1
|
Zhang B, Mao X, Shen Y, Ma T, Zhang B, Liu B, Shi W. Enhanced performance and mechanism of adsorption pretreatment for alleviating membrane fouling in AGMBR: Impact of structural variations in carbon adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173702. [PMID: 38830416 DOI: 10.1016/j.scitotenv.2024.173702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The structural variances of adsorbents play a crucial role in determining the number of effective adsorption sites and pretreatment performance. However, there is still a gap in comprehending the impact of different carbon structural adsorbents on membrane fouling. Therefore, this study aimed to compare the efficacy of granular activated carbon (GAC), powdered activated carbon (PAC), and activated carbon fiber (ACF) in mitigating membrane fouling during municipal sewage reclamation using an aerobic granular sludge membrane bioreactor (AGMBR). The results demonstrated that the utilization of PAC significantly enhanced the normalized flux and reduced fouling resistance in comparison to GAC and ACF systems. PAC effectively adsorbed low and medium-molecular-weight pollutants present in raw sewage, resulting in an increase in average particle size and a decrease in foulant content on the membrane surface. The Hermia model indicated that adsorption pretreatment minimized standard blocking while promoting the formation of a sparse and porous cake layer. Moreover, according to the extended Derjaguin-Landau-Verwey-Overbeek theory, PAC has been demonstrated as the optimal antifouling system owing to its enhanced repulsion between membrane-foulant and foulant-foulant interactions. Correlation analysis revealed that the exceptional antifouling performance of the PAC system was due to its high removal rates of chemical oxygen demand (~78 %) and suspended solids (~97 %). This research offers valuable insights into the mitigation of membrane fouling through the utilization of adsorbents featuring diverse carbon structures.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China
| | - Xin Mao
- College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China
| | - Tengfei Ma
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China.
| | - Bin Liu
- College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Dyrda-Terniuk T, Pomastowski P. Impact of Ultrafiltration on the Physicochemical Properties of Bovine Lactoferrin: Insights into Molecular Mass, Surface Morphology, and Elemental Composition. J Dairy Sci 2024:S0022-0302(24)01048-8. [PMID: 39098494 DOI: 10.3168/jds.2024-24933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
The large-scale isolation of bovine lactoferrin (bLF) typically involves using large amounts of concentrated eluents, which might introduce impurities to the final product. Sometimes, protein pre-concentration is required for the greater accuracy of experimental results. In this research, the supplied bLF sample was subjected to additional ultrafiltration (UF) to eliminate possible small impurities, such as salts and peptides of bLF. Beforehand, the basic characterization of native bLF, including surface-charge properties and the structural sensitivity to the various pH conditions, was performed. The study aimed to evaluate the difference in molecular mass, primary structure, surface morphology, and elemental composition of the protein before and after UF. The research was provided by application of spectroscopic, spectrometric, electrophoretic, and microscopic techniques. The evident changes in the surface morphology of bLF were observed after UF, while the molecular masses of both proteins were comparable. According to MALDI-TOF/MS results, UF had a positive impact on the bLF sample representation, improving the identification parameters, such as sequence coverage and intensity coverage.
Collapse
Affiliation(s)
- Tetiana Dyrda-Terniuk
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
3
|
Li Q, Xie L, Xu S, Zhang W. Comparison of Coagulation-Integrated Sand Filtration and Ultrafiltration for Seawater Reverse Osmosis Pretreatment. MEMBRANES 2024; 14:125. [PMID: 38921492 PMCID: PMC11205350 DOI: 10.3390/membranes14060125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
The removal of dissolved organic matter (DOM) from seawater before the reverse osmosis (RO) processes is crucial for alleviating organic fouling of RO membranes. However, research is still insufficiently developed in the comparison of the effectiveness of integrating coagulation with ultrafiltration (UF) or sand filtration (SF) in the pretreatment stage of seawater reverse osmosis (SWRO) for the removal of DOM. In this study, we investigated the effect of pretreatment technologies on RO fouling caused by DOM in seawater, including the integration of coagulation and sand filtration (C-S pretreatment) and the integration of coagulation and ultrafiltration (C-U pretreatment). Both integrated pretreatments achieved comparable DOM removal rates (70.2% for C-U and 69.6% for C-S), and C-S exhibited enhanced removal of UV-absorbing compounds. Although C-U was more proficient in reducing the silt density index (below 2) compared to C-S (above 3) and improved the elimination of humic acid-like organics, it left a higher proportion of tyrosine-protein-like organics, soluble microbial by-product-like organics, and finer organics in the effluent, leading to the formation of a dense cake layer on RO membrane and a higher flux decline. Therefore, suitable technologies should be selected according to specific water conditions to efficiently mitigate RO membrane fouling.
