is frequently incorporated into health products such as tablets and capsules, making it accessible for daily health maintenance. Additionally, it is commonly used in dietary applications like soups, teas, and porridges to nourish qi, enrich blood, and promote overall vitality. In recent years, increasing attention has been given to the anti-cancer potential of Radix Codonopsis. Studies have identified key active components such as luteolin, stigmasterol, polyacetylenes, lobetyolin, and glycitein, which exhibit anti-tumor properties through mechanisms like inhibiting cancer cell growth and proliferation, suppressing epithelial-mesenchymal transition (EMT), and inducing apoptosis. This review highlights the research progress on Radix Codonopsis, including its active constituents, anti-cancer mechanisms, and its role in the convergence of medicine and food in modern life. By doing so, it aims to provide valuable insights and references for future scientific studies and clinical applications of Radix Codonopsis.
Collapse
Affiliation(s)
- Cai-Yue Liu
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Zheng Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Fan-E. Cheng
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Yi Nan
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Wei-Qiang Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
16
|
Yadav VK, Gupta R, Assiri AA, Uddin J, Ishaqui AA, Kumar P, Orayj KM, Tahira S, Patel A, Choudhary N. Role of Nanotechnology in Ischemic Stroke: Advancements in Targeted Therapies and Diagnostics for Enhanced Clinical Outcomes. J Funct Biomater 2025; 16:8. [PMID: 39852564 PMCID: PMC11766075 DOI: 10.3390/jfb16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Each year, the number of cases of strokes and deaths due to this is increasing around the world. This could be due to work stress, lifestyles, unhealthy food habits, and several other reasons. Currently, there are several traditional methods like thrombolysis and mechanical thrombectomy for managing strokes. The current approach has several limitations, like delayed diagnosis, limited therapeutic delivery, and risks of secondary injuries. So, there is a need for some effective and reliable methods for the management of strokes, which could help in early diagnosis followed by the treatment of strokes. Nanotechnology has played an immense role in managing strokes, and recently, it has emerged as a transformative solution offering innovative diagnostic tools and therapeutic strategies. Nanoparticles (NPs) belonging to several classes, including metallic (metallic and metal oxide), organic (lipids, liposome), and carbon, can cross the blood-brain barrier and may exhibit immense potential for managing various strokes. Moreover, these NPs have exhibited promise in improving imaging specificity and therapeutic delivery by precise drug delivery and real-time monitoring of treatment efficacy. Nanomaterials like cerium oxide (CeO2) and liposome-encapsulated agents have neuroprotective properties that reduce oxidative stress and promote neuroregeneration. In the present article, the authors have emphasized the significant advancements in the nanomedicine management of stroke, including NPs-based drug delivery systems, neuroprotective and neuroregenerative therapies, and multimodal imaging advancements.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Rachna Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382021, Gujarat, India;
| | - Abdullah A. Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Azfar A. Ishaqui
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India;
| | - Khalid M. Orayj
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Shazia Tahira
- Institute of Professional Psychology, Bahria University Karachi Campus, Karachi 75260, Pakistan;
- Department of Psychiatry, Jinnah Postgraduate Medical Centre, Karachi 75510, Pakistan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
- Department of Lifesciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| |
Collapse
|
17
|
