1
|
Yang L, Liu Y, Li C, Li P, Zhang A, Liu Z, Wang Z, Wei C, Yang Z, Li Z. Optimizing carbon sources regulation in the biochemical treatment systems for coal chemical wastewater: Aromatic compounds biodegradation and microbial response strategies. WATER RESEARCH 2024; 256:121627. [PMID: 38642539 DOI: 10.1016/j.watres.2024.121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
The complex composition of coal chemical wastewater (CCW), marked by numerous highly toxic aromatic compounds, induces the destabilization of the biochemical treatment system, leading to suboptimal treatment efficacy. In this study, a biochemical treatment system was established to efficiently degrade aromatic compounds by quantitatively regulating the dosage of co-metabolized substrates (specifically, the chemical oxygen demand (COD) Glucose: COD Sodium acetate = 3:1, 1:3, and 1:1). The findings demonstrated that the system achieved optimal performance under the condition that the ratio of COD Glucose to COD Sodium acetate was 3:1. When the co-metabolized substrate was added to the system at an optimal ratio, examination of pollutant removal and cumulative effects revealed that the removal efficiencies for COD and total organic carbon (TOC) reached 94.61 % and 86.40 %, respectively. The removal rates of benzene series, nitrogen heterocyclic compounds, polycyclic aromatic hydrocarbons, and phenols were 100 %, 100 %, 63.58 %, and 94.12 %, respectively. Research on the physiological response of microbial cells showed that, under optimal ratio regulation, co-metabolic substrates led to a substantial rise in microbial extracellular polymeric substances (EPS) secretion, particularly extracellular proteins. When the system reached the end of its operation, the contents of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) for proteins in the optimal group were 7.12 mg/g-SS and 152.28 mg/g-SS, respectively. Meanwhile, the ratio of α-Helix / (β-Sheet + Random coil) and the proportion of intermolecular interaction forces were also increased in the optimal group. At system completion, the ratio of α-Helix / (β-Sheet + Random coil) reached 0.717 (LB-EPS) and 0.618 (TB-EPS), respectively. Additionally, the proportion of intermolecular interaction forces reached 74.83 % (LB-EPS) and 55.03 % (TB-EPS). An in-depth analysis of the metabolic regulation of microorganisms indicated that the introduction of optimal ratios of co-metabolic substrates contributed to a noteworthy upregulation in the expression of Catechol 2,3-dioxygenase (C23O) and Dehydrogenase (DHA). The expression levels of C23O and DHA were measured at 0.029 U/mg Pro·g MLSS and 75.25 mg TF·(g MLSS·h)-1 (peak value), respectively. Correspondingly, enrichment of aromatic compound-degrading bacteria, including Thauera, Saccharimonadales, and Candidatus_Competibacter, occurred, along with the upregulation of associated functional genes such as Catechol 1,2-dioxygenase, Catechol 2,3-dioxygenase, Protocatechuate 3,4-dioxygenase, and Protocatechuate 4,5-dioxygenase. Considering the intricate system of multiple coexisting aromatic compounds in real CCW, this study not only obtained an optimal ratio for carbon source addition but also enhanced the efficient utilization of carbon sources and improved the capability of the system to effectively degrade aromatic compounds. Additionally, this paper established a theoretical foundation for metabolic regulation and harmless treatment within the biochemical treatment of intricate systems, exemplified by real CCW.
Collapse
Affiliation(s)
- Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chen Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Pengfei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Chunxiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Ma W, Zhang X, Han H, Shi X, Kong Q, Yu T, Zhao F. Overview of enhancing biological treatment of coal chemical wastewater: New strategies and future directions. J Environ Sci (China) 2024; 135:506-520. [PMID: 37778822 DOI: 10.1016/j.jes.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 10/03/2023]
Abstract
Coal chemical wastewater (CCW) is a type of refractory industrial wastewater, and its treatment has become the main bottleneck restricting the sustainable development of novel coal chemical industry. Biological treatment is considered as an economical, effective and environmentally friendly technology for CCW treatment. However, conventional biological process is difficult to achieve the efficient removal of refractory organics because of CCW with the characteristics of composition complexity and high toxicity. Therefore, seeking the novel enhancement strategy appears to be a favorable solution for enhancing biological treatment efficiency of CCW. This review focuses on presenting a comprehensive picture about the exogenous enhancement strategies for CCW biological treatment. The performance and potential application of exogenous enhancement strategies, including co-metabolic substrate enhancement, biofilm filler enhancement, adsorption material enhancement and conductive mediator enhancement, were expounded. Meanwhile, the enhancing mechanisms of different strategies were comprehensively discussed from a biological perspective. Furthermore, the prospects of enhancement strategies based on the engineering performance, economic cost and environmental impact (3E) evaluation were introduced. And novel enhancement strategy based on "low carbon emissions", "resource recycling" and "water environment security" in the context of carbon neutrality was proposed. Taken together, this review provides technical reference and new direction to facilitate the regulation and optimization of typical industrial wastewater biological treatment.
