1
|
Jiao Y, Ran M, Wu J, Li J. Boron contributes to enhance antimony tolerance in rice (Oryza sativa L.) by activating antioxidant system, modifying the cell wall component and promoting cell wall deposition of Sb. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124100. [PMID: 39813807 DOI: 10.1016/j.jenvman.2025.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/02/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Boron (B) is essential for plant growth and helps mitigate metal toxicity in various crop plants. However, the potential role and underlying mechanisms of B in alleviating antimony (Sb) toxicity in rice remain unexplored. In this study, we investigated the effects of H₃BO₃ supplementation (30, 50, and 75 μM) on morphological growth, physiological and biochemical traits, Sb content, and the subcellular distribution of Sb in rice plants under 100 μM Sb stress during the seedling stage in a hydroponic system. The results revealed that Sb toxicity severely impaired rice growth, reducing shoot biomass by 38.3%, shoot and root length by 38.9% and 23.2%, and leaf relative water content by 15.5%. Supplementation with 30 μM B mitigated these adverse effects by enhancing photosynthesis and chlorophyll synthesis, restoring root activity, and improving oxidative balance through increased antioxidant enzyme activities in rice tissues. Furthermore, B supplementation significantly reduced Sb concentration in roots by 56.28%, while promoting Sb distribution in the cell wall (CW) fraction. Scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDS) microanalysis confirmed that B enhanced Sb adsorption on root CWs. Fourier transform infrared spectroscopy (FTIR) analysis indicated increased carboxyl groups in the CWs following B application under Sb treatment. Moreover, B supplementation increased the levels of pectin and hemicellulose and elevated pectin methylesterase (PME) activity by 22.0%, 69.0%, and 29.0% in roots, respectively, thus promoting Sb chelation onto the CWs. Taken together, our results provide a scientific basis and theoretical guidance for applying B to alleviate Sb toxicity in crops.
Collapse
Affiliation(s)
- Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
2
|
Zhao Y, Zhang Y, Zhang K, Tian J, Teng H, Xu Z, Xu J, Shao H, Jia W. Molybdenum Can Regulate the Expression of Molybdase Genes, Affect Molybdase Activity and Metabolites, and Promote the Cell Wall Bio-Synthesis of Tobacco Leaves. BIOLOGY 2025; 14:66. [PMID: 39857296 PMCID: PMC11762813 DOI: 10.3390/biology14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Molybdenum (Mo) is widely used as a micronutrient fertilizer to improve plant growth and soil quality. However, the interactions between cell wall biosynthesis and molybdenum have not been explored sufficiently. This study thoroughly investigated the regulatory effects of different concentrations of Mo on tobacco cell wall biosynthesis from physiological and metabolomic aspects. The results indicate that Mo treatment increased the Mo content of tobacco variety K326. Moreover, it significantly up-regulated the gene expression levels of molybdases (NR, AO, SO, XDH) and molybdate transporters in tobacco, whereby the gene expression levels of NR were upregulated by 28.48%, 52.51%, 173.05%, and 246.21%, respectively; and MOT1 and MOT2 were upregulated by 21.49/8.67%, 66.05/30.44%, 93.05/93.26%, and 166.11/114.29%, respectively. Additionally, Mo treatment regulated the synthesis of related enzymes, effectively promoted plant growth, and significantly increased biomass and dry matter accumulation, with the biomass in the leaves increasing significantly by 30.73%, 40.72%, 46.34%, and 12.88%, respectively. The FT-NIR spectroscopy results indicate that after Mo was applied to the soil, the quantity of C-O-C, -COOH, C-H, and N-H functional groups increased. Concurrently, the contents of cellulose, hemicellulose, lignin, protopectin, and soluble pectin in the leaves significantly increased, wherein the content of soluble pectin and hemicellulose increased significantly by 31.01/288.82%, 40.69/343.43%, 69.93/241.73%, and 196.88/223.26%, respectively. Furthermore, the cell walls thickened, increasing the ability of the plant to withstand disturbances. The metabolic network diagrams indicate that Mo regulated galactose metabolism, and arginine and proline acid biosynthesis. The contents of carbohydrates, spermidine, proline, quinic acid, IAA, flavonoids, and other substances were increased, increasing the levels of polysaccharides and pectin within the cell wall, controlling lignin production, and successfully enhancing resistance to abiotic stress. These results offer important perspectives for further investigations into the role of trace elements.
