1
|
Cai Y, Zhao Y, Wang C, Yadav AK, Wei T, Kang P. Ozone disinfection of waterborne pathogens: A review of mechanisms, applications, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60709-60730. [PMID: 39392580 DOI: 10.1007/s11356-024-34991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Water serves as a critical vector for the transmission of pathogenic microorganisms, playing a pivotal role in the emergence and propagation of numerous diseases. Ozone (O3) disinfection technology offers promising potential for mitigating the spread of these pathogens in aquatic environments. However, previous studies have only focused on the inactivated effect of O3 on a single pathogenic microorganism, lacking a comprehensive comparative analysis of various influencing factors and different types of pathogens, while the cost-effectiveness of O3 technology has not been mentioned. This review synthesized the migration characteristics of various pathogenic microorganisms in water bodies and examined the properties, mechanisms, and influencing factors of O3 inactivation. It evaluated the efficacy of O3 against diverse pathogens, namely bacteria, viruses, protozoa, and fungi, and provided a comparative analysis of their sensitivities to O3. The formation and impact of harmful disinfection by-products (DBPs) during the O3 inactivation process were assessed, alongside an analysis of the cost-effectiveness of this method. Additionally, potential synergistic treatment processes involving O3 were proposed. Based on these findings, recommendations were made for optimizing the utilization of O3 in water inactivation in order to formulate better inactivation strategies in the post-pandemic eras.
Collapse
Affiliation(s)
- Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Madrid, Spain
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China.
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China.
| | - Cong Wang
- Xi'an Aerospace City Water Environment Co., Ltd., Xi'an, 710199, P.R. China
| | - Asheesh Kumar Yadav
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Madrid, Spain
- Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751 013, Odisha, India
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, P.R. China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, P.R. China
| |
Collapse
|
2
|
Cui J, Tang Z, Lin Q, Yang L, Deng Y. Interactions of ferrate(VI) and aquatic humic substances in water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170919. [PMID: 38354807 DOI: 10.1016/j.scitotenv.2024.170919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Aquatic humic substances, encompassing humic acid (HA) and fulvic acid (FA), can influence the treatment of ferrate(VI), an emerging water treatment agent, by scavenging Fe(VI) to accelerate its decomposition and hinder the elimination of target micro-pollutants. Meanwhile, HA and FA degrade the water quality through the transformation to disinfection byproducts over disinfection, contribution to water color, and enhanced mobility of toxic metals. However, the interplay with ferrate(VI) and humic substances is not well understood. This study aims to elucidate the interactions of ferrate(VI) with HA and FA for harnessing ferrate(VI) in water treatment. Laboratory investigations revealed distinctive biphasic kinetic profiles of ferrate(VI) decomposition in the presence of HA or FA, involving a 2nd order kinetic reaction followed by a 1st-order kinetic reaction. Both self-decay and reactions with the humic substances governed the ferrate(VI) decomposition in the initial phase. With increasing dissolved organic carbon (DOC), the contribution of self-decomposition to ferrate(VI) decay declined, while humic substance-induced ferrate(VI) consumption increased. To assess relative contributions of the two factors, DOC50% was first introduced to represent the level at which the two factors equally contribute to the ferrate(VI) loss. Notably, DOC50% (11.90 mg/L for HA and 13.10 mg/L for FA) exceeded typical DOC in raw water, implying that self-decay predominantly governs ferrate(VI) consumption. Meanwhile, ferrate(VI) could degrade and remove HA and FA across different molecular weight (MW) ranges, exhibiting treatment capabilities that are either better or, at least, equivalent to ozone. The ferrate(VI) treatment attacked high MW, hydrophobic organic molecules, accompanied by the production of low MW, more hydrophilic compounds. Particularly, FA was more effectively removed due to its smaller molecular sizes, higher solubility, and lower carbon contents. This study provides valuable insights into the effective utilization of ferrate(VI) in water treatment in presence of humic substances.