Nabizadeh F, Sheykhlou S, Mahmoodi S, Khalili E, Zafari R, Hosseini H. Neuroimaging Findings of Psychosis in Alzheimer's Disease: A Systematic Review. Brain Behav 2025; 15:e70205. [PMID: 39740792 DOI: 10.1002/brb3.70205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Previous studies on neuroimaging findings in Alzheimer's disease (AD) patients with hallucinations and delusions have yielded inconsistent results. We aimed to systematically review neuroimaging findings of delusions and hallucinations in AD patients to describe the most prominent neuroimaging features. METHODS We performed a comprehensive search in three online databases, including PubMed, Scopus, and Web of Science in June 2023. We included studies that reported neuroimaging features of AD patients with delusion, hallucination, or psychosis. RESULTS After the screening, 34 studies with 2241 AD patients were eligible to be included in our qualitative synthesis. On the basis of the included studies, there are significant changes in the volume and perfusion levels of broad brain areas, including the hippocampus, amygdala, insula, cingulate, occipital, frontal, prefrontal, orbitofrontal, temporal, and parietal cortices in these patients. Moreover, AD patients with psychosis, hallucinations, or delusions reflected different EEG waves compared to AD patients without these disorders. CONCLUSION The results of our review provided evidence about the neuroimaging alterations in AD patients suffering from psychosis, hallucinations, and delusions using different imaging methods. AD patients with psychosis, hallucinations, or delusions have significant differences in the volume and perfusion levels of various brain regions along with alterations in EEG waves and biological molecules compared to patients with only AD.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Alzheimer's Disease Institute, Tehran, Iran
| | - Shadi Sheykhlou
- Medical Laboratory Department, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Mahmoodi
- Medical Laboratory Department, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Khalili
- Universal Scientific Education and Research Network (USERN), Bandar Abbas, Hormozgan, Iran
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Helia Hosseini
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Wang X, Lin X, Chen Z, Long H, Zhou X, Lei S, Liu J, Dong H, Liu F, Hu H, Guo C. Annao Pingchong decoction attenuates oxidative stress and neuronal apoptosis following intracerebral hemorrhage via RAGE-NOX2/4 axis. Front Neurosci 2024; 18:1491343. [PMID: 39737434 PMCID: PMC11683131 DOI: 10.3389/fnins.2024.1491343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a severe condition associated with high mortality and disability rates. Oxidative stress plays a critical role in the development of secondary brain injury (SBI) following ICH. Previous research has demonstrated that Annao Pingchong decoction (ANPCD) treatment for ICH has antioxidant effects, but the exact mechanism is not yet fully understood. Objective This study aimed to investigate the neuroprotective effects of ANPCD on oxidative stress and neuronal apoptosis after ICH by targeting the receptor for advanced glycation end products (RAGE)-NADPH oxidase (NOX) 2/4 signaling axis. Methods The research involved the creation of rat ICH models, the mNSS assay to assess neurological function, Nissl staining to evaluate neuronal damage, and biochemical assays to measure oxidative and antioxidant levels. The expression of RAGE-NOX2/4 axis proteins was analyzed using western blotting and immunofluorescence, while neuronal apoptosis was assessed with TUNEL staining. Furthermore, after performing quality control of drug-containing serum using UPLC-MS/MS, we employed an in vitro model of heme-induced injury in rat cortical neurons to investigate the neuroprotective mechanisms of ANPCD utilizing RAGE inhibitors. Results The findings indicated that ANPCD improved neurological deficits, reduced neuronal damage, decreased ROS and MDA levels, and increased the activities enzymatic activities of SOD, CAT, GSH and GPX. Additionally, it suppressed the RAGE-NOX2/4 signaling axis and neuronal apoptosis. Conclusion ANPCD exhibits neuroprotective effects by inhibiting the RAGE-NOX2/4 signaling axis, thereby alleviating neuronal oxidative stress and apoptosis following ICH.