Collapse
Affiliation(s)
- Weiwei Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xiaoqi Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Tong Yu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
3
|
Raj Deena S, Kumar G, Vickram AS, Rani Singhania R, Dong CD, Rohini K, Anbarasu K, Thanigaivel S, Ponnusamy VK. Efficiency of various biofilm carriers and microbial interactions with substrate in moving bed-biofilm reactor for environmental wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 359:127421. [PMID: 35690237 DOI: 10.1016/j.biortech.2022.127421] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In a moving bed-biofilm reactor (MBBR), the fluidization efficiency, immobilization of microbial cells, and treatment efficiency are directly influenced by the shape and pores of biofilm carriers. Moreover, the efficacy of bioremediation mainly depends on their interaction interface with microbes and substrate. This review aims to comprehend the role of different carrier properties such as material shapes, pores, and surface area on bioremediation productivity. A porous biofilm carrier with surface ridges containing spherical pores sizes > 1 mm can be ideal for maximum efficacy. It provides diverse environments for cell cultures, develops uneven biofilms, and retains various cell sizes and biomass. Moreover, the thickness of biofilm and controlled scaling shows a significant impact on MBBR performance. Therefore, the effect of these parameters in MBBR is discussed detailed in this review, through which existing literature and technical strategies that focus on the surface area as the primary factor can be critically assessed.
Collapse
Affiliation(s)
- Santhana Raj Deena
- Departemnt of Biotechnology, Saveetha School of Engineering, Saveetha University, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A S Vickram
- Departemnt of Biotechnology, Saveetha School of Engineering, Saveetha University, India
| | - Reeta Rani Singhania
- PhD Program of Aquatic Science and Technology & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- PhD Program of Aquatic Science and Technology & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 81157, Taiwan
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, Centre for Excellence in Biomaterials Engineering (CoEBE), AIMST University, 08100, Bedong, Kedah, Malaysia
| | - K Anbarasu
- Departemnt of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Vinoth Kumar Ponnusamy
- PhD Program of Aquatic Science and Technology & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 81157, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, Taiwan; Deparment of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan.
| |
Collapse
|
4
|
Pachaiappan R, Cornejo-Ponce L, Rajendran R, Manavalan K, Femilaa Rajan V, Awad F. A review on biofiltration techniques: Recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered 2022; 13:8432-8477. [PMID: 35260028 PMCID: PMC9161908 DOI: 10.1080/21655979.2022.2050538] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Good quality of water determines the healthy life of living beings on this earth. The cleanliness of water was interrupted by the pollutants emerging out of several human activities. Industrialization, urbanization, heavy population, and improper disposal of wastes are found to be the major reasons for the contamination of water. Globally, the inclusion of volatile organic compounds (VOCs) and heavy metals released by manufacturing industries, pharmaceuticals, and petrochemical processes have created environmental issues. The toxic nature of these pollutants has led researchers, scientists, and industries to exhibit concern towards the complete eradication of them. In this scenario, the development of wastewater treatment methodologies at low cost and in an eco-friendly way had gained importance at the international level. Recently, bio-based technologies were considered for environmental remedies. Biofiltration based works have shown a significant result for the removal of volatile organic compounds and heavy metals in the treatment of wastewater. This was done with several biological sources such as bacteria, fungi, algae, plants, yeasts, etc. The biofiltration technique is cost-effective, simple, biocompatible, sustainable, and eco-friendly compared to conventional techniques. This review article provides deep insight into biofiltration technologies engaged in the removal of volatile organic compounds and heavy metals in the wastewater treatment process.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Lorena Cornejo-Ponce
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Rathika Rajendran
- Department of Physics, A.D.M. College for Women (Autonomous), Nagapattinam, Tamil Nadu - 611001, India
| | - Kovendhan Manavalan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vincent Femilaa Rajan