Collapse
Affiliation(s)
| | - Lixin Xie
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Q.L.); (S.X.)
| | | | - Wen Zhang
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Q.L.); (S.X.)
| |
Collapse
|
4
|
Chen R, Xu D, Zhao J, Tang X, Yang H, Liang H. Effects of cations on biofilms in gravity-driven membrane system: Filtration performance and mechanism investigation. WATER RESEARCH 2024; 254:121383. [PMID: 38432002 DOI: 10.1016/j.watres.2024.121383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The gravity-driven membrane (GDM) system is desirable for energy-efficient water treatment. However, little is known about the influence of cations on biofilm properties and GDM performance. In this study, typical cations (Ca2+ and Na+) were used to reveal the combined fouling behavior and mechanisms. Results showed that Ca2+ improved the stable flux and pollutant removal efficiency, while Na+ adversely affected the flux. Compared with GDM control, the concentration of pollutants was lower in Ca-GDM, as indicated by the low biomass, proteins, and polysaccharides. A heterogeneous and loose biofilm was observed in the Ca-GDM system, with roughness and porosity increasing by 43.06 % and 32.60 %, respectively. However, Na+ induced a homogeneous and dense biofilm, with porosity and roughness respectively reduced by 17.48 % and 22.04 %. The richness of bacterial communities increased in Ca-GDM systems, while it decreased in Na-GDM systems. High adenosine triphosphate (ATP) concentration in Ca-GDM system was consistent with the abundant bacteria and their high biological activity, which was helpful for the efficient removal of pollutants. The abundance of Apicomplexa, Platyhelminthes, Annelida and Nematoda increased after adding Ca2+, which was related to the formation of loose biofilms. Computational simulations indicated that the free volumes of the biofilms in Ca-GDM and Na-GDM were 13.7 and 13.2 nm3, respectively. The addition of cations changed intermolecular forces, Ca2+ induced bridging effects led to large and loose floc particles, while the significant dehydration of hydrated molecules in the Na-GDM caused obvious aggregation. Overall, microbiological characteristics and contaminant molecular interactions were the main reasons for differences in GDM systems.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haiyang Yang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
5
|
Hestekin CN, Pakkaner E, Hestekin JA, De Souza LS, Chowdhury PP, Marçal JL, Moore J, Hesse SA, Takacs CJ, Tassone CJ, Dachavaram SS, Crooks PA, Williams K, Kurtz I. High flux novel polymeric membrane for renal applications. Sci Rep 2023; 13:11703. [PMID: 37474512 PMCID: PMC10359412 DOI: 10.1038/s41598-023-37765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
Biocompatibility and the ability to mediate the appropriate flux of ions, urea, and uremic toxins between blood and dialysate components are key parameters for membranes used in dialysis. Oxone-mediated TEMPO-oxidized cellulose nanomaterials have been demonstrated to be excellent additives in the production and tunability of ultrafiltration and dialysis membranes. In the present study, nanocellulose ionic liquid membranes (NC-ILMs) were tested in vitro and ex vivo. An increase in flux of up to two orders of magnitude was observed with increased rejection (about 99.6%) of key proteins compared to that of polysulfone (PSf) and other commercial membranes. NC-ILMs have a sharper molecular weight cut-off than other phase inversion polymeric membranes, allowing for high throughput of urea and a uremic toxin surrogate and limited passage of proteins in dialysis applications. Superior anti-fouling properties were also observed for the NC-ILMs, including a > 5-h operation time with no systemic anticoagulation in blood samples. Finally, NC-ILMs were found to be biocompatible in rat ultrafiltration and dialysis experiments, indicating their potential clinical utility in dialysis and other blood filtration applications. These superior properties may allow for a new class of membranes for use in a wide variety of industrial applications, including the treatment of patients suffering from renal disease.
