1
|
Sharma M, Bains A, Goksen G, Ali N, Khan MR, Karabulut G, Chawla P. Optimization of ultrasonication assisted extraction of Aegle marmelos fruit shell nano polysaccharide and evaluation of photocatalytic dye reduction and edible coating for fresh-cut fruits. Food Chem X 2024; 24:101895. [PMID: 39498254 PMCID: PMC11532754 DOI: 10.1016/j.fochx.2024.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Aegle marmelos (AM) fruit shell, considered waste, is an excellent source of bioactive compounds, including polysaccharides. Therefore, this study focuses on the extraction of AM polysaccharides using an ultrasonication-assisted approach. Different parameters, including ultrasonic power (200-600 W), time (5-15 min), and solid-to-solvent ratio (10-20 mg/mL), were employed, and significantly (p < 0.05) higher yield (16.93 %) was achieved at 400 W for 10 min. Monosaccharides composition revealed galactose (30.56 ± 0.76 %), galacturonic acid (24.72 ± 0.12 %), arabinose (17.26 ± 0.35 %), xylose (11.48 ± 0.21 %), glucose (10.52 ± 0.26 %), and rhamnose (5.39 ± 0.67 %), which were then confirmed by 13C spectrum. AM polysaccharides revealed nanoscale size with excellent structural crystallinity and thermal stability. Edible coatings of varying concentrations (0.5-2 %) were formulated and optimized 1 % coating, demonstrating efficacy in mitigating weight loss, microbial proliferation, and browning in cut apples. As well, AM polysaccharides prominently degraded 82.79 ± 0.39 % of methyl green. Overall, bael shells as a valuable source of polysaccharides, offering the potential for both photocatalytic dye degradation and food preservation.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Nemat Ali
- Department of Pharmacology and Toxicology, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54050, Sakarya,Turkey
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
2
|
Pirade F, Foppen JW, van der Hoek JP, Lompe KM. Polystyrene nanoplastics are unlikely to aggregate in freshwater bodies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125393. [PMID: 39586453 DOI: 10.1016/j.envpol.2024.125393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The fate and toxicity of nanoplastics (NPs) in the environment is largely determined by their stability. We explored how water composition, nanoplastic size, and surface carboxyl group density influenced the aggregation of polystyrene (PS) NPs in fresh water. Unfunctionalized 200, 300, 500, and 1000 nm PS NPs and 310 nm carboxylated PS NPs with carboxyl group densities of 0.35 and 0.6 mmol g-1 were used to simulate pristine and aged NPs. Natural water matrices tested in this study include synthetic surface water (SSW), water from the Schie canal (Netherlands) and tap water. Suwannee River Natural Organic Matter (SRNOM) was included to mimic organic matter concentrations. In CaCl2, we found PS NPs are more stable as their size increases with the increase of the critical coagulation concentration (CCC) from 44 mM to 59 mM and 77 mM for NP sizes of 200 nm, 300 nm and 500 nm. Conversely, 1000 nm PS NPs remained stable even at 100 mM CaCl2. Increasing the carboxyl group density decreased the stability of NPs as a result of the interaction between Ca2+ and the carboxyl group. These results were consistent with the mass of Ca2+ adsorbed per mass of NPs. The presence of SRNOM decreased the stability of PS NPs via particle bridging facilitated by SRNOM. However, in SSW, Schie water and tap water with low divalent cation concentrations, the hydrodynamic size of PS NPs did not change, even at prolonged durations up to one week. We concluded that PS NPs are unlikely to aggregate in water with low divalent cation concentrations, like natural freshwater bodies. Ecotoxicologists and water treatment engineers will have to consider treating PS NPs as colloidally stable particles as the lack of aggregation in fresh surface water bodies will affect their ecotoxicity and may pose challenges to their removal in water treatment.
Collapse
Affiliation(s)
- Februriyana Pirade
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands.
| | - Jan Willem Foppen
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands
| | - Jan Peter van der Hoek
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands; Waternet, Korte Ouderkerkerdijk 7, 1096AC Amsterdam, Netherlands
| | - Kim Maren Lompe
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands
| |
Collapse
|
3
|
Butreddy P, Heo J, Rampal N, Liu T, Liu L, Smith W, Zhang X, Prange MP, Legg BA, Schenter GK, De Yoreo JJ, Chun J, Stack AG, Nakouzi E. Ion Correlations Decrease Particle Aggregation Rate by Increasing Hydration Forces at Interfaces. ACS NANO 2024. [PMID: 39264378 DOI: 10.1021/acsnano.4c05563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The connection between solution structure, particle forces, and emergent phenomena at solid-liquid interfaces remains ambiguous. In this case study on boehmite aggregation, we established a connection between interfacial solution structure, emerging hydration forces between two approaching particles, and the resulting structure and kinetics of particle aggregation. In contrast to expectations from continuum-based theories, we observed a nonmonotonic dependence of the aggregation rate on the concentration of sodium chloride, nitrate, or nitrite, decreasing by 15-fold in 4 molal compared to 1 molal solutions. These results are accompanied by an increase in repulsive hydration forces and interfacial oscillatory features from 0.27-0.31 nm in 0.01 molal to 0.38-0.52 nm in 2 molal. Moreover, molecular dynamics (MD) simulations indicated that these changes correspond to enhanced ion correlations near the interface and produced loosely bound aggregates that retain electrolyte between the particles. We anticipate that these results will enable the prediction of particle aggregation, attachment, and assembly, with broad relevance to interfacial phenomena.
Collapse
Affiliation(s)
- Pravalika Butreddy
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jaeyoung Heo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Nikhil Rampal
- Material Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tingting Liu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Lili Liu
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - William Smith
- Y-12 National Security Complex, Oak Ridge, Tennessee 37830, United States
| | - Xin Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Micah P Prange
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Benjamin A Legg
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gregory K Schenter
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - James J De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, CUNY City College of New York, New York, New York 10031, United States
| | - Andrew G Stack
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Elias Nakouzi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
4
|
Herdiana Y, Febrina E, Nurhasanah S, Gozali D, Elamin KM, Wathoni N. Drug Loading in Chitosan-Based Nanoparticles. Pharmaceutics 2024; 16:1043. [PMID: 39204388 PMCID: PMC11359066 DOI: 10.3390/pharmaceutics16081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Chitosan nanoparticles (CSNPs) are promising vehicles for targeted and controlled drug release. Recognized for their biodegradability, biocompatibility, low toxicity, and ease of production, CSNPs represent an effective approach to drug delivery. Encapsulating drugs within nanoparticles (NPs) provides numerous benefits compared to free drugs, such as increased bioavailability, minimized toxic side effects, improved delivery, and the incorporation of additional features like controlled release, imaging agents, targeted delivery, and combination therapies with multiple drugs. Keys parameters in nanomedicines are drug loading content and drug loading efficiency. Most current NP systems struggle with low drug loading, presenting a significant challenge to the field. This review summarizes recent research on developing CSNPs with high drug loading capacity, focusing on various synthesis strategies. It examines CSNP systems using different materials and drugs, providing details on their synthesis methods, drug loadings, encapsulation efficiencies, release profiles, stability, and applications in drug delivery. Additionally, the review discusses factors affecting drug loading, providing valuable guidelines for future CSNPs' development.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Ellin Febrina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Siti Nurhasanah
- Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
5
|
Groppe P, Reichstein J, Carl S, Cuadrado Collados C, Niebuur BJ, Zhang K, Apeleo Zubiri B, Libuda J, Kraus T, Retzer T, Thommes M, Spiecker E, Wintzheimer S, Mandel K. Catalyst Supraparticles: Tuning the Structure of Spray-Dried Pt/SiO 2 Supraparticles via Salt-Based Colloidal Manipulation to Control their Catalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310813. [PMID: 38700050 DOI: 10.1002/smll.202310813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/10/2024] [Indexed: 05/05/2024]
Abstract
The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.