- Department of Sustainable Energy Management, Stella Maris College (Autonomous), Chennai - 600086, Tamil Nadu, India
| | - Fathi Awad
- Department of Allied Health Professionals, Faculty of Medical and Health Sciences, Liwa College of Technology, Abu Dhabi, UAE
| |
Collapse
|
5
|
Li Y, Wang Q, Liu L, Tabassum S, Sun J, Hong Y. Enhanced phenols removal and methane production with the assistance of graphene under anaerobic co-digestion conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143523. [PMID: 33223184 DOI: 10.1016/j.scitotenv.2020.143523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Coal gasification wastewater (CGW) contains high concentration phenols which lead to poor anaerobic biodegradability and resource utilization. In this paper, new insights to improve synthetic CGW anaerobic degradation with the help of graphene under co-digestion conditions were investigated. Batch tests showed that with the addition of graphene dosage of 10 g/L and glucose as a co-substrate with chemical oxygen demand (COD) concentration of 2000 mg/L, the average COD concentration decreased from 3995 mg/L on day 1 to 983 mg/L on day 12. The average total phenol (TP) concentration decreased from 431 mg/L on day 1 to 23 mg/L on day 12. The cumulative methane production for 12 days was about 200 mL. Long-term experiments showed the average effluent COD and total phenol reached 1137 mg/L and 200 mg/L, respectively. While methane production stabilized at 500 mL/d. In addition, the coenzyme F420 concentration increased from 1.075 μmol/g/VSS to 2.3 μmol/g/VSS. The analysis of microbial community structure indicated that the performance of phenols removal and methane production was related to the main microbial flora. The enriched Clostridium, Pseudomonas and species from Firmicutes and Chloroflexi participated in the stages of hydrolysis and acidogenesis. The electrogens Pseudomonas and archaea Methanosaeta were likely the major groups taking part in the direct interspecies electron transfer (DIET). The results obtained in this paper provide a theoretical basis for high-efficiency anaerobic degradation of CGW in practical engineering applications.
Collapse
Affiliation(s)
- Yajie Li
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Qingshui Wang
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lingyu Liu
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Salma Tabassum
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Branch, 46423 Yanbu, Saudi Arabia
| | - Jie Sun
- Aeronautic and Mechanic Engineering school, Changzhou Institute of Technology, Changzhou 213031, China
| | - Yaoliang Hong
- School of Environmental Science and Engineering, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
6
|
García Rea VS, Muñoz Sierra JD, Fonseca Aponte LM, Cerqueda-Garcia D, Quchani KM, Spanjers H, van Lier JB. Enhancing Phenol Conversion Rates in Saline Anaerobic Membrane Bioreactor Using Acetate and Butyrate as Additional Carbon and Energy Sources. Front Microbiol 2020; 11:604173. [PMID: 33329495 PMCID: PMC7733923 DOI: 10.3389/fmicb.2020.604173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023] Open
Abstract
Phenolic industrial wastewater, such as those from coal gasification, are considered a challenge for conventional anaerobic wastewater treatment systems because of its extreme characteristics such as presence of recalcitrant compounds, high toxicity, and salinity. However, anaerobic membrane bioreactors (AnMBRs) are considered of potential interest since they retain all micro-organism that are required for conversion of the complex organics. In this study, the degradation of phenol as main carbon and energy source (CES) in AnMBRs at high salinity (8.0 g Na+⋅L–1) was evaluated, as well as the effect of acetate and an acetate-butyrate mixture as additional CES on the specific phenol conversion rate and microbial community structure. Three different experiments in two lab-scale (6.5 L) AnMBRs (35°C) were conducted. The first reactor (R1) was fed with phenol as the main CES, the second reactor was fed with phenol and either acetate [2 g COD⋅L–1], or a 2:1 acetate-butyrate [2 g COD⋅L–1] mixture as additional CES. Results showed that phenol conversion could not be sustained when phenol was the sole CES. In contrast, when the reactor was fed with acetate or an acetate-butyrate mixture, specific phenol conversion rates of 115 and 210 mgPh⋅gVSS–1 d–1, were found, respectively. The syntrophic phenol degrader Syntrophorhabdus sp. and the acetoclastic methanogen Methanosaeta sp. were the dominant bacteria and archaea, respectively, with corresponding relative abundances of up to 63 and 26%. The findings showed that dosage of additional CES allowed the development of a highly active phenol-degrading biomass, potentially improving the treatment of industrial and chemical wastewaters.