Collapse
Affiliation(s)
- Yuan Zhao
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Yu Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Kai Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Jiashu Tian
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Huanyu Teng
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Zicheng Xu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China;
| | - Huifang Shao
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Wei Jia
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| |
Collapse
|
3
|
Yu X, Liu Y, Yang L, Liu Y, Fan C, Yang Z, Xu Y, Zeng X, Xiao X, Yang L, Lei T, Jiang M, Li X, Gao S, Tao Q. Low concentrations of methyl jasmonate promote plant growth and mitigate Cd toxicity in Cosmos bipinnatus. BMC PLANT BIOLOGY 2024; 24:807. [PMID: 39187785 PMCID: PMC11348786 DOI: 10.1186/s12870-024-05526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Cadmium (Cd) is a biologically non-essential heavy metal, a major soil pollutant, and extremely harmful to plants. The phytohormone methyl jasmonate (MeJA) plays an important role in plant heavy-metal resistance. However, the understanding of the effects of MeJA supply level on alleviating Cd toxicity in plants is limited. Here, we investigated how MeJA regulated the development of physiological processes and cell wall modification in Cosmos bipinnatus. We found that low concentrations of MeJA increased the dry weight of seedlings under 120 µM Cd stress by reducing the transport of Cd from roots to shoots. Moreover, a threshold concentration of exogenous MeJA increased the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in plant roots, the concentration of Cd in the root cell wall, and the contents of pectin and hemicellulose 1 polysaccharides, through converting Cd into pectin-bound forms. These results suggested that MeJA mitigated Cd toxicity by modulating root cell wall polysaccharide and functional group composition, especially through pectin polysaccharides binding to Cd, with effects on Cd transport capacity, specific chemical forms of Cd, and homeostatic antioxidant systems in C. bipinnatus.
Collapse
Affiliation(s)
- Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yujia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liu Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujing Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunyu Fan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zihan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhan Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Xiao
- Triticeae Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
4
|
Zhu S, Sun S, Zhao W, Yang X, Mao H, Sheng L, Chen Z. Utilizing transcriptomics and proteomics to unravel key genes and proteins of Oryza sativa seedlings mediated by selenium in response to cadmium stress. BMC PLANT BIOLOGY 2024; 24:360. [PMID: 38698342 PMCID: PMC11067083 DOI: 10.1186/s12870-024-05076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China.
| | - Suxia Sun
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Wei Zhao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Prague-Suchdol, 16500, Czech Republic
| |
Collapse
|
5
|
Moy A, Nkongolo K. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine ( Pinus banksiana) Based on Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1042. [PMID: 38611570 PMCID: PMC11013723 DOI: 10.3390/plants13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings treated with each of the metals. There were 449 differentially expressed genes (DEGs) between copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off, indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%) and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall, 21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Various genes related to cell wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and signaling-related genes associated with the stress response were identified. They included UGT, TIFY, ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the specific functions of signaling and stress response mechanisms in nickel-resistant plants.
Collapse
Affiliation(s)
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
6
|
Chen HH, Zheng ZC, Hua D, Chen XF, Huang ZR, Guo J, Yang LT, Chen LS. Boron-mediated amelioration of copper toxicity in Citrus sinensis seedlings involved reduced concentrations of copper in leaves and roots and their cell walls rather than increased copper fractions in their cell walls. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133738. [PMID: 38350317 DOI: 10.1016/j.jhazmat.2024.133738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Little information is available on how boron (B) supplementation affects plant cell wall (CW) remodeling under copper (Cu) excess. 'Xuegan' (Citrus sinensis) seedlings were submitted to 0.5 or 350 µM Cu × 2.5 or 25 µM B for 24 weeks. Thereafter, we determined the concentrations of CW materials (CWMs) and CW components (CWCs), the degree of pectin methylation (DPM), and the pectin methylesterase (PME) activities and PME gene expression levels in leaves and roots, as well as the Cu concentrations in leaves and roots and their CWMs (CWCs). Additionally, we analyzed the Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra of leaf and root CWMs. Our findings suggested that adding B reduced the impairment of Cu excess to CWs by reducing the Cu concentrations in leaves and roots and their CWMs and maintaining the stability of CWs, thereby improving leaf and root growth. Cu excess increased the Cu fractions in leaf and root pectin by decreasing DPM due to increased PME activities, thereby contributing to citrus Cu tolerance. FTIR and XRD indicated that the functional groups of the CW pectin, hemicellulose, cellulose, and lignin could bind and immobilize Cu, thereby reducing Cu cytotoxicity in leaves and roots.
Collapse
Affiliation(s)
- Huan-Huan Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Chao Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan Hua
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiuxin Guo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Moy A, Czajka K, Michael P, Nkongolo K. Gene expression profiling of Jack Pine (Pinus banksiana) under copper stress: Identification of genes associated with copper resistance. PLoS One 2024; 19:e0296027. [PMID: 38452110 PMCID: PMC10919686 DOI: 10.1371/journal.pone.0296027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Understanding the genetic response of plants to copper stress is a necessary step to improving the utility of plants for environmental remediation and restoration. The objectives of this study were to: 1) characterize the transcriptome of Jack Pine (Pinus banksiana) under copper stress, 2) analyze the gene expression profile shifts of genotypes exposed to copper ion toxicity, and 3) identify genes associated with copper resistance. Pinus banksiana seedlings were treated with 10 mmoles of copper and screened in a growth chamber. There were 6,213 upregulated and 29,038 downregulated genes expressed in the copper resistant genotypes compared to the susceptible genotypes at a high stringency based on the false discovery rate (FDR). Overall, 25,552 transcripts were assigned gene ontology. Among the top upregulated genes, the response to stress, the biosynthetic process, and the response to chemical stimuli terms represented the highest proportion of gene expression for the biological processes. For the molecular function category, the majority of expressed genes were associated with nucleotide binding followed by transporter activity, and kinase activity. The majority of upregulated genes were located in the plasma membrane while half of the total downregulated genes were associated with the extracellular region. Two candidate genes associated with copper resistance were identified including genes encoding for heavy metal-associated isoprenylated plant proteins (AtHIP20 and AtHIP26) and a gene encoding the pleiotropic drug resistance protein 1 (NtPDR1). This study represents the first report of transcriptomic responses of a conifer species to copper ions.