Collapse
Affiliation(s)
- Philipp Groppe
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jakob Reichstein
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Simon Carl
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Carlos Cuadrado Collados
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Bart-Jan Niebuur
- INM - Leibniz-Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Kailun Zhang
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany
| | - Tanja Retzer
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Matthias Thommes
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
6
|
Liu L, Yadav Schmid S, Feng Z, Li D, Droubay TC, Pauzauskie PJ, Schenter GK, De Yoreo JJ, Chun J, Nakouzi E. Effect of Solvent Composition on Non-DLVO Forces and Oriented Attachment of Zinc Oxide Nanoparticles. ACS NANO 2024; 18:16743-16751. [PMID: 38888092 DOI: 10.1021/acsnano.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Oriented attachment (OA) occurs when nanoparticles in solution align their crystallographic axes prior to colliding and subsequently fuse into single crystals. Traditional colloidal theories such as DLVO provide a framework for evaluating OA but fail to capture key particle interactions due to the atomistic details of both the crystal structure and the interfacial solution structure. Using zinc oxide as a model system, we investigated the effect of the solvent on short-ranged and long-ranged particle interactions and the resulting OA mechanism. In situ TEM imaging showed that ZnO nanocrystals in toluene undergo long-range attraction comparable to 1kT at separations of 10 nm and 3kT near particle contact. These observations were rationalized by considering non-DLVO interactions, namely, dipole-dipole forces and torques between the polar ZnO nanocrystals. Langevin dynamics simulations showed stronger interactions in toluene compared to methanol solvents, consistent with the experimental results. Concurrently, we performed atomic force microscopy measurements using ZnO-coated probes for the short-ranged interaction. Our data are relevant to another type of non-DLVO interaction, namely, the repulsive solvation force. Specifically, the solvation force was stronger in water compared to ethanol and methanol, due to the stronger hydrogen bonding and denser packing of water molecules at the interface. Our results highlight the importance of non-DLVO forces in a general framework for understanding and predicting particle aggregation and attachment.
Collapse
Affiliation(s)
- Lili Liu
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sakshi Yadav Schmid
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Zhaojie Feng
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Dongsheng Li
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Timothy C Droubay
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Peter J Pauzauskie
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Gregory K Schenter
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - James J De Yoreo
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jaehun Chun
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Levich Institute and Department of Chemical Engineering, CUNY City College of New York, New York 10031, United States
| | - Elias Nakouzi
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
7
|
Antonsson J, Hamngren Blomqvist C, Olsson E, Gebäck T, Särkkä A. Modeling Colloidal Particle Aggregation Using Cluster Aggregation with Multiple Particle Interactions. J Phys Chem B 2024; 128:4513-4524. [PMID: 38686494 PMCID: PMC11089502 DOI: 10.1021/acs.jpcb.3c07992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
In this study, we investigate the aggregation dynamics of colloidal silica by generating simulated structures and comparing them to experimental data gathered through scanning transmission electron microscopy (STEM). More specifically, diffusion-limited cluster aggregation and reaction-limited cluster aggregation models with different functions for the probability of particles sticking upon contact were used. Aside from using a constant sticking probability, the sticking probability was allowed to depend on the masses of the colliding clusters and on the number of particles close to the collision between clusters. The different models of the sticking probability were evaluated based on the goodness-of-fit of spatial summary statistics. Furthermore, the models were compared to the experimental data by calculating the structures' fractal dimension and mass transport properties from simulations of flow and diffusion. The sticking probability, depending on the interaction with multiple particles close to the collision site, led to structures most similar to the STEM data.
Collapse
Affiliation(s)
- Jakob Antonsson
- Department
of Mathematical Sciences, Chalmers University
of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | | | - Eva Olsson
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Tobias Gebäck
- Department
of Mathematical Sciences, Chalmers University
of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Aila Särkkä
- Department
of Mathematical Sciences, Chalmers University
of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
8
|
Zhang Y, Gu X, Huang L, Yang Y, He J. Enhancing precision medicine: Bispecific antibody-mediated targeted delivery of lipid nanoparticles for potential cancer therapy. Int J Pharm 2024; 654:123990. [PMID: 38467208 DOI: 10.1016/j.ijpharm.2024.123990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/13/2024]
Abstract
The precise delivery of therapeutic agents to specific cell populations, including cancer cells, remains a target in modern medicine, to enhance treatment efficacy, while minimizing unintended side effects. This study presents a strategy utilizing bispecific antibodies for the targeted delivery of nucleic acid drugs to the surface of glucose-regulated protein 78 (GRP78)-overexpressing cancer cells. Strong binding affinity of the bispecific antibodies to GRP78-overexpressing cancer cells, including HEPG2 cells, confirmed the tumor-targeting potential of this platform. Functional analyses demonstrated the role of the bispecific antibodies in enhancing lipid nanoparticle (LNP) uptake, causing increased gene expression levels of nucleic acid drugs loaded within LNPs. In vivo imaging confirmed the potency of the bispecific-antibody-modified LNPs in delivering nucleic acid drugs to tumors and sustaining therapeutic expression levels. In vivo therapy results indicated that the bispecific antibodies improved the antitumor activity of PE38-loaded LNPs in tumors overexpressing surface GRP78. This study pioneered a bispecific-antibody-centered platform for the targeted delivery of nucleic acid drugs. The robust antigen-antibody binding affinity, tumor-selective interactions, enhanced cellular uptake, and proficient gene expression promise to advance precision therapeutics in oncology. Continued refinement and translation of this drug delivery strategy are important to unlock its full clinical potential.