Collapse
Affiliation(s)
- Víctor S García Rea
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Julian D Muñoz Sierra
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands.,KWR Water Research Institute, Nieuwegein, Netherlands
| | - Laura M Fonseca Aponte
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | | | - Kiyan M Quchani
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Henri Spanjers
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
7
|
Wang S, Ma C, Pang C, Hu Z, Wang W. Membrane fouling and performance of anaerobic ceramic membrane bioreactor treating phenol- and quinoline-containing wastewater: granular activated carbon vs polyaluminum chloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34167-34176. [PMID: 30484054 DOI: 10.1007/s11356-018-3802-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Although anaerobic membrane bioreactor (AnMBR) has been proposed for the treatment of phenolic wastewater, the membrane fouling is still a major obstacle. The effects of dosing of granular activated carbon (GAC) and polyaluminum chloride (PACl) on the treatment performance and membrane fouling of anaerobic ceramic membrane bioreactor were investigated for treating phenol- and quinoline-containing wastewater. The results suggested that the one-off dosing of GAC resulted in a decrease of protein/carbohydrate ratio, which might account for the aggravation of membrane fouling alongside with the decreased flocs size. Nevertheless, the substrate uptake rates (SUR) of phenol and quinoline, and the specific methanogenic activity of sludge at the GAC dosing stage of experimental reactor (R1) were 8.79 ± 0.63 mg phenol g-1 MLVSS d-1, 7.01 ± 0.09 mg quinoline g-1 MLVSS d-1 and 0.27 ± 0.01 g CODCH4 g-1 MLVSS d-1, which were 1.69, 3.59 and 1.93 times higher than that of the control reactor (R2). The dosing of PACl reduced the membrane fouling rate by changing the floc structure of sludge, as well as the component of SMP and EPS. However, the substrate uptake rate of quinoline was declined. This work provides a comprehensive evaluation on the effect of GAC and PACl dosing on membrane fouling and performance of anaerobic ceramic membrane bioreactor treating phenol-and quinoline-containing wastewater.
Collapse
Affiliation(s)
- Shun Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Chao Pang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230009, China.
| |
Collapse
|
8
|
Qin X, Ji M, Wu X, Li C, Gao Y, Li J, Wu Q, Zhang X, Zhang Z. Response of treatment performance and microbial community structure to the temporary suspension of an industrial anaerobic bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:229-237. [PMID: 30053667 DOI: 10.1016/j.scitotenv.2018.07.309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/21/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
In this study, a novel type of mesophilic anaerobic bioreactor-an expanded granular sludge bed (EGSB)-was utilized to explore the effect of suspending reactor operation on the treatment performance and the microbial community structure. The parameters of performance and bacterial community before and after a four-week suspension were compared for the starch processing wastewater treatment bioreactor. The results indicate that the removal rate of the organic matter remained higher than 90%, although the biomass significantly decreased after restarting the reactor. However, the relatively stable microbial community structure before the suspension was altered significantly during the restart and post-running stages. This change was primarily due to variability in satellite species and the substitution effect of different dominant bacteria. For example, some non-major carbohydrate-degrading bacteria that were sensitive to nutrition deficiency, such as Desulfovibrio and Geobacter, were dramatically reduced after the suspension. In contrast, the stress of starvation stimulated the reproduction of hydrolytic bacteria, such as Macellibacteroides. However, the high bacterial diversity index (6.12-6.65) and the longstanding core species, including Chloroflexi, Cloacimonetes, Ignavibacteriae, Thermotogae and Euryarchaeota, maintained the functional stability of the reactor. Consequently, although the total bacteria decreased significantly after reactor operation was suspended, sufficient functional bacteria supported by the high diversity, as well as the longstanding core species, guaranteed the effective degradation after suspension.
Collapse
Affiliation(s)
- Xianchao Qin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Mengmeng Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaogang Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunjie Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yueshu Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoyu Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhenjia Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
Surkatti R, Al-Zuhair S. Microalgae cultivation for phenolic compounds removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33936-33956. [PMID: 30353440 DOI: 10.1007/s11356-018-3450-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Microalgae are promising sustainable and renewable sources of oils that can be used for biodiesel production. In addition, they contain important compounds, such as proteins and pigments, which have large applications in the food and pharmaceutical industries. Combining the production of these valuable products with wastewater treatment renders the cultivation of microalgae very attractive and economically feasible. This review paper presents and discusses the current applications of microalgae cultivation for wastewater treatment, particularly for the removal of phenolic compounds. The effects of cultivation conditions on the rate of contaminants removal and biomass productivity, as well as the chemical composition of microalgae cells are also discussed.
