1
|
Qiu L, Sha A, Li N, Ran Y, Xiang P, Zhou L, Zhang T, Wu Q, Zou L, Chen Z, Li Q, Zhao C. The characteristics of fungal responses to uranium mining activities and analysis of their tolerance to uranium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116362. [PMID: 38657459 DOI: 10.1016/j.ecoenv.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The influence of uranium (U) mining on the fungal diversity (FD) and communities (FC) structure was investigated in this work. Our results revealed that soil FC richness and FD indicators obviously decreased due to U, such as Chao1, observed OTUs and Shannon index (P<0.05). Moreover, the abundances of Mortierella, Gibberella, and Tetracladium were notably reduced in soil samples owing to U mining activities (P<0.05). In contrast, the abundances of Cadophora, Pseudogymnoascus, Mucor, and Sporormiella increased in all soil samples after U mining (P<0.05). Furthermore, U mining not only dramatically influenced the Plant_Pathogen guild and Saprotroph and Pathotroph modes (P<0.05), but also induced the differentiation of soil FC and the enrichment of the Animal_Pathogen-Soil_Saprotroph and Endophyte guilds and Symbiotroph and Pathotroph Saprotroph trophic modes. In addition, various fungal populations and guilds were enriched to deal with the external stresses caused by U mining in different U mining areas and soil depths (P<0.05). Finally, nine U-tolerant fungi were isolated and identified with a minimum inhibitory concentration range of 400-600 mg/L, and their adsorption efficiency for U ranged from 11.6% to 37.9%. This study provides insights into the impact of U mining on soil fungal stability and the response of fungi to U mining activities, as well as aids in the screening of fungal strains that can be used to promote remediation of U mining sites on plateaus.
Collapse
Affiliation(s)
- Lu Qiu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanqiong Ran
- Sichuan Ecological and Environmental Monitoring Center, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lin Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhaoqiong Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Cheng Y, Chen K, He D, He Y, Lei Y, Sun Y. Diversity of Arbuscular Mycorrhizal Fungi of the Rhizosphere of Lycium barbarum L. from Four Main Producing Areas in Northwest China and Their Effect on Plant Growth. J Fungi (Basel) 2024; 10:286. [PMID: 38667957 PMCID: PMC11050802 DOI: 10.3390/jof10040286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can help plants absorb more mineral nutrients after they colonize plant roots, and the mycelia harmonize the soil structure and physical and chemical properties by secreting compounds. AMF species co-evolve with their habitat's geographic conditions and hosts; this gradually causes differences in the AMF species. By using Melzer's reagent to analyze the morphology and using Illumina Miseq sequencing technology to perform the molecular identification of AMF communities among the four typical L. barbarum planting areas (Zhongning, Guyuan, Jinghe, and Dulan) investigated, the variety of L. barbarum roots and rhizosphere AMF communities was greater in the Zhongning area, and every region additionally had endemic species. The successfully amplified AMF was re-applied to the L. barbarum seedlings. We found that the total dry weight and accumulation of potassium increased significantly (p < 0.05), and the root volume and number of root branches were significantly higher in the plants that were inoculated with Paraglomus VTX00375 in the pot experiment, indicating that AMF improves root development and promotes plant growth. We have investigated AMF germplasm species in four regions, and we are committed to the development of native AMF resources. The multiplication and application of AMF will be conducive to realizing the potential role of biology in the maintenance of agroecology.
Collapse
Affiliation(s)
- Yuyao Cheng
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832000, China; (Y.C.); (K.C.); (D.H.)
| | - Kaili Chen
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832000, China; (Y.C.); (K.C.); (D.H.)
| | - Dalun He
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832000, China; (Y.C.); (K.C.); (D.H.)
| | - Yaling He
- College of Medicine, Shihezi University, Shihezi 832000, China;
| | - Yonghui Lei
- Department of Plant Protection, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Yanfei Sun
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832000, China; (Y.C.); (K.C.); (D.H.)