Collapse
Affiliation(s)
- Yue Zhang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Xiaoyan Gu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Lili Huang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China.
| |
Collapse
|
9
|
Jośko I, Kusiak M, Sozoniuk M, Feculak M, Wu KCW, Fitzgerald M, Alyafei MS, Sheteiwy MS. Analysis of multiple biomarkers revealed the size matters of Cu particles for barley response under foliar exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170673. [PMID: 38316301 DOI: 10.1016/j.scitotenv.2024.170673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
The impact of particle size of engineered nanoparticles (ENPs) on plant response has marginally been investigated under the foliar application so far. Concerning the significance of particle diameter for their properties and interaction with plants, the effect of size should be considered in the analysis of the effect of micronutrient-based ENPs on plants. It is of particular importance for ENPs containing Cu due to plants needing a relatively low amount of this element, thus there is a risk of overdosing during application as a fertilizer or pesticide. Here, we examined the biochemical and transcriptional response of barley (Hordeum vulgare L.) to Cu nanoparticles (nano-Cu) with different diameters (25 nm, 50 nm, 70 nm), microparticles (micro-Cu), and chelated Cu (EDTA-Cu). The plants suffering from Cu deficiency were foliar sprayed with Cu compounds at 1000 mg/L during the tillering stage. 1- and 7-day plants were analyzed in terms of biomass, Cu content, the activity of enzymes involved with antioxidant response, the content of low molecular weight compounds, and the expression of genes regulated metal homeostasis, aquaporins, and defense. The results showed that the Cu leaf level was differentiated over time and after 7 days it was higher under exposure to the smallest nano-Cu than other particulate Cu. Regardless of the duration of exposure, the Cu content was highest in plants treated with Cu-EDTA. The cluster analysis of all markers revealed a clear distinct response to the smallest nano-Cu and other particulate and ionic treatments. The bigger nano-Cu, depending on the markers, caused the medium effects between the nano-Cu 25 nm and micro-Cu and Cu-EDTA. The found size thresholds at the nanoscale will be useful for the fabrication of safe-by-design agrochemicals to provide crop security and attenuate environmental impact.
Collapse
Affiliation(s)
- Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland.
| | - Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland
| | - Mikołaj Feculak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin 20-950, Poland
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 32003, Taiwan; Institute of Biomedical Engineering & Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City 350, Taiwan
| | - Melissa Fitzgerald
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, QLD, Australia
| | - Mohamed Salem Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mohamed Salah Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates; Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
10
|
Zhou H, Groppe P, Zimmermann T, Wintzheimer S, Mandel K. Influence of cation concentration and valence on the structure and texture of spray-dried supraparticles from colloidal silica dispersions. J Colloid Interface Sci 2024; 658:199-208. [PMID: 38100976 DOI: 10.1016/j.jcis.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The structure and texture of supraparticles determine their properties and performance, thus playing a critical role in research studies as well as industrial applications. The addition of salts is a well-known strategy to manipulate the colloidal stability of nanoparticles. In this study, this approach is used to tune the structure of spray-dried supraparticles. Three different salts (NaCl, CaCl2, and AlCl3) were added to binary silica (SiO2) nanoparticle dispersions (of 40 and 400 nm in size) to change their colloidal stability by lowering the electrostatic repulsion or enhancing the cation bridging. Dependent on the cation valence of the added salt and the nanoparticle size, the critical salt concentration, which yields nanoparticle agglomeration, is reached at different salt amounts. This phenomenon is exploited to tune the final structure of supraparticles - obtained by spray-drying binary dispersions - from core-shell to Janus-like to well-mixed structures. This consequently also tunes textural properties, like surface roughness and the pore system of the obtained supraparticles. Our results provide insights for controlling the structure of spray-dried supraparticles by manipulating the stability of binary nanoparticle dispersions, and they establish a framework for composite particle design.
Collapse
Affiliation(s)
- Huanhuan Zhou
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Philipp Groppe
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Thomas Zimmermann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany; Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany; Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany.
| |
Collapse
|
11
|
Yunusa U, Warren N, Schauer D, Srivastava P, Sprague-Klein E. Plasmon resonance dynamics and enhancement effects in tris(2,2'-bipyridine)ruthenium(II) gold nanosphere oligomers. NANOSCALE 2024. [PMID: 38411615 DOI: 10.1039/d3nr06129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ruthenium-based metal complexes are one of the most widely studied dyes because of their rich photochemistry and light-harvesting properties. Significant attention has been paid to the energy and charge transfer dynamics of these dyes on semiconductor substrates. However, studies on photophysical and photochemical properties of these dyes in plasmonic environments are rare. In this study, we report a plasmon-mediated resonance energy transfer in an optimized oligomer system that enhances the photoexcited population of the well known dye, tris(2,2'-bipyridine)ruthenium(II), [Ru(BPY)3]2+ adsorbed on gold nanosphere surfaces with a defluorescenced Raman signal. Structural and chemical information is collected using a range of techniques that include in situ time-resolved UV/VIS, DLS, SERS, and TA. The findings have great potential to impact nanoscience broadly with special emphasis on surface photocatalysis, redox chemistry, and solar energy harvesting.
Collapse
Affiliation(s)
- Umar Yunusa
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Natalie Warren
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - David Schauer
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
- ETH Zurich, Department of Chemistry and Applied Biosciences, LPC, Vladimir-Prelog-Weg 2, 8049 Zürich, Switzerland
| | | | - Emily Sprague-Klein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
12
|
Lin Y, Deng H, Deng F, Yao S, Deng X, Cheng Y, Chen Y, He B, Dai W, Zhang H, Zhang Q, Wang X. Remodeling of intestinal epithelium derived extracellular vesicles by nanoparticles and its bioeffect on tumor cell migration. J Control Release 2024; 365:60-73. [PMID: 37972765 DOI: 10.1016/j.jconrel.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Extracellular vesicles (EVs) are an effective tool to elucidate the bioeffect of nanomedicines. To clarify the interaction between oral nanomedicines and intestinal epithelial cells, and their bioeffects on downstream cells, polystyrene nanoparticles (PS-NPs) with different sizes were used as the model nanomedicines for EVs induction. Caco-2 monolayers were selected as the model of the intestinal epithelium and DLD-1 cells as the colorectal cancer model proximal to the gastrointestinal tract. It is found that compared with small-sized (25, 50, 100 nm) PS-NPs, the large-sized (200 and 500 nm) exhibited higher co-localization with multivesicular bodies and lysosomes, and more significant reduction of lysosomal acidification in Caco-2 cells. Proteomic and western-blotting analysis showed that the EVs remodeled by large-sized PS-NPs exhibited a higher extent of protein expression changes. The in vitro and in vivo signaling pathway detection in DLD-1 cells and DLD-1 cell xenograft nude mice showed that the remodeled EVs by large-sized PS-NPs inhibited the activation of multiple signaling pathways including Notch3, EGF/EGFR, and PI3K/Akt pathways, which resulted in the inhibition of tumor cell migration. These results primarily clarify the regulation mechanisms of nanomedicines-EVs-receptor cells chain. It provides a new perspective for the rational design and bioeffect evaluation of oral drug nanomaterials and sets up the fundamental knowledge for novel tumor therapeutics in the future.