Collapse
Affiliation(s)
- Alistar Moy
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Karolina Czajka
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Paul Michael
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
8
|
Qu L, Xu Z, Huang W, Han D, Dang B, Ma X, Liu Y, Xu J, Jia W. Selenium-molybdenum interactions reduce chromium toxicity in Nicotiana tabacum L. by promoting chromium chelation on the cell wall. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132641. [PMID: 37797574 DOI: 10.1016/j.jhazmat.2023.132641] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Chromium (Cr) is a hazardous heavy metal that negatively affects animals and plants. The micronutrients selenium (Se) and molybdenum (Mo) have been widely shown to alleviate heavy metal toxicity in plants. However, the molecular mechanism of Cr chelation on the cell wall by combined treatment with Se and Mo has not been reported. Therefore, this study aimed to explore the effects of Se-Mo interactions on the subcellular distribution of Cr (50 µM) and on cell wall composition, structure, functional groups and Cr content, in addition to performing a comprehensive analysis of the transcriptome. Our results showed that the cell walls of shoots and roots accumulated 51.0% and 65.0% of the Cr, respectively. Furthermore, pectin in the cell wall bound 69.5%/90.2% of the Cr in the shoots/roots. Se-Mo interactions upregulated the expression levels of related genes encoding galacturonosyltransferase (GAUT), UTP-glucose-1-phosphate uridylyltransferase (UGP), and UDP-glucose-4-epimerase (GALE), involved in polysaccharide biosynthesis, thereby increasing pectin and cellulose levels. Moreover, combined treatment with Se and Mo increased the lignin content and cell wall thickness by upregulating the expression levels of genes encoding cinnamyl alcohol dehydrogenase (CAD), peroxidase (POX) and phenylalanine amino-lyase (PAL), involved in lignin biosynthesis. Fourier-transform infrared (FTIR) spectroscopy results showed that Se + Mo treatment (in combination) increased the number of carboxylic acid groups (-COOH) groups, thereby enhancing the Cr chelation ability. The results not only elucidate the molecular mechanism of action of Se-Mo interactions in mitigating Cr toxicity but also provide new insights for phytoremediation and food safety.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Xiaohan Ma
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Yizan Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Huang Y, Shen C, Wang X, Fu H, Huang B, Li Y, Wen H, Wang Y, Zhou W, Xin J. Boron decreases cadmium accumulation in water spinach by enhancing cadmium retention in the root cell walls. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101168-101177. [PMID: 37648912 DOI: 10.1007/s11356-023-29447-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Cadmium (Cd) contamination and boron (B) deficiency are two major challenges associated with the farmland soils in Southern China. Therefore, this study was conducted to examine the impacts of B supply on Cd accumulation in water spinach (Ipomoea aquatica) using a cultivar (T308) with high Cd accumulation. The study further investigated the physiological mechanism behind the changes in Cd accumulation due to B supply. The findings revealed that B supply substantially reduced the Cd concentration in the leaves of water spinach by 41.20% and 37.16% under the Cd stress of 10 μM and 25 μM, respectively. Subcellular distribution of Cd showed that the Cd content as well as its proportion in root cell wall (RCW) increased significantly after B supply. Fourier transform infrared spectroscopy showed significant enrichment of negatively charged groups (such as -OH, -COOH, and -NH2) in the RCW after B supply. Overall, B supply also enhanced covalently bound pectin (CSP) content as well as the Cd content linked with CSP under Cd stress. These observations revealed that B regulated the Cd chelation in RCW, thereby reducing the amassment of Cd in water spinach.
Collapse
Affiliation(s)
- Yingying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Henghua Road 18, Hengyang, 421002, China
| | - Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Henghua Road 18, Hengyang, 421002, China
| | - Xuesong Wang
- Chinese Academy of Inspection and Quarantine Greater Bay Area, Zhongshan, 528437, China
| | - Huiling Fu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Henghua Road 18, Hengyang, 421002, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Henghua Road 18, Hengyang, 421002, China
| | - Yi Li
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Henghua Road 18, Hengyang, 421002, China
| | - Hui Wen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Henghua Road 18, Hengyang, 421002, China
| | - Yunfan Wang
- Chinese Academy of Inspection and Quarantine Greater Bay Area, Zhongshan, 528437, China
| | - Wenjing Zhou
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Henghua Road 18, Hengyang, 421002, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Henghua Road 18, Hengyang, 421002, China.