| |
Collapse
|
3
|
Yurkov AP, Kryukov AA, Gorbunova AO, Kudriashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Laktionov YV, Zhurbenko PM, Mikhaylova YV, Puzanskiy RK, Bagrova TN, Yakhin OI, Rodionov AV, Shishova MF. Diversity of Arbuscular Mycorrhizal Fungi in Distinct Ecosystems of the North Caucasus, a Temperate Biodiversity Hotspot. J Fungi (Basel) 2023; 10:11. [PMID: 38248921 PMCID: PMC10817546 DOI: 10.3390/jof10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Investigations that are focused on arbuscular mycorrhizal fungus (AMF) biodiversity is still limited. The analysis of the AMF taxa in the North Caucasus, a temperate biodiversity hotspot, used to be limited to the genus level. This study aimed to define the AMF biodiversity at the species level in the North Caucasus biotopes. METHODS The molecular genetic identification of fungi was carried out with ITS1 and ITS2 regions as barcodes via sequencing using Illumina MiSeq, the analysis of phylogenetic trees for individual genera, and searches for operational taxonomic units (OTUs) with identification at the species level. Sequences from MaarjAM and NCBI GenBank were used as references. RESULTS We analyzed >10 million reads in soil samples for three biotopes to estimate fungal biodiversity. Briefly, 50 AMF species belonging to 20 genera were registered. The total number of the AM fungus OTUs for the "Subalpine Meadow" biotope was 171/131, that for "Forest" was 117/60, and that for "River Valley" was 296/221 based on ITS1/ITS2 data. The total number of the AM fungus species (except for virtual taxa) for the "Subalpine Meadow" biotope was 24/19, that for "Forest" was 22/13, and that for "River Valley" was 28/24 based on ITS1/ITS2 data. Greater AMF diversity, as well as number of OTUs and species, in comparison with that of forest biotopes, characterized valley biotopes (disturbed ecosystems; grasslands). The correlation coefficient between "Percentage of annual plants" and "Glomeromycota total reads" r = 0.76 and 0.81 for ITS1 and ITS2, respectively, and the correlation coefficient between "Percentage of annual plants" and "OTUs number (for total species)" was r = 0.67 and 0.77 for ITS1 and ITS2, respectively. CONCLUSION High AMF biodiversity for the river valley can be associated with a higher percentage of annual plants in these biotopes and the active development of restorative successional processes.
Collapse
Affiliation(s)
- Andrey P Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Alexey A Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Anastasiia O Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Tatyana R Kudriashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, 194064 St. Petersburg, Russia
| | - Anastasia I Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, 194064 St. Petersburg, Russia
| | - Anastasia I Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ekaterina M Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yuri V Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Peter M Zhurbenko
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Yulia V Mikhaylova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Roman K Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Faculty of Ecology, Russian State Hydrometeorological University, 192007 St. Petersburg, Russia
| | - Tatyana N Bagrova
- Faculty of Ecology, Russian State Hydrometeorological University, 192007 St. Petersburg, Russia
| | - Oleg I Yakhin
- Institute of Biochemistry and Genetics, The Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Alexander V Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Maria F Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Weirich CE, Marques MR, de Castro AP, Assumpção Benitez B, Roque FDO, Marchetti CR, Rodrigues AD, de Lima DP, Dos Santos EDA. Impact of Iron Mining Activity on the Endophytic Fungal Community of Aspilia grazielae. J Fungi (Basel) 2023; 9:632. [PMID: 37367568 DOI: 10.3390/jof9060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023] Open
Abstract
Aspilia grazielae (J. U. Santos) is an endemic plant species in Morro do Urucum in the Pantanal wetland (Brazil). A. grazielae is used for the restoration of areas impacted by iron mining activities. This study evaluates the diversity (composition, value and abundance) of endophytic fungal communities, considering parts of the plant and soil condition. The leaves and roots of A. grazielae were collected from native vegetation areas (NVA) and recovery areas (RCA) in Morro do Urucum. Illumina sequencing technology was used to investigate variation in endophytic fungal biodiversity. The operational taxonomic units detected in NVA ranged from 183 to 263 (leaf) and 115 to 285 (root), while RCA samples ranged from 200 to 282 (leaf) and 156 to 348 (root). Ascomycota phylum was the most common species among all plant samples. The most significant classes identified were Lecanoromycetes and Dothideomycetes that differed significantly (p ≤ 0.05) according to their plant hosts and soil stress. The relative abundance of Pestalotiopsis (Sordariomycetes class) and Stereocaulon (Lecanoromycetes class) genera was influenced by the iron mining activities according to the leaf samples analysed. However, the abundance and wealth of endophytic fungal communities in A. grazielae from RCA were evidence that could explain their high resilience to environmental disturbances and the source-sink dynamics of fungal propagules.