Collapse
Affiliation(s)
- Christa N Hestekin
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA.
| | - Efecan Pakkaner
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Jamie A Hestekin
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Leticia Santos De Souza
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Partha Pratim Chowdhury
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Juliana Louzada Marçal
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - John Moore
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Sarah A Hesse
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Soma Shekar Dachavaram
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Kate Williams
- St. Francis Animal Hospital, 121 Virginia Street, Springdale, AR, 72764, USA
| | - Ira Kurtz
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Brain Research Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Sisay EJ, Fazekas ÁF, Gyulavári T, Kopniczky J, Hopp B, Veréb G, László Z. Investigation of Photocatalytic PVDF Membranes Containing Inorganic Nanoparticles for Model Dairy Wastewater Treatment. MEMBRANES 2023; 13:656. [PMID: 37505022 PMCID: PMC10383713 DOI: 10.3390/membranes13070656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Membrane separation processes are promising methods for wastewater treatment. Membrane fouling limits their wider use; however, this may be mitigated using photocatalytic composite materials for membrane preparation. This study aimed to investigate photocatalytic polyvinylidene fluoride (PVDF)-based nanocomposite membranes for treating model dairy wastewater containing bovine serum albumin (BSA). Membranes were fabricated via physical coating (with TiO2, and/or carbon nanotubes, and/or BiVO4) and blending (with TiO2). Another objective of this study was to compare membranes of identical compositions fabricated using different techniques, and to examine how various TiO2 concentrations affect the antifouling and cleaning performances of the blended membranes. Filtration experiments were performed using a dead-end cell. Filtration resistances, BSA rejection, and photocatalytic cleanability (characterized by flux recovery ratio (FRR)) were measured. The surface characteristics (SEM, EDX), roughness (measured by atomic force microscopy, AFM), wettability (contact angle measurements), and zeta potential of the membranes were also examined. Coated PVDF membranes showed higher hydrophilicity than the pristine PVDF membrane, as evidenced by a decreased contact angle, but the higher hydrophilicity did not result in higher fluxes, unlike the case of blended membranes. The increased surface roughness resulted in increased reversible fouling, but decreased BSA retention. Furthermore, the TiO2-coated membranes had a better flux recovery ratio (FRR, 97%) than the TiO2-blended membranes (35%). However, the TiO2-coated membrane had larger total filtration resistances and a lower water flux than the commercial pristine PVDF membrane and TiO2-blended membrane, which may be due to pore blockage or an additional coating layer formed by the nanoparticles. The BSA rejection of the TiO2-coated membrane was lower than that of the commercial pristine PVDF membrane. In contrast, the TiO2-blended membranes showed lower resistance than the pristine PVDF membrane, and exhibited better antifouling performance, superior flux, and comparable BSA rejection. Increasing the TiO2 content of the TiO2-blended membranes (from 1 to 2.5%) resulted in increased antifouling and comparable BSA rejection (more than 95%). However, the effect of TiO2 concentration on flux recovery was negligible.