| |
Collapse
|
10
|
Eon P, Robert T, Goutouly JP, Aurelle V, Cornu JY. Cover crop response to increased concentrations of copper in vineyard soils: Implications for copper phytoextraction. CHEMOSPHERE 2023; 329:138604. [PMID: 37028730 DOI: 10.1016/j.chemosphere.2023.138604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The use of cover crops (CCs) in viticulture is threatened by the contamination of vineyard soils by copper (Cu). This study investigated the response of CCs to increased concentrations of Cu in soil as a way to assess their sensitivity to Cu and their Cu phytoextraction ability. Our first experiment used microplots to compare the effect of increasing soil Cu content from 90 to 204 mg kg-1 on the growth, Cu accumulation level, and elemental profile of six CC species (Brassicaceae, Fabaceae and Poaceae) commonly sown in vineyard inter-row. The second experiment quantified the amount of Cu exported by a mixture of CCs in vineyards with contrasted soil characteristics. Experiment 1 showed that increasing the soil Cu content from 90 to 204 mg kg-1 was detrimental to the growth of Brassicaceae and faba bean. The elemental composition of plant tissues was specific to each CC and almost no change in composition resulted from the increase in soil Cu content. Crimson clover was the most promising CC for Cu phytoextraction as it produced the most aboveground biomass, and, along with faba bean, accumulated the highest concentration of Cu in its shoots. Experiment 2 showed that the amount of Cu extracted by CCs depended on the availability of Cu in the topsoil and CC growth in the vineyard, and ranged from 25 to 166 g per hectare. Taken together, these results emphasize the fact that the use of CCs in vineyards may be jeopardised by the contamination of soils by Cu, and that the amount of Cu exported by CCs is not sufficiently high to offset the amount of Cu supplied by Cu-based fungicides. Recommendations are provided for maximizing the environmental benefits provided by CCs in Cu-contaminated vineyard soils.
Collapse
Affiliation(s)
- Pierre Eon
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France.
| | - Thierry Robert
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| | - Jean-Pascal Goutouly
- UEVB, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France; EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Violette Aurelle
- Chambre d'Agriculture de Gironde, Vinopôle Bordeaux Aquitaine, 33295, Blanquefort Cedex, France
| | - Jean-Yves Cornu
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| |
Collapse
|
11
|
Yu X, Yang L, Fan C, Hu J, Zheng Y, Wang Z, Liu Y, Xiao X, Yang L, Lei T, Jiang M, Jiang B, Pan Y, Li X, Gao S, Zhou Y. Abscisic acid (ABA) alleviates cadmium toxicity by enhancing the adsorption of cadmium to root cell walls and inducing antioxidant defense system of Cosmos bipinnatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115101. [PMID: 37290296 DOI: 10.1016/j.ecoenv.2023.115101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/08/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) pollution is a global problem affecting soil ecology and plant growth. Abscisic acid (ABA) acts as a growth and stress hormone, regulates cell wall synthesis, and plays an important role in plant responses to stress. There are few studies on the mechanisms behind abscisic acid alleviation of cadmium stress in Cosmos bipinnatus, especially in regards to regulation of the root cell wall. This study examined the effects of different concentrations of abscisic acid at different concentrations of cadmium stress. Through adding 5 μmol/L and 30 μmol/L cadmium, followed by spraying 10 μmol/L and 40 μmol/L ABA in a hydroponic experiment, it was found that under two concentrations of cadmium stress, low concentration of ABA improved root cell wall polysaccharide, Cd, and uronic acid content. Especially in pectin, after the application of low concentration ABA, the cadmium concentration was significantly increased by 1.5 times and 1.2 times compared with the Cd concentration under Cd5 and Cd30 treatment alone, respectively. Fourier-Transform Infrared spectroscopy (FTIR) demonstrated that cell wall functional groups such as -OH and -COOH were increased with exposure to ABA. Additionally, the exogenous ABA also increased expression of three kinds of antioxidant enzymes and plant antioxidants. The results of this study suggest that ABA could reduce Cd stress by increasing Cd accumulation, promoting Cd adsorption on the root cell wall, and activating protective mechanisms. This result could help promote application of C. bipinnatus for phytostabilization of cadmium-contaminated soil.