Collapse
Affiliation(s)
- Carlos Eduardo Weirich
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Maria Rita Marques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Alinne Pereira de Castro
- Departamento de Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil
| | | | - Fabio de Oliveira Roque
- Programa de Pós-Graduação em Ecologia e Conservação, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Centre for Tropical Environmental and Sustainability Science (TESS), James Cook University, Cairns, QLD 4878, Australia
| | - Clarice Rossato Marchetti
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Amanda Dal'Ongaro Rodrigues
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Dênis Pires de Lima
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Edson Dos Anjos Dos Santos
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
5
|
Peng S, Ban M, Xing W, Ge Z, Mao L. Effects of nitrogen addition and seasonal change on arbuscular mycorrhizal fungi community diversity in a poplar plantation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi play a crucial role in carbon (C), nitrogen (N), and phosphorous (P) biogeochemical cycling. Therefore, it is essential to determine the seasonal responses of the AM fungal community to N addition to understanding better the ecological processes against a background of intensified N deposition. Based on an ongoing field simulation experiment with five N addition levels (0, 5, 10, 15, and 30 gN·m−2·a−1) in a 5-year-old poplar plantation at Dongtai Forest Farm in Yancheng, Jiangsu province, eastern China, soil physicochemical properties, the root colonization rate, and the rhizosphere soil AM fungal community diversity and composition in four seasons (summer, autumn, winter, and spring) were investigated. Meanwhile, the relationships between the characteristics of the AM fungal community and soil environmental factors were analyzed. High-throughput sequencing showed that the dominant genera in the poplar plantation were Glomus (average relative abundance 87.52%), Diversispora (9.62%), and Acaulospora (1.85%). The addition of N significantly increased the root colonization rate in spring. The diversity of the AM fungal community (Chao and Shannon indexes) was primarily affected by seasonal change rather than N addition, and the diversity in summer was significantly lower than in the other three seasons. Redundancy analysis showed that soil temperature, available P, total P, and pH significantly affected the structure of the AM fungal community. It can be concluded N addition primarily influenced the root colonization rate, whereas seasonal change had a notable effect on the AM fungal community diversity. Although seasonal change and N addition greatly influenced the composition, seasonal change exerted a more substantial effect than N addition. These results will improve our understanding of the underground ecological processes in poplar plantation ecosystems.
Collapse
|
6
|
Richness of arbuscular mycorrhizal fungi (Glomeromycota) along a vegetation gradient of Brazilian Cerrado: responses to seasonality, soil types, and plant communities. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01785-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Delavaux CS, Ramos RJ, Sturmer SL, Bever JD. Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: an expanded database and improved pipeline. MYCORRHIZA 2022; 32:145-153. [PMID: 35099622 PMCID: PMC8907093 DOI: 10.1007/s00572-022-01068-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/18/2022] [Indexed: 05/02/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF; Glomeromycota) are difficult to culture; therefore, establishing a robust amplicon-based approach to taxa identification is imperative to describe AMF diversity. Further, due to low and biased sampling of AMF taxa, molecular databases do not represent the breadth of AMF diversity, making database matching approaches suboptimal. Therefore, a full description of AMF diversity requires a tool to determine sequence-based placement in the Glomeromycota clade. Nonetheless, commonly used gene regions, including the SSU and ITS, do not enable reliable phylogenetic placement. Here, we present an improved database and pipeline for the phylogenetic determination of AMF using amplicons from the large subunit (LSU) rRNA gene. We improve our database and backbone tree by including additional outgroup sequences. We also improve an existing bioinformatics pipeline by aligning forward and reverse reads separately, using a universal alignment for all tree building, and implementing a BLAST screening prior to tree building to remove non-homologous sequences. Finally, we present a script to extract AMF belonging to 11 major families as well as an amplicon sequencing variant (ASV) version of our pipeline. We test the utility of the pipeline by testing the placement of known AMF, known non-AMF, and Acaulospora sp. spore sequences. This work represents the most comprehensive database and pipeline for phylogenetic placement of AMF LSU amplicon sequences within the Glomeromycota clade.