Collapse
Affiliation(s)
- Yuxing Lin
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Feiyang Deng
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA 02215, USA
| | - Siyu Yao
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinxin Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Chen
- Guangdong Institute for Drug Control, Guangzhou 510700, China; NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510700, China.
| |
Collapse
|
13
|
Sathiyaseelan A, Zhang X, Wang MH. Biosynthesis of gallic acid fabricated tellurium nanoparticles (GA-Te NPs) for enhanced antibacterial, antioxidant, and cytotoxicity applications. ENVIRONMENTAL RESEARCH 2024; 240:117461. [PMID: 37890834 DOI: 10.1016/j.envres.2023.117461] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The development of antibiotic resistance and the onset of diverse forms of cancer necessitate the utilization of innovative multifunctional biocompatible materials. The synthesis of metal and metalloid nanoparticles through eco-friendly means demonstrates promising potential in therapeutic and diagnostic domains. Among these materials, Tellurium (Te) exhibits exceptional characteristics and finds application in numerous fields; nevertheless, its usage in biological applications has been somewhat limited, primarily due to its inherent toxicity. Furthermore, nanomaterials developed from Te have not garnered adequate research attention. Conversely, nanomaterials fashioned using biomolecules augment their biological efficacy and applicability. Therefore, the present work focuses on synthesizing the tellurium nanoparticles (Te NPs) using the antioxidant molecule gallic acid (GA) and evaluating their biological activity and toxicity for the first time. The study evidenced that GA-Te NPs are spherical and monodispersed, with an average size of 19.74 ± 5.3 nm. XRD analysis confirmed a hexagonal crystalline structure for GA-Te NPs, and FTIR analysis evidenced the capping of GA on Te NPs. GA-Te NPs (MIC: 1.56 μg/mL) strongly reduce the growth and biofilm formation of S. aureus, E. coli, and S. enterica. Additionally, GA-Te NPs at a concentration of 50 μg/mL cause a significant level of toxicity in BT474 breast cancer cells but not in NIH3T3 cells. Unexpectedly, GA-Te NPs at concentrations <250 μg/mL do not cause hemolysis in red blood cells (RBC) Besides, the way of utilizing the lower concentrations of therapeutics could result in ecological safety. Therefore, the study concludes that GA-Te NPs could be used as potential multifunctional agents.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
14
|
Sun H, Jiao R, Yu J, Wang D. Combined effects of particle size and humic acid corona on the aggregation kinetics of nanoplastics in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165987. [PMID: 37536605 DOI: 10.1016/j.scitotenv.2023.165987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Nanoplastics (NPs) contaminant in aquatic environments is one of the pressing environmental concerns globally. However, the combined effects of particle size and humic acid (HA) corona on the aggregation behavior of NPs have not been revealed yet. Therefore, this study explored the influence of HA corona on the aggregation kinetics of NPs with three different particle sizes under various water quality conditions. Results showed that in the absence of HA corona, the aggregation kinetic processes of all the three NPs were affected by the repulsive force originating from the hydration layer. Moreover, the smaller the particle size, the more obvious the effect. HA corona played a steric hindrance role for all the three NPs based on the extended-Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory in monovalent solutions, resulting in the impediment of aggregation. Whereas, in divalent solutions, the HA corona of 100 and 200 nm NPs experienced three stages: deformation, electrostatic-patch and bridging; while that of 40 nm NPs underwent electrostatic-patch and steric hindrance. The larger number of HA molecules distributed on 100 and 200 NPs surfaces led to more interactions with Ca2+ and NPs, which was the key factor for HA corona to play more diverse roles. According to the two dimension correlation spectroscopy analysis (2D-COS), the structural change in the interaction between HA and NPs was that the aromatic ring of NPs took precedence, followed by the carbonyl groups of HA. This study provided new insights into the combined effects of HA corona and particle size on the aggregation kinetics of NPs and established a theoretical foundation for predicting and assessing the transport and fate of NPs.
Collapse
Affiliation(s)
- Hongyan Sun
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China.
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junjie Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Motsoene F, Abrahamse H, Dhilip Kumar SS. Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: A review. Adv Colloid Interface Sci 2023; 321:103002. [PMID: 37804662 DOI: 10.1016/j.cis.2023.103002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Wound healing primarily involves preventing severe infections, accelerating healing, and reducing pain and scarring. Therefore, the multifunctional application of lipid-based nanoparticles (LBNs) has received considerable attention in drug discovery due to their solid or liquid lipid core, which increases their ability to provide prolonged drug release, reduce treatment costs, and improve patient compliance. LBNs have also been used in medical and cosmetic practices and formulated for various products based on skin type, disease conditions, administration product costs, efficiency, stability, and toxicity; therefore, understanding their interaction with biological systems is very important. Therefore, it is necessary to perform an in-depth analysis of the results from a comprehensive characterization process to produce lipid-based drug delivery systems with desired properties. This review will provide detailed information on the different types of LBNs, their formulation methods, characterisation, antimicrobial activity, and application in various wound models (both in vitro and in vivo studies). Also, the clinical and commercial applications of LBNs are summarized.
Collapse
Affiliation(s)
- Fezile Motsoene
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
16
|
Yu S, Liu H, Yang R, Zhou W, Liu J. Aggregation and stability of selenium nanoparticles: Complex roles of surface coating, electrolytes and natural organic matter. J Environ Sci (China) 2023; 130:14-23. [PMID: 37032031 DOI: 10.1016/j.jes.2022.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/19/2023]
Abstract
The application of selenium nanoparticles (SeNPs) as nanofertilizers may lead to the release of SeNPs into aquatic systems. However, the environmental behavior of SeNPs is rarely studied. In this study, using alginate-coated SeNPs (Alg-SeNPs) and polyvinyl alcohol-coated SeNPs (PVA-SeNPs) as models, we systematically investigated the aggregation and stability of SeNPs under various water conditions. PVA-SeNPs were highly stable in mono- and polyvalent electrolytes, probably due to the strong steric hindrance of the capping agent. Alg-SeNPs only suffered from a limited increase in size, even at 2500 mmol/L NaCl and 200 mmol/L MgCl2, while they underwent apparent aggregation in CaCl2 and LaCl3 solutions. The binding of Ca2+ and La3+ with the guluronic acid part in alginate induced the formation of cross-linking aggregates. Natural organic matter enhanced the stability of Alg-SeNPs in monovalent electrolytes, while accelerated the attachment of Alg-SeNPs in polyvalent electrolytes, due to the cation bridge effects. The long-term stability of SeNPs in natural water showed that the aggregation sizes of Alg-SeNPs and PVA-SeNPs increased to several hundreds of nanometers or above 10 µm after 30 days, implying that SeNPs may be suspended in the water column or further settle down, depending on the surrounding water chemistry. The study may contribute to the deep insight into the fate and mobility of SeNPs in the aquatic environment. The varying fate of SeNPs in different natural waters also suggests that the risks of SeNPs to organisms living in diverse depths in the aquatic compartment should be concerned.