Collapse
Affiliation(s)
- Xiaofang Yu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Liu Yang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chunyu Fan
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiani Hu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yunhao Zheng
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhiwen Wang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yujia Liu
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xue Xiao
- Triticeae research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lijuan Yang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ting Lei
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingyan Jiang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Beibei Jiang
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanzhi Pan
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xi Li
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Suping Gao
- College of landscape architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yonghong Zhou
- Triticeae research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
12
|
Guo Y, Chen K, Lei S, Gao Y, Yan S, Yuan M. Rare Earth Elements (REEs) Adsorption and Detoxification Mechanisms in Cell Wall Polysaccharides of Phytolacca americana L. PLANTS (BASEL, SWITZERLAND) 2023; 12:1981. [PMID: 37653898 PMCID: PMC10223583 DOI: 10.3390/plants12101981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
The cell wall (CW) is critical for the accumulation of heavy metals in metal-tolerant plants. Polysaccharides, the main component of the CW, contribute significantly to the immobilization of heavy metals. However, the mechanisms of rare earth elements (REEs) adsorption and detoxification by polysaccharides in the cell walls of Phytolacca americana L. (P. americana) remain unclear. In this work, we explored the binding sites of REEs and the modifications to polysaccharides in the cell walls of roots and leaves in P. americana, in order to elucidate the adsorption and fixation mechanism of REEs by the cell wall. Our findings indicated that up to 40.7% and 48.1% of cell-wall-bound REEs were present in the root and leaf pectin, respectively. The removal of pectin led to a 39.8% and 23.6% decrease in the maximum adsorption of REEs in the CW, suggesting that pectin was the main binding site for REEs in the cell walls of P. americana. Hydroxyl (-OH) and carboxyl (-COOH) groups in the cell wall interacted mainly with REEs ions under stress conditions, which played a key role in REEs binding. An obvious REEs fractionation was found during the various fractions of the CW, and all fractions of the root cell wall were enriched with HREEs, whereas all fractions of the leaf cell wall were enriched with LREEs. Moreover, P. americana modulated cell wall composition in reaction to REEs stress. In conclusion, cell wall pectin is the main binding site of REEs, and the functional groups on the cell wall play a significant role in the binding of REEs. At the same time, plants can control the selective adsorption and fixation of REEs by adjusting the composition of cell walls. This study offers valuable insights into the mechanisms of REEs adsorption and fixation in cell walls of P. americana, contributing to a theoretical basis for the bioremediation of REEs pollution.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
13
|
Li L, Wang S, Wu S, Rao S, Li L, Cheng S, Cheng H. Morphological and Physiological Indicators and Transcriptome Analyses Reveal the Mechanism of Selenium Multilevel Mitigation of Cadmium Damage in Brassica juncea. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12081583. [PMID: 37111807 PMCID: PMC10141491 DOI: 10.3390/plants12081583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/02/2023]
Abstract
Cadmium (Cd) is a common agricultural soil pollutant, which does serious harm to the environment and the human body. In this study, Brassica juncea was treated with different concentrations of CdCl2 and Na2SeO3. Then, physiological indexes and transcriptome were measured to reveal the mechanisms by which Se reduces the inhibition and toxicity of Cd in B. juncea. The results showed that Se alleviated the inhibitive Cd effects on seedling biomass, root length, and chlorophyll, and promoted the adsorption of Cd by pectin and lignin in the root cell wall (CW). Se also alleviated the oxidative stress induced by Cd, and reduced the content of MDA in cells. As a result, SeCys and SeMet alleviated the transport of Cd to the shoots. Transcriptome data showed that the bivalent cation transporter MPP and ABCC subfamily participated in the separation of Cd in vacuoles, CAL1 was related to the chelation of Cd in the cytoplasm of cells, and ZIP transporter 4 reduced the transport of Cd to the shoots. These results indicated that Se alleviated the damage of Cd in plants and decreased its transport to the shoots by improving the antioxidant system, enhancing the ability of the CW to adsorb Cd, reducing the activity of Cd transporters, and chelating Cd.
Collapse
Affiliation(s)
- Linling Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shiyan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuai Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
14
|
Gao PP, Liang H, Dong Y, Xue PY, Zhao QL, Yan JS, Ma W, Zhao JJ, Liu WJ. Transcriptomic mechanisms of reduced PM 2.5-Pb retention in the leaves of the low-Pb-accumulation genotype of Chinese cabbage. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130385. [PMID: 36403447 DOI: 10.1016/j.jhazmat.2022.130385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric fine particulate matter (PM2.5) mainly contributes to Pb accumulation in the edible leaves of Chinese cabbage in North China. It was found that a low-Pb-accumulation (LPA) genotype of Chinese cabbage contained less Pb in leaves than high-Pb-accumulation (HPA) genotype exposed to PM2.5-Pb. However, there are no data on the transcriptional regulatory mechanisms of foliar PM2.5-Pb uptake by Chinese cabbage. The present study investigated the retention of PM2.5-Pb in foliar apoplast and symplasm and the underlying molecular mechanisms of reduced Pb in LPA leaves. It appeared more Pb in apoplast and less Pb in symplasm of LPA leaves, whereas the pattern was opposite in HPA. There were 2646 and 3095 differentially expressed genes (DEGs) in LPA and HPA leaves under PM2.5-Pb stress with clearly genotype-specific function, respectively. Furthermore, mRNA levels of XTH16 regulating cell wall thickening, PME2 and PME6 involved in cell wall remodification were significantly expressed in LPA, but not in HPA. Meanwhile, foliar PM2.5-Pb stress downregulated expression of ZIP1, YSL1, and CNGC3 responsible for Pb influx to cell, and upregulated expression of ABCG36 regulated Pb efflux from symplasm in LPA leaves. These results improve our understanding to the mechanisms underlying foliar Pb uptake from PM2.5-Pb at transcriptomic level.