Collapse
Affiliation(s)
- Elias Jigar Sisay
- Doctoral School of Environmental Sciences, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, H-6725 Szeged, Hungary
| | - Ákos Ferenc Fazekas
- Doctoral School of Environmental Sciences, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, H-6725 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sqr. 1, H-6720 Szeged, Hungary
| | - Judit Kopniczky
- Department of Optics and Quantum Electronics, Institute of Physics, University of Szeged, Dóm Sqr. 9, H-6720 Szeged, Hungary
| | - Béla Hopp
- Department of Optics and Quantum Electronics, Institute of Physics, University of Szeged, Dóm Sqr. 9, H-6720 Szeged, Hungary
| | - Gábor Veréb
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, H-6725 Szeged, Hungary
| | - Zsuzsanna László
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, H-6725 Szeged, Hungary
| |
Collapse
|
7
|
Zhang J, Li G, Yuan X, Li P, Yu Y, Yang W, Zhao S. Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review. MEMBRANES 2023; 13:77. [PMID: 36676884 PMCID: PMC9862110 DOI: 10.3390/membranes13010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
Ultrafiltration (UF) processes exhibit high removal efficiencies for suspended solids and organic macromolecules, while UF membrane fouling is the biggest obstacle affecting the wide application of UF technology. To solve this problem, various pretreatment measures, including coagulation, adsorption, and advanced oxidation, for application prior to UF processes have been proposed and applied in actual water treatment processes. Previously, researchers mainly focused on the contribution of natural macromolecular pollutants to UF membrane fouling, while the mechanisms of the influence of emerging pollutants (EPs) in UF processes (such as antibiotics, microplastics, antibiotic resistance genes, etc.) on membrane fouling still need to be determined. This review introduces the removal efficiency and separation mechanism for EPs for pretreatments combined with UF membrane separation technology and evaluates the degree of membrane fouling based on the UF membrane's materials/pores and the structural characteristics of the cake layer. This paper shows that the current membrane separation process should be actively developed with the aim of overcoming specific problems in order to meet the technical requirements for the efficient separation of EPs.
Collapse
Affiliation(s)
- Jianguo Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Gaotian Li
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xingcheng Yuan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Panpan Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yongfa Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
8
|
Zou H, Huang J, Zhang M, Lin H, Teng J, Huang Z. Mitigation of protein fouling by magnesium ions and the related mechanisms in ultrafiltration process. CHEMOSPHERE 2023; 310:136817. [PMID: 36241107 DOI: 10.1016/j.chemosphere.2022.136817] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Although protein is an important membrane foulant in the water body that may be significantly affected by the coexisting common cation magnesium (Mg2+), the effect of Mg2+ on protein fouling is rarely reported. In this context, this study selected bovine serum albumin (BSA) as the model foulant, and investigated its fouling characteristics at different Mg2+ concentrations (0-100 mM). Filtration tests showed that the protein fouling can be significantly mitigated by adding Mg2+, and the specific filtration resistance (SFR) of pure BSA (3.56 × 1014 m kg-1) was at least 5 times that of BSA-Mg2+ solutions (0.5-100 mM). In addition, an optimal Mg2+ concentration exists, which can achieve the lowest BSA SFR. A series of characterizations indicated that the main contributors to the differences in BSA SFR were the changes in BSA adhesion capacity and the thickness and structure of the foulant layer. Basically, the above results were attributed to the hydration repulsion effect of Mg2+, which prevented tight adhesion of foulants to the membrane. Moreover, the lowest BSR SFR at 1 mM Mg2+ was achieved not only by the hydration repulsion effect but also by the particle size compression due to the conformational change of BSA molecules. This combined effect led to the lowest foulant retention on the membrane surface and delivered to the lowest SFR. This study conducts a thorough inspection into the specific effect of Mg2+ on protein fouling and provides a fresh insight into protein fouling control in the UF process.