Collapse
Affiliation(s)
- Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Zhou
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Xiang H, Baudouin D, Vogel F. Metal oxide nanoparticles embedded in porous carbon for sulfur absorption under hydrothermal conditions. Sci Rep 2023; 13:9987. [PMID: 37340016 DOI: 10.1038/s41598-023-36395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
MOx (M = Zn, Cu, Mn, Fe, Ce) nanoparticles (NPs) embedded in porous C with uniform diameter and dispersion were synthesized, with potential application as S-absorbents to protect catalysts from S-poisoning in catalytic hydrothermal gasification (cHTG) of biomass. S-absorption performance of MOx/C was evaluated by reacting the materials with diethyl disulfide at HTG conditions (450 °C, 30 MPa, 15 min). Their S-absorption capacity followed the order CuOx/C > CeOx/C ≈ ZnO/C > MnOx/C > FeOx/C. S was absorbed in the first four through the formation of Cu1.8S, Ce2S3, ZnS, and MnS, respectively, with a capacity of 0.17, 0.12, 0.11, and 0.09 molS molM-1. The structure of MOx/C (M = Zn, Cu, Mn) evolved significantly during S-absorption reaction, with the formation of larger agglomerates and separation of MOx particles from porous C. The formation of ZnS NPs and their aggregation in place of hexagonal ZnO crystals indicate a dissolution/precipitation mechanism. Note that aggregated ZnS NPs barely sinter under these conditions. Cu(0) showed a preferential sulfidation over Cu2O, the sulfidation of the latter seemingly following the same mechanism as for ZnO. In contrast, FeOx/C and CeOx/C showed remarkable structural stability with their NPs well-dispersed within the C matrix after reaction. MOx dissolution in water (from liquid to supercritical state) was modeled and a correlation between solubility and particle growth was found, comforting the hypothesis of the importance of an Ostwald ripening mechanism. CeOx/C with high structural stability and promising S-absorption capacity was suggested as a promising bulk absorbent for sulfides in cHTG of biomass.
Collapse
Affiliation(s)
- Hang Xiang
- Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute (PSI), 5232, Villigen PSI, Switzerland
| | - David Baudouin
- Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute (PSI), 5232, Villigen PSI, Switzerland.
| | - Frédéric Vogel
- Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute (PSI), 5232, Villigen PSI, Switzerland
- University of Applied Sciences Northwestern Switzerland (FHNW), 5210, Windisch, Switzerland
| |
Collapse
|
18
|
Blinov AV, Maglakelidze DG, Rekhman ZA, Yasnaya MA, Gvozdenko AA, Golik AB, Blinova AA, Kolodkin MA, Alharbi NS, Kadaikunnan S, Thiruvengadam M, Shariati MA, Nagdalian AA. Investigation of the Effect of Dispersion Medium Parameters on the Aggregative Stability of Selenium Nanoparticles Stabilized with Catamine AB. MICROMACHINES 2023; 14:433. [PMID: 36838132 PMCID: PMC9964575 DOI: 10.3390/mi14020433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This article presents the results of the synthesis of Se NPs stabilized by a quaternary ammonium compound-catamine AB. Se NPs were obtained by chemical reduction in an aqueous medium. In the first stage of this study, the method of synthesis of Se NPs was optimized by a multifactorial experiment. The radius of the obtained samples was studied by dynamic light scattering, and the electrokinetic potential was studied using acoustic and electroacoustic spectrometry. Subsequently, the samples were studied by transmission electron microscopy, and the analysis of the data showed that a bimodal distribution is observed in negatively charged particles, where one fraction is represented by spheres with a diameter of 45 nm, and the second by 1 to 10 nm. In turn, positive Se NPs have a diameter of about 70 nm. In the next stage, the influence of the active acidity of the medium on the stability of Se NPs was studied. An analysis of the obtained data showed that both sols of Se NPs exhibit aggregative stability in the pH range from 2 to 6, while an increase in pH to an alkaline medium is accompanied by a loss of particle stability. Next, we studied the effect of ionic strength on the aggregative stability of Se NPs sols. It was found that negatively charged ions have a significant effect on the particle size of the positive sol of Se NPs, while the particle size of the negative sol is affected by positively charged ions.
Collapse
Affiliation(s)
- Andrey V. Blinov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - David G. Maglakelidze
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Zafar A. Rekhman
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Maria A. Yasnaya
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Alexey A. Gvozdenko
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Alexey B. Golik
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Anastasiya A. Blinova
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Maxim A. Kolodkin
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, 109004 Moscow, Russia
| | - Andrey A. Nagdalian
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| |
Collapse
|
19
|
Guo Y, Tang N, Guo J, Lu L, Li N, Hu T, Zhu Z, Gao X, Li X, Jiang L, Liang J. The aggregation of natural inorganic colloids in aqueous environment: A review. CHEMOSPHERE 2023; 310:136805. [PMID: 36223821 DOI: 10.1016/j.chemosphere.2022.136805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Natural inorganic colloids (NICs) are the most common and dominant existence in the ecosystem, with high concentration and wide variety. In spite of the low toxicity, they can alter activity and mobility of hazardous engineered nanoparticles (ENPs) through different interactions, which warrants the necessity to understand and predict the fate and transport of NICs in aquatic ecosystems. Here, this review summarized NICs properties and behaviors, interaction mechanisms and environmental factors at the first time. Various representative NICs and their physicochemical properties were introduced across the board. Then, the aggregation and sedimentation behaviors were discussed systematically, mainly concerning the heteroaggregation between NICs and ENPs. To speculate their fate and elucidate the corresponding mechanisms, the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (X-DLVO) theories were focused. Furthermore, a range of intrinsic and extrinsic factors was presented in different perspective. Last but not the least, this paper pointed out theoretical and analytical gaps in current researches, and put forward suggestions for further research, aiming to provide a more comprehensive and original perspective in the fields of natural occurring colloids.
Collapse
Affiliation(s)
- Yihui Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jiayin Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Na Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Tingting Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
20
|
Li M, Lin ZI, Yang J, Huang H, Liu GL, Liu Q, Zhang X, Zhang Y, Xu Z, Lin H, Chai Y, Chen X, Ko BT, Liu J, Chen CK, Yang C. Biodegradable Carbon Dioxide-Derived Non-Viral Gene Vectors for Osteosarcoma Gene Therapy. Adv Healthc Mater 2023; 12:e2201306. [PMID: 36308025 DOI: 10.1002/adhm.202201306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/22/2022] [Indexed: 01/29/2023]
Abstract
Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference-based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2 -derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo-lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down-regulated. Subsequently, cells are arrested in the G2 /M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle-based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications.