Collapse
Affiliation(s)
- Camille S Delavaux
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA.
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA.
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland.
| | - Robert J Ramos
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| | - Sidney L Sturmer
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, R. Antônio da Veiga 140Santa Catarina, Blumenau, 89030-903, Brazil
| | - James D Bever
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| |
Collapse
|
8
|
Meyer E, Betancur-Agudelo M, Ventura BS, Dos Anjos KG, do Scarsanella JA, Vieira AS, Mendes L, Stoffel SCG, Munarini A, Soares CRFS, Lovato PE. Mycorrhizal root colonization in maize fields is more affected by soil management and climate conditions than by plant genotype. Arch Microbiol 2021; 203:4609-4618. [PMID: 34165624 DOI: 10.1007/s00203-021-02429-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
This work aims to characterize the arbuscular mycorrhizal association between maize genotypes and the effects of soil physical-chemical attributes on the symbiosis. A preliminary greenhouse assay evaluated five maize landraces and five conventional modern genotypes in non-sterile, low-P soil. Sixty days after sowing, we measured plant height, stem diameter, shoot and root dry biomass, root colonization structures, and shoot P concentration and total accumulation. In a second stage, a 2-year on-farm study evaluated how soil physical-chemical attributes in fields with three plant genotype groups affected the arbuscular mycorrhizal fungal symbiosis in a maize diversity microcenter in Southern Brazil. We collected soil and plant material in farms growing landrace, conventional modern genotypes, or genetically modified (GM) maize. There were five collection points at each group, and we measured mycorrhizal colonization, soil physicochemical attributes, and shoot phosphorus concentration. The greenhouse study showed that genotypes have different growth strategies for root production and shoot growth. No differences in mycorrhizal colonization rates occurred among landraces and modern maize genotypes in the low-P soil. The field study showed that soil and climate conditions had a more marked effect on mycorrhizal root colonization than plant genotype groups (landrace, conventional modern genotypes, or GM maize).
Collapse
Affiliation(s)
- Edenilson Meyer
- Departamento de Engenharia Rural - Centro de Ciências Agrarias, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil.
| | - Marcelo Betancur-Agudelo
- Departamento de Engenharia Rural - Centro de Ciências Agrarias, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Bárbara Santos Ventura
- Departamento de Engenharia Rural - Centro de Ciências Agrarias, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Karina Goulart Dos Anjos
- Departamento de Engenharia Rural - Centro de Ciências Agrarias, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Juliana Amaral do Scarsanella
- Departamento de Engenharia Rural - Centro de Ciências Agrarias, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - André Steiner Vieira
- Departamento de Microbiologia, Imunologia e Parasitologia - Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Lucas Mendes
- Departamento de Engenharia Rural - Centro de Ciências Agrarias, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Shantau Camargo Gomes Stoffel
- Departamento de Microbiologia, Imunologia e Parasitologia - Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Anderson Munarini
- Departamento de Fitotecnia - Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Cláudio Roberto Fonseca Sousa Soares
- Departamento de Microbiologia, Imunologia e Parasitologia - Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Paulo Emílio Lovato
- Departamento de Engenharia Rural - Centro de Ciências Agrarias, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| |
Collapse
|
9
|
Delavaux CS, Sturmer SL, Wagner MR, Schütte U, Morton JB, Bever JD. Utility of large subunit for environmental sequencing of arbuscular mycorrhizal fungi: a new reference database and pipeline. THE NEW PHYTOLOGIST 2021; 229:3048-3052. [PMID: 33190292 DOI: 10.1111/nph.17080] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Camille S Delavaux
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| | - Sidney L Sturmer
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, R. Antônio da Veiga 140, Blumenau, Santa Catarina, 89030-903, Brazil
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| | - Ursel Schütte
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK, 99775, USA
| | - Joseph B Morton
- West Virginia University, 6 Alegre Pass, Santa Fe, Morgantown, NM, 87508, USA
| | - James D Bever
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| |
Collapse
|
10
|