Collapse
Affiliation(s)
- Hui Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiahui Huang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhengyi Huang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
9
|
Ye Y, Han Q, Zhao C, Ke W, Qiu M, Chen X, Fan Y. Improved negative charge of tight ceramic ultrafiltration membranes for protein-resistant and easy-cleaning performance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Wang WQ, Li JJ, Zhou JY, Song MX, Wang JC, Li X, Tang CC, Lu ML, Gu RX. The effect of ion environment changes on retention protein behavior during whey ultrafiltration process. Food Chem X 2022; 15:100393. [PMID: 36211742 PMCID: PMC9532716 DOI: 10.1016/j.fochx.2022.100393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/25/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
The ions environment changes were investigated during whey ultrafiltration process. Whey protein surface structure changes were contributed to the changing ions’ concentration. The relationship between ions around whey protein and membrane fouling was analyzed.
The factors affecting membrane fouling are very complex. In this study, the membrane fouling process was revealed from the perspective of ion environment changes, which affected the whey protein structure during ultrafiltration. It was found that the concentrations of Ca2+ and Na+ were overall increased and the concentrations of K+, Mg2+ and Zn2+ were decreased at an ultrafiltration time of 11 min, which made more hydrophilic groups buried inside and increased the content of α-helix, leading to more protein aggregation. The relatively higher K+ ratio in retention could lead to an antiparallel β-sheet configuration, aspartic acid, glutamic acid and tryptophan increased, which resulted in more protein aggregation and deposition on the membrane surface at 17 min. When the ion concentration and ratio restored the balance and were close to the initial state in retention, the protein surface tension decreased, and the hydrophilic ability increased at 21–24 min.
Collapse
Affiliation(s)
- Wen-qiong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
- Weiwei Food & Beverage Co., LTD, Xuzhou 221114, Jiangsu, China
| | - Jian-ju Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ji-yang Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man-xi Song
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jia-cheng Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Xing Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Mao-lin Lu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Rui-xia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
- Corresponding author at: College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
11
|
Zhang B, Mao X, Tang X, Tang H, Zhang B, Shen Y, Shi W. Pre-coagulation for membrane fouling mitigation in an aerobic granular sludge membrane bioreactor: A comparative study of modified microbial and organic flocculants. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Cai W, Zhang J, Li Y, Chen Q, Xie W, Wang J. Characterizing membrane fouling formation during ultrafiltration of high-salinity organic wastewater. CHEMOSPHERE 2022; 287:132057. [PMID: 34474376 DOI: 10.1016/j.chemosphere.2021.132057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
High-salinity organic wastewater usually consists of diverse highly concentrated ions such as Na+, Ca2+ and Al3+ etc., which may significantly influence the fouling propensity when membrane technique is employed for contaminants removal. The current work investigated the effects of high salinity especially high-concentration Na+, Ca2+ and Al3+ on UF fouling characteristics, where 2 M Na+ and 0.5-1.0 M Ca2+ or Al3+ were applied according to the general composition of high-salinity wastewater. The results demonstrated that the presence of high-concentration Na+ alone benefited the ultrafiltration of bovine serum albumin (BSA) solution, but posed adverse effects on the ultrafiltration of humic acid (HA) solution. Further addition of Ca2+ or Al3+ on the basis of Na+ was found to aggravate the development of BSA fouling. Such differentiated behaviors were further elucidated by the comprehensive fouling characterizations in terms of foulant properties, specific resistances, filtration modelling and fouling layer observations. Correlation analysis suggested that irreversible fouling had strong relationship with Al3+ addition, while reversible fouling seemed to be primarily influenced by foulant size. Meanwhile, membrane rejection in the presence of various salts remarkably decreased, which was negatively correlated with zeta potential. Consequently, this study should shed light on the membrane fouling formation for treating high-salinity organic wastewater using membrane techniques.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyu Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Qiuying Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Wenwen Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jingwei Wang
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Du Z, Ji M, Li R. Effects of different Ca 2+ behavior patterns in the electric field on membrane fouling formation and removal of trace organic compounds. J Environ Sci (China) 2022; 111:292-300. [PMID: 34949359 DOI: 10.1016/j.jes.2021.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 06/14/2023]
Abstract
The effects of Ca2+ on membrane fouling and trace organic compounds (TrOCs) removal in an electric field-assisted microfiltration system were investigated in the presence of Na+ alone for comparison. In the electric field, negatively charged bovine serum albumin (BSA) migrated towards the anode far away from the membrane surface, resulting in a 42.9% transmembrane pressure (TMP) reduction in the presence of Na+ at 1.5 V. In contrast, because of the stronger charge shielding of Ca2+, the electrophoretic migration of BSA was limited and led to a neglectable effect of the electric field (1.5 V) on membrane fouling. However, under 3 V applied voltage, the synergistic effects of electrochemical oxidation and bridging interaction between Ca2+ and BSA promoted the formation of denser settleable flocs and a thinner porous cake layer, which alleviated membrane fouling with a 64.5% decrease in TMP and nearly 100% BSA removal. The TrOCs elimination increased with voltage and reached 29.4%-80.4% at 3 V. The electric field could prolong the contact between TrOCs and strong oxidants generated on the anode, which enhanced the TrOCs removal. However, a stronger charge shielding ability of Ca2+ weakened the electric field force and thus lowered the TrOCs removal.