Collapse
Affiliation(s)
- Meirong Li
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, P. R. China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan ROC
| | - Jingyu Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan ROC
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ying Zhang
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, P. R. China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Haoming Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yujuan Chai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan ROC
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, P. R. China
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan ROC
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
21
|
Tao H, Chen X, Li R, Wang Z, Zhao X, Liu C, Duan S, Wang X. A flexible visual detection of calcium peroxide in flour employing enhanced catalytic activity of heterogeneous catalysts binary copper trapped silica-layered magnetite nanozyme. Colloids Surf B Biointerfaces 2022; 219:112823. [PMID: 36088830 DOI: 10.1016/j.colsurfb.2022.112823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 10/31/2022]
Abstract
Herein, a novel heterogeneous nanozyme with peroxidase (POD)-like activity was conducted to achieve ultrasensitive visual detection of calcium peroxide (CaO2) in flour by the assembly of binary copper-trapped mesoporous silica layer coated magnetite nanoparticles (Fe3O4 @SiO2 @CuO NPs). The prepared nanozymes were characterized using HRTEM, SEM, FT-IR, XRD, DLS, and EIS, which displayed a dispersed core-shell structure with a uniform diameter of approximately 100 nm. The nanozymes exhibited remarkable and stable POD-like activity in a wide range of pH values, incubation temperature, and reaction time, and the optimum catalytic activity was obtained at pH 3.6, 37 °C, and 10 min. The quantification range of CaO2 of this method is 0.1-5 mM with a limit as low as 5.6 × 10-3 mM, and it is not affected by multiple interferences. In conclusion, this detection method is sensitive, stable, low-cost, and simple to operate, so it has broad application prospects in the detection of food additives such as CaO2.
Collapse
Affiliation(s)
- Haizhen Tao
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xuyang Chen
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Ruifang Li
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zichao Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xuanping Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chuan Liu
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, PR China.
| | - Xueqin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
22
|
Xu Z, Tang Q, Hong A, Li L. Aggregation, Sedimentation and Dissolution of Cu(OH) 2-Nanorods-Based Nanopesticide in Soil Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3844. [PMID: 36364621 PMCID: PMC9657550 DOI: 10.3390/nano12213844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Along with the development of nanotechnology, nanomaterials have been gradually applied to agriculture in recent years, such as Cu(OH)2-nanorods-based nanopesticide, an antibacterial agrochemical with a high efficacy. Nevertheless, knowledge about physical stability of Cu(OH)2 nanopesticide in soil solutions is currently scarce, restricting comprehensive understanding of the fate and risk of Cu(OH)2 nanopesticide in the soil environment. Herein we investigated aggregation, sedimentation and dissolution of Cu(OH)2 nanopesticide in soil solutions extracted from three different soil samples, wherein commercial Cu(OH)2 nanopesticide formulation (NPF), as well as its active ingredient (AI) and laboratory-prepared Cu(OH)2 nanorods (NR) with similar morphology as AI, were used as model Cu(OH)2 nanopesticides. We found that NPF compared to AI showed less extents of aggregation in ultrapure water due to the presence of dispersing agent in NPF. Yet, moderated aggregation and sedimentation were observed for Cu(OH)2 nanopesticide irrespective of NPF, AI or NR when soil solutions were used instead of ultrapure water. The sedimentation rate constants of AI and NPF were 0.023 min-1 and 0.010 min-1 in the ultrapure water, whereas the rate constants of 0.003-0.021 min-1 and 0.002-0.007 min-1 were observed for AI and NPF in soil solutions, respectively. Besides aggregation and sedimentation, dissolution of Cu(OH)2 nanopesticide in soil solutions was highly dependent on soil type, wherein pH and organic matter played important roles in dissolution. Although the final concentrations of dissolved copper (1.08-1.37 mg/L) were comparable among different soil solutions incubating 48 mg/L of AI, NPF or NR for 96 h, a gradual increase followed by an equilibrium was only observed in the soil solution from acidic soil (pH 5.16) with the low content of organic matter (1.20 g/kg). This work would shed light on the fate of Cu(OH)2 nanopesticide in the soil environment, which is necessary for risk assessment of the nanomaterials-based agrochemical.
Collapse
Affiliation(s)
- Zhenlan Xu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qing Tang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Aimei Hong
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
23
|
He Z, Liu C, Li Z, Chu Z, Chen X, Chen X, Guo Y. Advances in the use of nanomaterials for nucleic acid detection in point-of-care testing devices: A review. Front Bioeng Biotechnol 2022; 10:1020444. [DOI: 10.3389/fbioe.2022.1020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 01/03/2023] Open
Abstract
The outbreak of the coronavirus (COVID-19) has heightened awareness of the importance of quick and easy testing. The convenience, speed, and timely results from point-of-care testing (POCT) in all vitro diagnostic devices has drawn the strong interest of researchers. However, there are still many challenges in the development of POCT devices, such as the pretreatment of samples, detection sensitivity, specificity, and so on. It is anticipated that the unique properties of nanomaterials, e.g., their magnetic, optical, thermal, and electrically conductive features, will address the deficiencies that currently exist in POCT devices. In this review, we mainly analyze the work processes of POCT devices, especially in nucleic acid detection, and summarize how novel nanomaterials used in various aspects of POCT products can improve performance, with the ultimate aims of offering new ideas for the application of nanomaterials and the overall development of POCT devices.
Collapse
|
24
|
Wu ZC, Liu XY, Liu JY, Piao JS, Piao MG. Preparation of Betulinic Acid Galactosylated Chitosan Nanoparticles and Their Effect on Liver Fibrosis. Int J Nanomedicine 2022; 17:4195-4210. [PMID: 36134203 PMCID: PMC9484277 DOI: 10.2147/ijn.s373430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Aim Liver fibrosis is mainly characterized by the formation of fibrous scars. Galactosylated chitosan (GC) has gained increasing attention as a liver-targeted drug carrier in recent years. The present study aimed to investigate the availability of betulinic acid-loaded GC nanoparticles (BA-GC-NPs) for liver protection. Covalently-conjugated galactose, recognized by asialoglycoprotein receptors exclusively expressed in hepatocytes, was employed to target the liver. Materials and Methods Galactose was coupled to chitosan by chemical covalent binding. BA-GC-NPs were synthesized by wrapping BA into NPs via ion-crosslinking method. The potential advantage of BA-GC-NP as a liver-targeting agent in the treatment of liver fibrosis has been demonstrated in vivo and in vitro. Results BA-GC-NPs with diameters <200 nm were manufactured in a virtually spherical core-shell arrangement, and BA was released consistently and continuously for 96 h, as assessed by an in vitro release assay. According to the safety evaluation, BA-GC-NPs demonstrated good biocompatibility at the cellular level and did not generate any inflammatory reaction in mice. Importantly, BA-GC-NPs showed an inherent liver-targeting potential in the uptake behavioral studies in cells and bioimaging tests in vivo. Efficacy tests revealed that administering BA-GC-NPs in a mouse model of liver fibrosis reduced the degree of liver injury in mice. Conclusion The findings showed that BA-GC-NPs form a safe and effective anti-hepatic fibrosis medication delivery strategy.