Collapse
Affiliation(s)
- Xu Wang
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyuan Lin
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zilin Chen
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Hongping Long
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuqing Zhou
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shihui Lei
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jian Liu
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Huan Dong
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Fang Liu
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hua Hu
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chun Guo
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
19
|
Pei J, Xu X, Zhao LC. Hemodynamic evaluation of endovascular techniques of stenting and coiling for the treatment of internal carotid artery aneurysm: a computational study. Sci Rep 2024; 14:29117. [PMID: 39582080 PMCID: PMC11586413 DOI: 10.1038/s41598-024-80311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
The selection optimum endovascular method for the treatment of different cerebral aneurysms has been the main challenge for surgeons. In the present article, the computational technique is used for the hemodynamic evaluation of two main endovascular techniques of stent and coiling for the reduction of the hemorrhage risk of ICA aneurysms. Comprehensive analyses of the blood flow are performed to detect potential regions with high risk at critical stages of the cardiac cycle. Two coiling porosity conditions and stent deformation have been investigated via computational study to reveal the main change related to hemodynamics when these techniques are implemented. The hemodynamic results of this study show that the endovascular technique is more efficient in small aneurysms rather than giant ones. Meanwhile, the stent treatment of the giant saccular aneurysm is effective when the parent vessel of this type of aneurysm is fully aligned and limited blood flow enters the sac area.
Collapse
Affiliation(s)
- Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, HeBei, China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, HeBei, China.
| | - Li-Cai Zhao
- The Third Engineering Co., Ltd., China Railway 19th Bureau Group Co., Ltd, Shenyang, China
- School of Engineering, Islamic azad university, Tehran, Iran
| |
Collapse
|
20
|
Ouassaf M, Bourougaa L, Bahaz F, Alhatlani BY. Exploring the Antiviral Potential of Artemisia annua Through JAK-STAT Pathway Targeting: A Network Pharmacology Approach. Pharmaceuticals (Basel) 2024; 17:1539. [PMID: 39598448 PMCID: PMC11597232 DOI: 10.3390/ph17111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Artemisia annua, a plant with antiviral potential, has shown promise against various viral infections, yet its mechanisms of action are not fully understood. This study explores A. annua's antiviral effects using network pharmacology and molecular docking, focusing on key active compounds and their interactions with viral protein targets, particularly within the JAK-STAT signaling pathway-a critical mediator of immune responses to viral infections. METHODS From the TCMSP database, we identified eight active compounds and 335 drug targets for A. annua, with 19 intersecting targets between A. annua compounds and viral proteins. A protein-protein interaction (PPI) network highlighted 10 key hub genes, analyzed further through Gene Ontology (GO) and KEGG pathways to understand their immune and antiviral roles. ADMET properties of the active compound Patuletin (MOL004112) were assessed, followed by 200 ns molecular dynamics simulations to examine its stability in complex with JAK2. RESULTS PPI analysis identified JAK2, MAPK3, MAPK1, JAK1, PTPN1, HSPA8, TYK2, RAF1, MAPT, and HMOX1 as key hub genes, with JAK2 emerging as a critical regulator of immune and antiviral pathways. ADMET analysis confirmed Patuletin's favorable pharmacokinetic properties, and molecular dynamics simulations showed a stable Patuletin-JAK2 complex, with FEL analysis indicating minimal disruption to JAK2's intrinsic flexibility. CONCLUSIONS These findings highlight JAK2 as a promising target in the antiviral activity of A. annua compounds, particularly Patuletin, supporting its potential as an antiviral agent and providing a foundation for further research on A. annua's therapeutic applications.
Collapse
Affiliation(s)
- Mebarka Ouassaf
- Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, BP 145, Biskra 07000, Algeria;
| | - Lotfi Bourougaa
- Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, BP 145, Biskra 07000, Algeria;
| | - Farial Bahaz
- Laboratory of Organic Materials and Heterochemistry, Echahid Cheikh Larbi Tebessi University, Tebessa 12000, Algeria;
| | - Bader Y. Alhatlani
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
21
|
Zhao P, Liu X, Fan Y, Li X, Kheiri AA. Enhancing understanding of stent-induced deformation in MCA aneurysms: a hemodynamic study. Sci Rep 2024; 14:28036. [PMID: 39543290 PMCID: PMC11564735 DOI: 10.1038/s41598-024-78664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
This article provides a comprehensive hemodynamic assessment of two endovascular techniques for treating cerebral aneurysms. Through finite volume simulations of pulsatile blood flow in saccular aneurysms, we evaluated hemodynamic factors under two coiling conditions with varying porosities and deformation stages to determine the most effective treatment for each case. Our analysis shows that stent and coiling treatments are more effective for aneurysms with smaller sac volumes. In particular, stent placement is found to be more effective than coiling for managing saccular aneurysms. The results indicate that stent-induced deformation effectively redirects the main blood flow, significantly lowering the risk of aneurysm rupture near the ostium. Obtained results emphasize the role of deformation and porosity in controlling wall shear stress, which is essential for understanding aneurysm progression and potential rupture risk.