Collapse
Affiliation(s)
- Zhen Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
14
|
Du Z, Ji M, Li R. Enhanced membrane fouling control and trace organic compounds removal during microfiltration by coupling coagulation and adsorption in an electric field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148830. [PMID: 34247084 DOI: 10.1016/j.scitotenv.2021.148830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Coupling electric field, coagulation, and powdered activated carbon (PAC) adsorption in the microfiltration (MF) process was an effective strategy for membrane fouling alleviation and trace organic compounds (TrOCs) elimination. In the electric field, the surface charges of bovine serum albumin (BSA) molecules and kaolin particles distributed along the direction of the electric field and formed electric dipoles, which lowered electrostatic repulsion between BSA-BSA, BSA-kaolin, and kaolin-kaolin, resulting in enhanced particle aggregation and turbidity reduction. Electrophoretic migration also strengthened the interaction between particles and polyaluminum chloride (PACl). Protein removal showed a significant linear correlation with the transmembrane pressure (TMP), and the slope variation of the fitting curves reflected the role of the electric field in the BSA removal and membrane fouling control. Under the synergistic function of electric field, coagulation, and PAC adsorption, the MF system achieved an 80.7% reduction on membrane fouling, an average BSA removal of 76.4%, and TrOCs elimination of 65.3%-81.7%. Electrochemical oxidation was the main contributor to the TrOCs removal when 2.5 V voltage was applied, and could also prolong the service life of PAC.
Collapse
Affiliation(s)
- Zhen Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
15
|
Polydopamine modification of high-performance PVDF ultrafiltration membranes prepared by the combined crystallisation and diffusion (CCD) method. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Hu M, Zhao L, Yu N, Tian Z, Yin Z, Yang Z, Yang W, Graham NJ. Application of ultra-low concentrations of moderately-hydrophobic chitosan for ultrafiltration membrane fouling mitigation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Jutaporn P, Cory RM, Singer PC, Coronell O. Efficacy of selected pretreatment processes in the mitigation of low-pressure membrane fouling and its correlation to their removal of microbial DOM. CHEMOSPHERE 2021; 277:130284. [PMID: 33774230 DOI: 10.1016/j.chemosphere.2021.130284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Membrane fouling by dissolved organic matter (DOM), especially microbially-derived DOM, is a major challenge for ultrafiltration (UF) membranes in water purification. Fouling may be mitigated by pretreating feed waters; however, there are no comprehensive studies that compare the fouling reduction efficacies across different pretreatment processes. Further, there is a limited understanding of the relationship between fouling reduction efficacy and microbially-derived DOM removal from source waters. Accordingly, the objectives of this study were to: (i) evaluate and compare the efficacies of five pretreatment processes in reducing UF membrane fouling by DOM; and (ii) investigate whether a relationship exists between membrane fouling reduction and microbially-derived DOM removal by pretreatment processes. We investigated seven water sources and a polyvinylidene fluoride hollow-fiber UF membrane using bench-scale fouling tests. Dissolved organic carbon content, ultraviolet absorbance and fluorescence excitation-emission matrix spectroscopy were used to assess DOM concentration and composition. Alum and ferric chloride coagulation were the most effective pretreatment processes in reducing membrane fouling, anion exchange was moderately effective, and PAC adsorption and chlorine pre-oxidation were the least effective. Consistent with previous studies, microbially-derived DOM was the major contributor to UF membrane fouling regardless of water source or pretreatment type. Fouling reduction was strongly correlated with the reduction of microbially-derived DOM in foulant layers but not from source waters. This result indicates that a fraction of the total microbially-derived DOM in feed waters was responsible for UF fouling. Overall, pretreatment processes that remove microbially-derived DOM are well-suited for UF membrane fouling reduction.