Collapse
Affiliation(s)
- Zi Chao Wu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China.,Research Institute, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, 050035, People's Republic of China
| | - Xin Yu Liu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Jia Yan Liu
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Jing Shu Piao
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China
| | - Ming Guan Piao
- School of Pharmacy, Yanbian University, Yanji, 133002, People's Republic of China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, People's Republic of China
| |
Collapse
|
25
|
Huang Z, Chen C, Liu Y, Liu S, Zeng D, Yang C, Huang W, Dang Z. Influence of protein configuration on aggregation kinetics of nanoplastics in aquatic environment. WATER RESEARCH 2022; 219:118522. [PMID: 35550965 DOI: 10.1016/j.watres.2022.118522] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Aggregation kinetics of nanoplastics in aquatic environment are influenced by their interactions with proteins having different structures and properties. This study employed time-resolved dynamic light scattering (TR-DLS) to investigate the effects of 5 proteins (bovine hemoglobin (BHb), bovine (BSA) and human serum albumin (HSA), collagen type I (Col I), and bovine casein (CS)) on aggregation kinetics of polystyrene nanoplastics (PSNPs) under natural water conditions, which were simulated using various ionic strength (1-1000 mM NaCl and 0.01-100 mM CaCl2), pH (3-9), and protein concentration (1-5 mg/L of total organic carbon). The results indicated that the interactions between proteins and PSNPs strongly depended on electrostatic properties, protein structures, and solution chemistries, which induced distinct aggregation behaviors in NaCl and CaCl2 solutions. Electrostatic repulsion and steric hindrance dominated their interactions in NaCl solution by stabilizing PSNPs with the order of spherical BSA and disordered CS > heart-shaped HSA > fibrillar Col I; whereas positively charged BHb destabilized PSNPs with aggregation rate of 1.71 nm/s at 300 mM NaCl. In contrast, at CaCl2 concentration below 20 mM, proteins destabilized PSNPs following the sequence of HSA > BHb > Col I > BSA depending on counterbalance among double layer compression, cation bridging, and steric hindrance; whereas CS stabilized PSNPs by precipitating Ca2+ that inhibited charge screening effect. Both protein concentration and solution pH affected protein corona formation, surface charge, and protein structure that altered stability of PSNPs. Characterizations using fluorescence spectroscopy, circular dichroism, and two-dimensional correlation analysis spectroscopy showed fluorescence quenching and ellipticity reduction of proteins, indicating strong adsorption affinity between PSNPs and proteins. The study provides insight to how protein configuration and water chemistry affect fate and transport of nanoplastics in aquatic environment.
Collapse
Affiliation(s)
- Ziqing Huang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chengyu Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Yanjun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Sijia Liu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Dehua Zeng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States of America
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
26
|
Jiao R, Sun H, Xu S, He Y, Xu H, Wang D. Aggregation, settling characteristics and destabilization mechanisms of nano-particles under different conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154228. [PMID: 35240164 DOI: 10.1016/j.scitotenv.2022.154228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
An abundance of nano-particles have been exposed to water environment. Owing to the particle size effects, nano-particles are inclined to absorb harmful substances and increase their levels of toxicity. In this study, the existence state, aggregation and settlement characteristics of nano-particles in the natural water are studied. Influenced by the structural layer repulsion, nano-particles have higher stability in natural water. When coagulants were added, nano-particles could effectively aggregate with slow flocculation speed and relatively small flocs size without hydraulic shearing due to the significant effect of Brownian motion. It is worth noting that the aggregated flocs formed by Brownian motion showed high strength and strong ability to resist hydraulic disturbance, and thus the flocs were harder to break. This is because the combination among nano-particles under hydraulic shearing is the result of a single-point chain-to-chain aggregation mode, while that under the Brownian motion is the result of multi-points face-to-face aggregation mode. Therefore, in the process of re-flocculation, flocs formed by the Brownian motion were more compact. This study provides a new view in nano-particles treatment for both the in-situ treatment process of natural water body and the regular water treatment plants.
Collapse
Affiliation(s)
- Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu City, Zhejiang Province 322000, China.
| | - Hongyan Sun
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Shengming Xu
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu City, Zhejiang Province 322000, China
| | - Yi He
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu City, Zhejiang Province 322000, China
| | - Hui Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu City, Zhejiang Province 322000, China
| | - Dongsheng Wang
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu City, Zhejiang Province 322000, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Achieving a high dielectric constant and low dielectric loss of polymer composites filled with an interface-bonded g-C3N4@PbS narrow-bandgap semiconductor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Khoa Huynh NA, Do THT, Le XL, Huynh TTN, Nguyen DH, Tran NK, Tran CTHL, Nguyen DH, Truong CT. Development of softgel capsules containing cyclosporine a encapsulated pine essential oil based self-microemulsifying drug delivery system. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Chen Y, Zhang X, Liu W. Effect of metal and metal oxide engineered nano particles on nitrogen bio-conversion and its mechanism: A review. CHEMOSPHERE 2022; 287:132097. [PMID: 34523458 DOI: 10.1016/j.chemosphere.2021.132097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Metal and metal oxide engineered nano particles (MMO-ENPs) are widely applied in various industries due to their unique properties. Thus, many researches focused on the influence on nitrogen transformation processes by MMO-ENPs. This review focuses on the effect of MMO-ENPs on nitrogen fixation, nitrification, denitrification and Anammox. Firstly, based on most of the researches, it can be concluded MMO-ENPs have negative effect on nitrogen fixation, nitrification and denitrification while the MMO-ENPs have no promotion effect on Anammox. Then, the influence factors are discussed in detail, including MMO-ENPs dosage, MMO-ENPs kind and exposure time. Both the microbial morphology and population structure were altered by MMO-ENPs. Also, the mechanisms of MMO-ENPs affecting the nitrogen transformation are reviewed. The inhibition of key enzymes and functional genes, the promotion of reactive oxygen species (ROS) production, MMO-ENPs themselves and the suppression of electron transfer all contribute to the negative effect. Finally, the key points for future investigation are proposed that more attention should be attached to the effect on Anammox and the further mechanism in the future studies.
Collapse
Affiliation(s)
- Yinguang Chen
- Coll Resource & Environm Sci, Xinjiang Univ, 666 Shengli Rd, Urumqi, PR China; Coll Environm Sci & Engn, Tongji Univ, 1239 Siping Rd, Shanghai, PR China
| | - Xiaoyang Zhang
- Coll Environm Sci & Engn, Tongji Univ, 1239 Siping Rd, Shanghai, PR China.