Collapse
Affiliation(s)
- Pei-Pei Gao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding 071000, China
| | - Hao Liang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Hebei Collaborative Innovation Center for Green and Efficient Vegetable Industry, College of Horticulture, Hebei, Baoding 071000, China
| | - Yan Dong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding 071000, China
| | - Pei-Ying Xue
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding 071000, China
| | - Quan-Li Zhao
- The Teaching and Experimental Station, Hebei Agricultural University, Hebei, Baoding 071000, China
| | - Jing-Sen Yan
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Hebei Collaborative Innovation Center for Green and Efficient Vegetable Industry, College of Horticulture, Hebei, Baoding 071000, China
| | - Wei Ma
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Hebei Collaborative Innovation Center for Green and Efficient Vegetable Industry, College of Horticulture, Hebei, Baoding 071000, China
| | - Jian-Jun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Hebei Collaborative Innovation Center for Green and Efficient Vegetable Industry, College of Horticulture, Hebei, Baoding 071000, China
| | - Wen-Ju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding 071000, China.
| |
Collapse
|
15
|
Yu X, Yang Z, Xu Y, Wang Z, Fan C, Zeng X, Liu Y, Lei T, Jiang M, Li J, Xiao X, Yang L, Li X, Zhou Y, Gao S. Effect of chromium stress on metal accumulation and cell wall fractions in Cosmos bipinnatus. CHEMOSPHERE 2023; 315:137677. [PMID: 36608889 DOI: 10.1016/j.chemosphere.2022.137677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
As one of the major pollutants in the environment, chromium (Cr), a heavy metal, poses a serious threat to urban green spaces and human life and health. Cosmos bipinnatus is considered a potential accumulator of Cr, and the differences in cellular Cr distribution and compartmentalization may uncover the mechanisms involved in its tolerance to Cr. To elucidate the effects of Cr stress on C. bipinnatus and determine the mechanism of Cr tolerance in C. bipinnatus, we investigated the physiological indicators, subcellular distribution and chemical forms, cell wall fractions and their Cr contents, uronic acid content in the cell wall fractions, and Fourier transform infrared spectroscopy (FTIR) of the cell wall. The results showed that the antioxidant enzyme activities in C. bipinnatus under Cr stress and most of the Cr were fixed in the cell wall. Notably, changes in the content of pectin fractions in the cell wall affected the accumulation of Cr in the cell wall of C. bipinnatus and the stability of negatively charged groups. In addition, the carboxyl and hydroxyl groups played a role in fixing metal in various parts of the C. bipinnatus cell wall.
Collapse
Affiliation(s)
- XiaoFang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - ZiHan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - YuHan Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - ZhiWen Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - ChunYu Fan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - XiaoXuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - YuJia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - MingYan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - JiaNi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - LiJuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - YongHong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - SuPing Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Yan J, Zhu J, Zhou J, Xing C, Song H, Wu K, Cai M. Using brefeldin A to disrupt cell wall polysaccharide components in rice and nitric oxide to modify cell wall structure to change aluminum tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:948212. [PMID: 35991413 PMCID: PMC9390061 DOI: 10.3389/fpls.2022.948212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The components and structure of cell wall are closely correlated with aluminum (Al) toxicity and tolerance for plants. However, the cell wall assembly and function construction in response to Al is not known. Brefeldin A (BFA), a macrolide, is used to disrupt cell wall polysaccharide components, and nitric oxide (NO), a signal molecule, is used to modify the cell wall structure. Pretreatment with BFA accelerated Al accumulation in root tips and Al-induced inhibition of root growth of two rice genotypes of Nipponbare and Zhefu 802, and significantly decreased the cell wall polysaccharide content including pectin, hemicellulose 1, and hemicellulose 2, indicating that BFA inhibits the biosynthesis of components in the cell wall and makes the root cell wall lose the ability to resist Al. The addition of NO donor (SNP) significantly alleviated the toxic effects of Al on root growth, Al accumulation, and oxidative damage, and decreased the content of pectin polysaccharide and functional groups of hydroxyl, carboxyl, and amino in the cell wall via FTIR analysis, while had no significant effect on hemicellulose 1 and hemicellulose 2 content compared with Al treatment. Furthermore, NO didn't change the inhibition effect of BFA-induced cell wall polysaccharide biosynthesis and root growth. Taken together, BFA disrupts the integrity of cell wall and NO modifies partial cell wall composition and their functional groups, which change the Al tolerance in rice.