Collapse
Affiliation(s)
- Peng Zhao
- Interventional Vascular Surgery Department, Peking University International Hospital, Beijing, 102206, China
| | - Xiaochao Liu
- Emergency Departrnent, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yulong Fan
- Neurolntervention Center, Mentougou Hospital, Tongren Hospital, Capital Medical University, Beijing, 102300, China
| | - Xuan Li
- Interventional Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing, 102206, China.
| | - A Alahdadi Kheiri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
22
|
Li B, Du M, Gao W. Global research hotspots and trends of Buyang huanwu decoction: A visual analysis of the literature based on CiteSpace. Medicine (Baltimore) 2024; 103:e40457. [PMID: 39533635 PMCID: PMC11557023 DOI: 10.1097/md.0000000000040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Buyang huanwu decoction (BYHWD) has shown significant clinical efficacy in the treatment of several diseases, particularly stroke. However, bibliometric research has not been comprehensive. METHODS BYHWD articles were collected from literature databases published from January 1, 1915, to March 31, 2024, including the China National Knowledge Infrastructure, Weipu, Wanfang, Pubmed, Scopus, and Web of Science Core Collection. Knowledge network graphs of annual publication volume, authors, institutions, countries, keywords, and references were constructed. RESULTS Nine thousand two hundred thirty-eight Chinese literature and 559 English articles published between 1915 and 2024 showed an overall upward trend. The countries, institutions, journals, and authors with the highest output were China, Hunan University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangxian Cai, and Changqing Deng, respectively. Research teams outside China were located at Daejeon University, Gachon University, Aga Khan University, Yale University, etc. The results of keyword co-occurrence and burst analysis included clinical applications, animal experiments, action mechanisms, clinical efficacy, and safety evaluations based on systematic reviews and meta-analyses. Literature co-citation analysis revealed that BYHWD was highly correlated with neuroprotection and reduction of cerebral ischemia/reperfusion injury. CONCLUSION Both Chinese and English literature have shown overall growth trend since 1984 and 1989, respectively. Clinical applications, pharmacological effects, mechanisms, active ingredients, evaluation of clinical efficacy and safety, modified BYHWD, methods, and biological techniques may be hotspots and focus of future research on BYHWD. Hotspot analytical methods and biological techniques include systematic reviews, meta-analyses, data mining, network pharmacology, and molecular docking. Future valuable research fields may include studies on neuroprotection, anti-inflammatory activity, ischemic stroke, bioactive compounds, and their underlying mechanisms.