Collapse
Affiliation(s)
- Panitan Jutaporn
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Research Center for Environmental and Hazardous Substance Management (EHSM), Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rose M Cory
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Philip C Singer
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Miao R, Zhou Y, Wang P, Lu W, Li P, Li X, Wang L. A comparison of effect mechanisms of chlorination and ozonation on the interfacial forces of protein at membrane surfaces and the implications for membrane fouling control. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Wen‐qiong W, Ji‐yang Z, Qian Y, Jianju L. The effect of composite enzyme catalysis whey protein cross-linking on filtration performance. Food Sci Nutr 2021; 9:3078-3090. [PMID: 34136173 PMCID: PMC8194946 DOI: 10.1002/fsn3.2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/06/2022] Open
Abstract
In this study, enzymatic cross-linked whey protein coupling ultrafiltration was used to reduce membrane fouling and increase whey protein recovery rate. The filtration efficiency and protein interaction with the membrane surface were investigated. The results showed that the protein recovery rate and relative flux of transglutaminase catalysis protein followed by tyrosinase each increased by approximately 30% during ultrafiltration. The total membrane resistance was reduced by approximately 20%. The shape of the transglutaminase and tyrosinase cross-linked protein had somewhat spherical and cylindrical structure similar to an elongated shape based on fluorescence microscopy imaging, which indicated membrane resistance reduction. Fluorescence excitation-emission matrix spectroscopy (EEM) showed that the permeation peak intensities of transglutaminase followed by tyrosinase catalysis protein decreased sharply in the tryptophan and aromatic-like protein fields, indicating that most protein was rejected after ultrafiltration. The repulsive interaction energy was increased between the cross-linked proteins and membrane based on extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis.
Collapse
Affiliation(s)
- Wang Wen‐qiong
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety ControlYangzhou UniversityYangzhouChina
- Weiwei Food and Beverage Co., LtdXuzhouChina
| | - Zhou Ji‐yang
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
| | - Yu Qian
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
| | - Li Jianju
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
| |
Collapse
|
20
|
Analysis of microstructural properties of ultrafiltration cake layer during its early stage formation and growth. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Feng Y, Guo N, Ren S, Xie X, Xu J, Wang Y. AgNPs@ZIF‐8 Hybrid Material‐Modified Polyethersulfone Microfiltration Membranes for Antibiofouling Property and Permeability Improvement. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Feng
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
- Shandong University of Science and Technology College of Mining and Safety Engineering 266590 Qingdao Shandong China
| | - Ning Guo
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
- Shandong Jianzhu University School of Municipal and Environmental Engineering 250101 Jinan China
| | - Shaojie Ren
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
| | - Xuan Xie
- IHE Delft Institute for Water Education 2622 HD Delft The Netherlands
| | - Juan Xu
- East China Normal University Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration School of Ecological and Environmental Sciences Shanghai China
| | - Yunkun Wang
- Shandong University Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering 266237 Qingdao China
| |
Collapse
|
22
|
Rapid Surface Modification of Ultrafiltration Membranes for Enhanced Antifouling Properties. MEMBRANES 2020; 10:membranes10120401. [PMID: 33297433 PMCID: PMC7762233 DOI: 10.3390/membranes10120401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022]
Abstract
In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers—acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process.