| | - Weiguo Liu
- Coll Resource & Environm Sci, Xinjiang Univ, 666 Shengli Rd, Urumqi, PR China
| |
Collapse
|
30
|
Zhang Y, Liao M, Guo J, Xu N, Xie X, Fan Q. The co-transport of Cd(Ⅱ) with nanoscale As 2S 3 in soil-packed column: Effects of ionic strength. CHEMOSPHERE 2022; 286:131628. [PMID: 34333186 DOI: 10.1016/j.chemosphere.2021.131628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
To observe the co-transport of Cd(Ⅱ) with nanoscale As2S3 (nAs2S3) in a soil-packed column under different ionic strength (IS). A soil-packed column experiment with Cd(Ⅱ) and nAs2S3 was conducted. The results show that the transport of Cd(Ⅱ) was facilitated remarkably in the presence of nAs2S3, and nano-associated-Cd(Ⅱ) was the major migration type. However, the co-transport of Cd(Ⅱ) and nAs2S3 was affected by IS. The Cd(Ⅱ) concentration in the effluent to initial Cd(Ⅱ) concentration decreased from 38.75% to 29.95% and 22.28% as IS increased from 1 mM to 10 mM and 50 mM. When IS was 1 mm, 10 mm and 50 mm, the retention of nAs2S3 increased from 74.29% to 78.95% and 85.9% respectively. The agglomeration and sedimentation of nAs2S3 were the main reason for the rise of retention. Due to the increase of retention and reduction in adsorption capacity of nAs2S3 to Cd(Ⅱ), the ratio of migration in the form of nano-associated-Cd(Ⅱ) reduced from 53% (IS 1 mM) to 27.4% (IS 10 mM) and 18.2% (IS 50 mM). During the transport, the IS promoted desorption of Cd(Ⅱ) from nAs2S3 so that more soluble Cd was monitored in the effluent as IS increased. In general, these findings can provide references for controlling the risk caused by the co-transport of nAs2S3 and Cd(Ⅱ) in saline-alkali soil.
Collapse
Affiliation(s)
- Yuhao Zhang
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No.866, Hangzhou, 310058, China
| | - Min Liao
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No.866, Hangzhou, 310058, China.
| | - Jiawen Guo
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No.866, Hangzhou, 310058, China
| | - Na Xu
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No.866, Hangzhou, 310058, China
| | - Xiaomei Xie
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; National Demonstration Center for Experimental Environmental and Resources Education (Zhejiang University), Yuhangtang Road No.866, Hangzhou, 310058, China.
| | - Qiyan Fan
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No.866, Hangzhou, 310058, China; National Demonstration Center for Experimental Environmental and Resources Education (Zhejiang University), Yuhangtang Road No.866, Hangzhou, 310058, China
| |
Collapse
|
31
|
Huang S, Liu M, Li H. In situ green synthesis of lysozyme/silver nanoparticles sol and their antimicrobial properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj01744j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lysozyme/silver nanoparticles sol (LZM/AgNPs) were synthesized in situ with the assistance of ultraviolet irradiation with enhanced antibacterial activity.
Collapse
Affiliation(s)
- Shan Huang
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mengru Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hailong Li
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
32
|
Nazeer N, Simmons JR, Rainey JK, Rodriguez-Lecompte JC, Ahmed M. Antibacterial activities of physiologically stable, self-assembled peptide nanoparticles. J Mater Chem B 2021; 9:9041-9054. [PMID: 34664611 DOI: 10.1039/d1tb01864g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report that host defense protein-derived ten amino acid long disulfide-linked peptides self-assemble in the form of β-sheets and β-turns, and exhibit concentration-dependent self-assembly in the form of nanospheres, termed as disulfide linked nanospheres (DSNs). As expected, bare DSNs are prone to aggregation in ionic solutions and in the presence of serum proteins. To yield physiologically stable self-assembled peptide-based materials, DSNs are stabilized in the form of supramolecular assemblies using β-cyclodextrins (β-CD) and fucoidan, as delivery carriers. The inclusion complexes of DSNs with β-CD (β-CD-DSN) and electrostatic complexation of fucoidan with DSNs (FC-DSN) stabilizes the secondary structure of DSNs. Comparison of β-CD-DSNs with FC-DSNs reveals that inclusion complexes of DSNs formed in the presence of β-CD are highly stable under physiological conditions, show high cellular uptake, exhibit bacterial flocculation, and enhance antibacterial efficacies of DSNs in a range of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada.
| | - Jeffrey R Simmons
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.,School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada. .,Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| |
Collapse
|
33
|
Józó M, Várdai R, Hegyesi N, Móczó J, Pukánszky B. Poly-ε-Caprolactone/Halloysite Nanotube Composites for Resorbable Scaffolds: Effect of Processing Technology on Homogeneity and Electrospinning. Polymers (Basel) 2021; 13:polym13213772. [PMID: 34771328 PMCID: PMC8587687 DOI: 10.3390/polym13213772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Polycaprolactone (PCL)/halloysite composites were prepared to compare the effect of homogenization technology on the structure and properties of the composites. Halloysite content changed from 0 to 10 vol% in six steps and homogeneity was characterized by various direct and indirect methods. The results showed that the extent of aggregation depends on technology and on halloysite content; the size and number of aggregates increase with increasing halloysite content. Melt mixing results in more homogeneous composites than the simple compression of the component powders or homogenization in solution and film casting. Homogeneity and the extent of aggregation determines all properties, including functionality. The mechanical properties of the polymer deteriorate with increasing aggregation; even stiffness depends on homogeneity. Strength and deformability decreases drastically as the number and size of aggregates increase. Not only dispersed structure, but also the physical state and crystalline structure of the polymer influence homogeneity and properties. The presence of the filler affects the preparation of electrospun fiber scaffolds as well. A part of the filler is excluded from the fibers while another part forms aggregates that complicates fiber spinning and deteriorates properties. The results indicate that spinning is easier and the quality of the fibers is better if a material homogenized previously by melt mixing is used for the production of the fibers.
Collapse
Affiliation(s)
- Muriel Józó
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (M.J.); (R.V.); (N.H.); (J.M.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| | - Róbert Várdai
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (M.J.); (R.V.); (N.H.); (J.M.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| | - Nóra Hegyesi
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (M.J.); (R.V.); (N.H.); (J.M.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| | - János Móczó
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (M.J.); (R.V.); (N.H.); (J.M.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| | - Béla Pukánszky
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (M.J.); (R.V.); (N.H.); (J.M.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
- Correspondence: ; Tel.: +36-(14)-632015
| |
Collapse
|
34
|
Cortés H, Hernández-Parra H, Bernal-Chávez SA, Prado-Audelo MLD, Caballero-Florán IH, Borbolla-Jiménez FV, González-Torres M, Magaña JJ, Leyva-Gómez G. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3197. [PMID: 34200640 PMCID: PMC8226872 DOI: 10.3390/ma14123197] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Surfactants are essential in the manufacture of polymeric nanoparticles by emulsion formation methods and to preserve the stability of carriers in liquid media. The deposition of non-ionic surfactants at the interface allows a considerable reduction of the globule of the emulsion with high biocompatibility and the possibility of oscillating the final sizes in a wide nanometric range. Therefore, this review presents an analysis of the three principal non-ionic surfactants utilized in the manufacture of polymeric nanoparticles; polysorbates, poly(vinyl alcohol), and poloxamers. We included a section on general properties and uses and a comprehensive compilation of formulations with each principal non-ionic surfactant. Then, we highlight a section on the interaction of non-ionic surfactants with biological barriers to emphasize that the function of surfactants is not limited to stabilizing the dispersion of nanoparticles and has a broad impact on pharmacokinetics. Finally, the last section corresponds to a recommendation in the experimental approach for choosing a surfactant applying the systematic methodology of Quality by Design.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - María L. Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|