Collapse
Affiliation(s)
- Jianchao Yan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Jiandong Zhu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Jun Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Chenghua Xing
- College of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Hongming Song
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Kun Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
17
|
Ma Y, Jie H, Tang Y, Xing H, Jie Y. The Role of Hemicellulose in Cadmium Tolerance in Ramie (Boehmeria nivea (L.) Gaud.). PLANTS 2022; 11:plants11151941. [PMID: 35893645 PMCID: PMC9330422 DOI: 10.3390/plants11151941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 11/30/2022]
Abstract
Ramie cell walls play an important role in cadmium (Cd) detoxification. However, the Cd binding capacity of the cell wall components and the cell wall compositions among ramie species remains unclear. Therefore, this study compared two ramie populations (‘Dazhuhuangbaima’ (low-Cd-accumulating population) and ‘Zhongzhu 1’ (high-Cd-accumulating population)) with different Cd enrichment characteristics. The two ramie populations were treated with 0, 25, and 75 mg kg−1 Cd for 30 days; then, their root length, plant height, biomass, Cd enrichment in the organs, subcellular Cd distribution, Cd content in the cell wall polysaccharides, and hemicellulose content were determined. The root length, plant height, biomass, and Cd enrichment in all organs were significantly higher (p ≤ 0.05) in ‘Zhongzhu 1’ than in ‘Dazhuhuangbaima’ under Cd stress. In addition, the subcellular Cd distribution analysis revealed that Cd was mainly found in the cell wall in both ramie populations. Among the cell wall fractions, Cd was mainly bound to the hemicelluloses, with 60.38–73.10% and 50.05–64.45% Cd accumulating in the ‘Zhongzhu 1’ and ‘Dazhuhuangbaima’ cell wall hemicelluloses, respectively. However, the Cd concentration in the ‘Zhongzhu 1’ hemicellulose was significantly higher (p ≤ 0.05) than that in the ‘Dazhuhuangbaima’ hemicellulose. Hemicellulose content analysis further revealed that the hemicellulose concentration increased with the Cd concentration in both populations, but it was significantly higher (p ≤ 0.05) in ‘Zhongzhu 1’ than in ‘Dazhuhuangbaima’ across all Cd treatments. Thus, ramie copes under Cd stress by increasing the hemicellulose content in the cell wall. The findings in this study confirm that hemicellulose is the main enrichment site for Cd in ramie. It also provides a theoretical basis for Cd enrichment breeding in ramie.
Collapse
Affiliation(s)
- Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.M.); (H.J.); (Y.T.); (H.X.)
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.M.); (H.J.); (Y.T.); (H.X.)
| | - Yanyi Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.M.); (H.J.); (Y.T.); (H.X.)
| | - Hucheng Xing
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.M.); (H.J.); (Y.T.); (H.X.)
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Changsha 410128, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.M.); (H.J.); (Y.T.); (H.X.)
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Changsha 410128, China
- Correspondence: or
| |
Collapse
|
18
|
Jia H, Ma P, Huang L, Wang X, Chen C, Liu C, Wei T, Yang J, Guo J, Li J. Hydrogen sulphide regulates the growth of tomato root cells by affecting cell wall biosynthesis under CuO NPs stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:627-635. [PMID: 34676641 DOI: 10.1111/plb.13316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) show strong nano-toxic effects on organisms. Hydrogen sulphide (H2 S) plays a pivotal role in plant response to abiotic stress. In this study, we examine the crucial role of the cell wall as regulated by H2 S in response to CuO NPs stress. The digestion method was employed to determine Cu content using atomic absorption spectrometry. The TraKine pro-tubulin staining kit was used to investigate the microtubule cytoskeleton using confocal laser-scanning microscopy. Cell wall component analysis utilized the ICS-3000 HPLC system. Application of H2 S reduced growth inhibition caused by CuO NPs. Furthermore, most of the CuO NPs accumulates in roots, indicating a low transfer rate, and H2 S significantly decreased CuO NPs content in roots, leaves and stems. Subcellular distribution analysis implied most Cu accumulated in root cell walls, and that H2 S reduced the content of Cu in root cell walls. Cortical microtubules in the plasma membrane, guide cell wall biosynthesis. H2 S obviously alleviated microtubule cytoskeleton disorders caused by CuO NPs. In addition, the content of cellulose, hemicellulose, pectin and other monosaccharides in root cell walls was reduced by CuO NPs treatment. H2 S enhanced the monosaccharide and polysaccharide contents compared with that after CuO NPs treatment. In conclusion, H2 S regulates cell wall development in response to CuO NPs stress by stabilizing microtubules. H2 S affected Cu distribution and alleviated growth inhibition of tomato seedlings. The research results provide a theoretical basis for further study of nano-toxicity regulation in plants.