Collapse
|
23
|
Ma Y, Yi J, Pan B, Nitin N, Sun G. Chlorine Rechargeable Biocidal N-Halamine Nanofibrous Membranes Incorporated with Bifunctional Zwitterionic Polymers for Efficient Water Disinfection Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51057-51068. [PMID: 33138373 DOI: 10.1021/acsami.0c14856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An intrinsically hydrophilic nanofibrous membrane with chlorine rechargeable biocidal and antifouling functions was prepared by using a combination of chemically bonded N-halamine moieties and zwitterionic polymers (PEI-S). The designed nanofibrous membrane, named as PEI-S@BNF-2 h, can exhibit integrated features of reduced bacterial adhesion, rechargeable biocidal activity, and easy release of killed bacteria by using mild hydrodynamic forces. The representative functional performances of the PEI-S@BNF-2 h membrane include high active chlorine capacity (>4000 ppm), large specific surface area, ease of chlorine rechargeability, long-term stability, and exceptional biocidal activity (99.9999% via contact killing). More importantly, the zwitterionic polymer moieties (PEI-S) brought robust antifouling properties to this biocidal membrane, therefore reducing the biofouling-biofilm effect and prolonging the lifetime of the filtration membrane. These attributes enable the PEI-S@BNF-2 h nanofibrous membrane to effectively disinfect the microbe-contaminated water with high fluxes (10,000 L m-2 h-1) and maintain itself clean for a long-term application.
Collapse
Affiliation(s)
- Yue Ma
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| | - Jiyoon Yi
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Bofeng Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| | - Nitin Nitin
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
24
|
Li J, Wang Q, Deng L, Kou X, Tang Q, Hu Y. Fabrication and characterization of carbon nanotubes-based porous composite forward osmosis membrane: Flux performance, separation mechanism, and potential application. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Ma B, Wu S, Wang B, Qi Z, Bai Y, Liu H, Qu J, Wu R. Influence of floc dynamic protection layer on alleviating ultrafiltration membrane fouling induced by humic substances. J Environ Sci (China) 2020; 90:10-19. [PMID: 32081307 DOI: 10.1016/j.jes.2019.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Cake layer formation is inevitable over time for ultrafiltration (UF) membrane-based drinking water treatment. Although the cake layer is always considered to cause membrane fouling, it can also act as a "dynamic protection layer", as it further adsorbs pollutants and dramatically reduces their chance of getting to the membrane surface. Here, the UF membrane fouling performance was investigated with pre-deposited loose flocs in the presence of humic acid (HA). The results showed that the floc dynamic protection layer played an important role in removing HA. The higher the solution pH, the more negative the floc charge, resulting in lower HA removal efficiency due to the electrostatic repulsion and large pore size of the floc layer. With decreasing solution pH, a positively charged floc dynamic protection layer was formed, and more HA molecules were adsorbed. The potential reasons were ascribed to the smaller floc size, greater positive charge, and higher roughness of the floc layer. However, similar membrane fouling performance was also observed for the negative and positive floc dynamic protection layers due to their strong looseness characteristics. In addition, the molecular weight (MW) distribution of HA also played an important role in UF membrane fouling behavior. For the small MW HA molecules, the chance of forming a loose cake layer was high with a negatively charged floc dynamic protection layer, while for the large MW HA molecules it was high with a positively charged floc dynamic protection layer. As a result, slight UF membrane fouling was induced.
Collapse
Affiliation(s)
- Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Siqi Wu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bodong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zenglu Qi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Huijuan Liu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China; Research Center for Water Quality and Ecology, Tsinghua University, Beijing, 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruijun Wu
- State Key Laboratory of Membrane Materials and Membrane Applications, Tianjin Motimo Membrane Technology Co., Ltd., Tianjin, 300457, China
| |
Collapse
|
26
|
|