Collapse
Affiliation(s)
- Bowen Li
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Maobo Du
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijuan Gao
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, China
| |
Collapse
|
23
|
Zhang L, Luan Y, Ding X, Yang C, Xing L, Zhang H, Liu Z. Integration of network pharmacology and transcriptomics to explore the mechanism of isoliquiritigenin in treating heart failure induced by myocardial infarction. Toxicol Appl Pharmacol 2024; 492:117114. [PMID: 39357681 DOI: 10.1016/j.taap.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The inflammatory response and myocardial remodeling play critical roles in the progression of heart failure (HF) following myocardial infarction (MI). Isoliquiritigenin (ISL) possesses anti-inflammatory properties and has been investigated in cardiovascular diseases such as atherosclerosis. However, the effects and mechanism of ISL on MI-induced HF remain unclear. This research aimed to explore the effects and mechanism of ISL in the treatment of HF on the basis of network pharmacology, transcriptomics, and experimental verification. METHODS AND RESULTS We established an MI-induced HF mouse model in which ISL was administered via gavage for 28 days. Ultrasonic cardiogram data were collected from the mice, and pathological staining was conducted. Then, network pharmacology and molecular docking were performed. Transcriptomic analysis was also conducted on mouse myocardial tissue. Ultimately, we integrated transcriptomic data and network pharmacology to reveal the underlying mechanism, with the results verified through in vivo experiments. Our experiments indicated that ISL improved cardiac function, preserved myocardial structure, inhibited collagen fiber accumulation, reduced inflammatory factor secretion, and mitigated myocardial cell apoptosis in mice with MI-induced HF. A combination of transcriptomics and network pharmacology analysis revealed that core targets of ISL related to HF were significantly enriched in the Tumor Necrosis Factor (TNF) signaling pathway. Molecular docking validation demonstrated that ISL shows strong binding to these core targets. Additionally, in vivo experiments verified that ISL protects against HF post-MI by inhibiting the TNF signaling pathway. CONCLUSION We clarified the anti-inflammatory and antimyocardial remodeling mechanisms of ISL in the treatment of HF post-MI, which involves the TNF signaling pathway.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yuling Luan
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xinyue Ding
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Chenghao Yang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lina Xing
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Hui Zhang
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Zongjun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
24
|
Zhao C, Bai X, Ding Y, Wen A, Fu Q. Combining systems pharmacology, metabolomics, and transcriptomics to reveal the mechanism of Salvia miltiorrhiza-Cortex moutan herb pair for the treatment of ischemic stroke. Front Pharmacol 2024; 15:1431692. [PMID: 39314757 PMCID: PMC11417465 DOI: 10.3389/fphar.2024.1431692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Ischemic stroke (IS), predominantly triggered by blockages in cerebral blood flow, is increasingly recognized as a critical public health issue. The combination of Salvia miltiorrhiza (SM) and Cortex moutan (CM), traditional herbs in Eastern medicine, are frequently used for managing heart and brain vascular conditions. However, the exact mechanisms by which this herb pair (SC) combats IS remain largely unexplored. This investigation focuses on pinpointing the active constituents in SC that contribute to its protective role and deciphering the mechanisms countering cerebral ischemia, particularly in a middle cerebral artery occlusion (MCAO) rat model. We employed UPLC-Q-TOF-MS/MS alongside network pharmacology for predicting SC's target actions against IS. Key ingredients were examined for their interaction with principal targets using molecular docking. The therapeutic impact was gauged through H&E, TUNEL, and Nissl staining, complemented by transcriptomic and metabolomic integration for mechanistic insights, with vital genes confirmed via western blot. UPLC-Q-TOF-MS/MS analysis revealed that the main components of SC included benzoylpaeoniflorin, salvianolic acid B, oxypaeoniflora, salvianolic acid A, and others. Network pharmacology analysis indicated that SC's mechanism in treating IS primarily involves inflammation, angiogenesis, and cell apoptosis-related pathways, potentially through targets such as AKT1, TNF, PTGS2, MMP9, PIK3CA, and VEGFA. Molecular docking underscored strong affinities between these constituents and their targets. Our empirical studies indicated SC's significant role in enhancing neuroprotection in IS, with transcriptomics suggesting the involvement of the VEGFA/PI3K/AKT pathway and metabolomics revealing improvements in various metabolic processes, including amino acids, glycerophospholipids, sphingomyelin, and fatty acids metabolisms.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaodan Bai
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
25
|
Gareev I, Beylerli O, Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark Res 2024; 12:17. [PMID: 38308370 PMCID: PMC10835919 DOI: 10.1186/s40364-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China.
- Harbin Medical University No, 157, Baojian Road, Nangang District, Harbin, 150001, China.
| |
Collapse
|