Collapse
Affiliation(s)
- H Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - P Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - L Huang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - X Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - C Chen
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - C Liu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - T Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - J Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - J Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - J Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Yuan Y, Imtiaz M, Rizwan M, Dai Z, Hossain MM, Zhang Y, Huang H, Tu S. The role and its transcriptome mechanisms of cell wall polysaccharides in vanadium detoxication of rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127966. [PMID: 34906871 DOI: 10.1016/j.jhazmat.2021.127966] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Cell wall-polysaccharides play a crucial role in heavy metals binding, and hence, contribute to heavy metal detoxication in plants. However, there is no data regarding the molecular mechanisms of vanadium (V) binding to root cell walls in plants, especially in rice (Oryza sativa L.). Taking two rice cultivars with various V tolerance as the research material, the present study investigated the effect of various V concentrations on subcellular distribution of V and revealed the regulatory mechanism of cell wall polysaccharides to V exposure. The results showed that rice roots inhibited the upward movement of V, and root cell walls accumulated 69.85-82.71% of V in roots. Furthermore, hemicellulose-1 (HC-1) in cell walls shared up to 67.72% and 66.95% of the cell-wall-bound V in tolerant and sensitive cultivars, respectively. FTIR spectroscopy demonstrated that V stress induced the remolding of cell wall polysaccharides. Under V stress, V-tolerant rice generated up to 19.3% pectin, 40.9% HC-1, and 49.34% HC-2, which were higher than V-sensitive cultivar. The genes encoding UGDH, UGE, and AXS for polysaccharide biosynthesis were higher expressed in V-tolerant rice than V-sensitive rice when exposed to V. The results could provide novel insight for phytoremediation and food security guarantees.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Imtiaz
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Rizwan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhihua Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Md Muzammel Hossain
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yihui Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hengliang Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Research Centre for Environment Pollution and Remediation, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
20
|
Wan H, Yang F, Zhuang X, Cao Y, He J, Li H, Qin S, Lyu D. Malus rootstocks affect copper accumulation and tolerance in trees by regulating copper mobility, physiological responses, and gene expression patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117610. [PMID: 34174667 DOI: 10.1016/j.envpol.2021.117610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
We investigated the roles of rootstocks in Cu accumulation and tolerance in Malus plants by grafting 'Hanfu' (HF) scions onto M. baccata (Mb) and M. prunifolia (Mp) rootstocks, which have different Cu tolerances. The grafts were exposed to basal or excess Cu for 20 d. Excess Cu-treated HF/Mb had less biomass, and pronounced root architecture deformation and leaf ultrastructure damage than excess Cu-challenged HF/Mp. Root Cu concentrations and bio-concentration factor (BCF) were higher in HF/Mp than HF/Mb, whereas HF/Mb had higher stem and leaf Cu concentrations than HF/Mp. Excess Cu lowered root and aerial tissue BCF and translocation factor (Tf) in all plants; however, Tf was markedly higher in HF/Mb than in HF/Mp. The subcellular distribution of Cu in the roots and leaves indicated that excess Cu treatments increased Cu fixation in the root cell walls, which decreased Cu mobility. Compared to HF/Mb, HF/Mp sequestered more Cu in its root cell walls and less Cu in leaf plastids, nuclei, and mitochondria. Moreover, HF/Mp roots and leaves had higher concentrations of water-insoluble Cu compounds than HF/Mb, which reduced Cu mobility and toxicity. Fourier transform infrared spectroscopy analysis showed that the carboxyl, hydroxyl and acylamino groups of the cellulose, hemicellulose, pectin and proteins were the main Cu binding sites in the root cell walls. Excess Cu-induced superoxide anion and malondialdehyde were 28.6% and 5.1% lower, but soluble phenolics, ascorbate and glutathione were 10.5%, 41.9% and 17.7% higher in HF/Mp than HF/Mb leaves. Compared with HF/Mb, certain genes involved in Cu transport were downregulated, while other genes involved in detoxification were upregulated in HF/Mp roots and leaves. Our results show that Mp inhibited Cu translocation and mitigated Cu toxicity in Malus scions by regulating Cu mobility, antioxidant defense mechanisms, and transcription of key genes involved in Cu translocation and detoxification.
Collapse
Affiliation(s)
- Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Fengying Yang
- Dalian Institute of Agricultural Sciences, Dalian, Liaoning, 116036, People's Republic of China
| | - Xiaolei Zhuang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Yanhong Cao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China.
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, Shandong, 271000, People's Republic of China
| | - Sijun Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China; Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People's Republic of China
| |
Collapse
|
21
|
Riaz M, Kamran M, Rizwan M, Ali S, Parveen A, Malik Z, Wang X. Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. CHEMOSPHERE 2021; 273:129690. [PMID: 33524757 DOI: 10.1016/j.chemosphere.2021.129690] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 05/10/2023]
Abstract
Cadmium (Cd) is a primary contaminant in agricultural soils of the world. The ability of Cd uptake, transport, detoxification, and accumulation varies among different plant species and genotypes. Cd is translocated from soil to root by different transporters which are used for essential plant nutrient uptake. A number of strategies have been suggested for decreasing Cd toxicity in Cd contaminated soils. Recently, a lot of research have been carried out on minimizing Cd uptake through selenium (Se) and silicon (Si) applications. Both Se and Si have been reported to mitigate Cd toxicity in different crops. Vacuolar sequestration, formation of phytochelatins, and cell wall adsorption have been reported as effective mechanisms for Cd detoxification. The present review discussed past and current knowledge of literature to better understand Cd toxicity and its mitigation by adopting different feasible and practical approaches.
Collapse
Affiliation(s)
- Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Aasma Parveen
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|