Monteiro Moreira GA, Martins do Vale HM. Soil Yeast Communities in Revegetated Post-Mining and Adjacent Native Areas in Central Brazil. Microorganisms 2020; 8:microorganisms8081116. [PMID: 32722305 PMCID: PMC7464199 DOI: 10.3390/microorganisms8081116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022] Open
Abstract
Yeasts represent an important component of the soil microbiome. In central Brazil, mining activities are among the main anthropogenic factors that influence the dynamics of the soil microbiota. Few studies have been dedicated to analysis of tropical soil yeast communities, and even fewer have focused on Brazilian hotspots influenced by mining activity. The aim of the current study was to describe soil yeast communities in a post-mining site with revegetated and native areas, along Neotropical Savanna and Atlantic Forest biomes. Yeast communities were described using a culture-based method and estimator-based species accumulation curves, and their associations with environmental characteristics were assessed using multivariate analysis. The results indicate a greater species richness for yeast communities in the revegetated area. We identified 37 species describing 86% of the estimated richness according to Chao2. Ascomycetous yeasts dominated over basidiomycetous species. Candida maltosa was the most frequent species in two phytocenoses. Red-pigmented yeasts were frequent only in the summer. The main soil attributes affecting yeast communities were texture and micronutrients. In conclusion, each phytocenosis showed a particular assemblage of species as a result of local environmental phenomena. The species richness in a Revegetated area points to a possible ecological role of yeast species in environmental recovery. This study provided the first comprehensive inventory of soil yeasts in major phytocenoses in Minas Gerais, Brazil.
Collapse
Affiliation(s)
- Geisianny Augusta Monteiro Moreira
- Microbial Biology Graduate Program, Biological Sciences Institute, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília/DF, Brazil;
| | - Helson Mario Martins do Vale
- Laboratory of Mycology, Department of Phytopathology, Biological Sciences Institute, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900 Brasília/DF, Brazil
- Correspondence: ; Tel.: +55-6131073060
| |
Collapse
|
11
|
Wu S, You F, Wu Z, Bond P, Hall M, Huang L. Molecular diversity of arbuscular mycorrhizal fungal communities across the gradient of alkaline Fe ore tailings, revegetated waste rock to natural soil sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11968-11979. [PMID: 31983001 DOI: 10.1007/s11356-020-07780-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are important to the establishment of native vegetation for mined land rehabilitation, particularly in semi-arid and infertile landscapes. However, the information has been scarce about the colonization of AM fungal community in alkaline magnetite Fe ore tailing sites (without toxic metal (loid) contamination). The present study has characterized the diversity of AM fungi across typical domains of a magnetite Fe ore mine located in 200 km south-east of Geraldton, Western Australia, by adopting high throughput Illumina Miseq sequencing. The investigated domains included two tailing sites without top soil covering (T1 and T2), a rehabilitated area of tailings with top soil covering (R1), a revegetated waste rock area (R2), and two native undisturbed soil sites (S1 and S2). The results indicated that the T1/T2 sites had different AM fungal community structure, compared with R1/R2 and S1/S2 sites. The dominant families were Glomeraceae, Claroideoglomeraceae, Archaeosporaceae, Ambisporaceae, and Paraglomeraceae, with Paraglomeraceae (more than 50%) as the most abundant in the T1/T2 and R1/R2 sites. At genus level, Ambispora spp. and Archaeospora spp. were rich in T1/T2 sites (> 10%), while Glomus spp. were preferably dominant in S1/S2 sites (> 10%). Furthermore, amorphous Fe and available P were found to explain the variations associated with AM fungal community composition, particularly the abundance of Archaeosporaceae and Glomeraceae. The study revealed the AM fungal community composition shift across the gradient of Fe ore mine sites, as well as the effects of revegetation on AM fungal community development. The findings indicate the possible restoration of AM fungal community in the tailings undergoing revegetation, and potential adoption of indigenous AM fungi to rapid phytostabilization of the Fe ore tailings under semi-arid climatic conditions.
Collapse
Affiliation(s)
- Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Zhaoxiang Wu
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Philip Bond
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Merinda Hall
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|