Collapse
Affiliation(s)
- Riham Surkatti
- Chemical Engineering Department, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates
| | - Sulaiman Al-Zuhair
- Chemical Engineering Department, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
10
|
Farhat A, Manai I, Gtari M, Bouallagui H. Effect of enhancing nutrient balance in anaerobic digester feedstock by co-substrate addition on the microbial diversity and energy production from municipal sewage sludge. J Biosci Bioeng 2018; 126:497-506. [DOI: 10.1016/j.jbiosc.2018.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/29/2018] [Accepted: 04/22/2018] [Indexed: 11/28/2022]
|
11
|
The Organic Pollutant Characteristics of Lurgi Coal Gasification Wastewater before and after Ozonation. J CHEM-NY 2018. [DOI: 10.1155/2018/1461673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effluent of distilled and extracted Lurgi coal gasification wastewater has been found to have low biodegradability and high toxicity, which inhibits further biodegradation. However, ozonation enhances the biodegradability and reduces the toxicity of this effluent, enabling further biological treatment and increased removal of organic materials. In this study, the dissolved organic matters in Lurgi coal gasification wastewater were isolated into six classes by resin adsorbents, after which TOC, UV254, UV-Vis, and 3D EEM were employed to quantitatively and qualitatively analyze organic materials in each part of the fractionated samples. The HoA and HiN fraction accounted for large amounts of the Lurgi coal gasification wastewater, and their TOC values were about 380.21 mg·L−1 and 646.84 mg·L−1, respectively. After ozonation, the TOC removal rates of HoA and HiN reached 42.85% and 67.13%, respectively. The UV254 of HoA was basically stable before and after ozonation, while that of HiN increased continuously because a portion of the humic macromolecular organic materials in HoA was oxidized to HiN. Additionally, UV-Vis analysis revealed that the larger molecular organics of HoA were oxidized during ozonation, resulting in high biodegradability. Finally, the 3D EEM spectra indicated that the macromolecular organics were oxidized to smaller molecules with the degradation of soluble microbial by-products.
Collapse
|
12
|
Zhu P, Zhu K, Puzey R, Ren X. Degradation analysis of A 2 /O combined with AgNO 3 + K 2 FeO 4 on coking wastewater. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Li Y, Tabassum S, Chu C, Zhang Z. Inhibitory effect of high phenol concentration in treating coal gasification wastewater in anaerobic biofilter. J Environ Sci (China) 2018; 64:207-215. [PMID: 29478641 DOI: 10.1016/j.jes.2017.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 06/08/2023]
Abstract
In this paper, the inhibition of methanogens by phenol in coal gasification wastewater (CGW) was investigated by both anaerobic toxicity tests and a lab-scale anaerobic biofilter reactor (AF). The anaerobic toxicity tests indicated that keeping the phenol concentration in the influent under 280mg/L could maintain the methanogenic activity. In the AF treating CGW, the result showed that adding glucose solution as co-substrate could be beneficial for the quick start-up of the reactor. The effluent chemical oxygen demand (COD) and total phenol reached 1200 and 100mg/L, respectively, and the methane production rate was 175mLCH4/gCOD/day. However, if the concentration of phenol was increased, the inhibition of anaerobic micro-organisms was irreversible. The threshold of total phenol for AF operation was 200-250mg/L. The extracellular polymeric substances (EPS) and particle size distribution of anaerobic granular sludge in the different stages were also examined, and the results indicated that the influence of toxicity in the system was more serious than its effect on flocculation of EPS. Moreover, the proportion of small size anaerobic granular sludge gradually increased from 10.2% to 34.6%. The results of high through-put sequencing indicated that the abundance of the Chloroflexi and Planctomycetes was inhibited by the toxicity of the CGW, and some shifts in the microbial community were observed at different stages.
Collapse
Affiliation(s)
- Yajie Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Salma Tabassum
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunfeng Chu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenjia Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Sun H, Yao J, Li D, Li Q, Liu B, Liu S, Cong H, van Agtmaal S, Feng C. Removal of phenols from coal gasification wastewater through polypropylene hollow fiber supported liquid membrane. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Li Y, Tabassum S, Yu Z, Wu X, Zhang X, Song Y, Chu C, Zhang Z. Effect of effluent recirculation rate on the performance of anaerobic bio-filter treating coal gasification wastewater under co-digestion conditions. RSC Adv 2016. [DOI: 10.1039/c6ra18363h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, anaerobic biofilter (AF) was adopted for anaerobic co-digestion of potato starch wastewater (PSW) and coal gasification wastewater (CGW).
Collapse
Affiliation(s)
- Yajie Li
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Salma Tabassum
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
- LCM – Laboratory of Catalysis and Materials – Associate Laboratory LSRE-LCM
| | - Zhenjiang Yu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xiaogang Wu
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Yaping Song
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Chunfeng Chu
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhenjia Zhang
- School of Environmental Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|