Collapse
Affiliation(s)
- Junkui Cui
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Zepei Tang
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Lisitai Yang
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States.
| |
Collapse
|
3
|
Yu B, Zhang Y, Wu H, Yan W, Meng Y, Hu C, Liu Z, Ding J, Zhang H. Advanced oxidation processes for synchronizing harmful microcystis blooms control with algal metabolites removal: From the laboratory to practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167650. [PMID: 37806585 DOI: 10.1016/j.scitotenv.2023.167650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Harmful algal blooms (HABs) in freshwater systems have become a global epidemic, leading to a series of problems related to cyanobacterial outbreaks and toxicity. Studies are needed to improve the technology used for the simultaneous removal of harmful cyanobacteria and algal metabolites. In this review, widely reported advanced oxidation processes (AOPs) strategies for removing major species Microcystis aeruginosa (M. aeruginosa) and microcystins (MCs) were screened through bibliometrics, such as photocatalysis, activated persulfate, H2O2, Ozone oxidation, ultrasonic oxidation, and electrochemical oxidation, etc. AOPs generate kinds of reactive oxygen species (ROS) to inactivate cyanobacteria and degrade cyanotoxins. A series of responses occurs in algal cells to resist the damaging effects of ROS generated by AOPs. Specifically, we reviewed laboratory research, mechanisms, practical applications, and challenges of HABs treatments in AOPs. Problems common to these technologies include the impact of algal response and metabolites, and environmental factors. This information provides guidance for future research on the removal of harmful cyanobacteria and treatment of algal metabolites using AOPs.
Collapse
Affiliation(s)
- Bingzhi Yu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Huazhen Wu
- Hangzhou Huanke Environmental Consulting Co. LTD, 310010 Hangzhou, Zhejiang, China
| | - Wen Yan
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yunjuan Meng
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China.
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Wang X, Qian Y, Chen Y, Liu F, An D, Yang G, Dai R. Application of fluorescence spectra and molecular weight analysis in the identification of algal organic matter-based disinfection by-product precursors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163589. [PMID: 37087012 DOI: 10.1016/j.scitotenv.2023.163589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Algal organic matter (AOM) is considered to be threatening for the consumption of disinfectants and the formation of disinfection by-products (DBPs) during the disinfection process. Incompatible parameters in the conventional pretreatment of algal-laden water will lead to counterproductive results, such as AOM release. Therefore, the generation of AOM and its conversion to DBPs during pretreatment should be observed. The characteristics of DBPs from extracellular organic matter (EOM) and intracellular organic matter (IOM) were epitomized and simulation experiments were conducted in deionized (DI) water and source water under pretreatment conditions. Differences in DBP formation between the different backgrounds during chlorination and powdered activated carbon (PAC) treatment were investigated. Instead of monotonous excitation-emission matrix (EEM) spectra, molecular weight (MW) fractionation was simultaneously applied to elucidate the mechanisms of chlorination and PAC adsorption on AOM-based DBPs. The fluorescence regional integration (FRI) EEM results showed a clear correlation between the fluorescent properties and MW distribution of AOM. A decreasing trend was observed after a rapid increase in fluorescence intensity during the chlorination and PAC treatment of water samples in the simulation experiments in deionized (DI) water and source water. The DBP formation potential (FP) in the source water was consistent with the change in AOM during chlorination and PAC adsorption. In addition, EEM showed decent predictability of AOM-based trihalomethanes (THM) FPs (R2 = 0.77-0.99) invoking a combination with MW fractionation. Macromolecular protein compounds were highly correlated with the formation of dichloroacetonitrile (DCAN) (R2 = 0.89-0.98). These post-mortems results imply that EEM spectra are a useful tool for identifying AOM-based precursors to reveal the accurate environmental fate and risk assessments of AOM.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China; Department of the Built Environment, Aalborg University, Aalborg 9220, Denmark
| | - Fan Liu
- Department of the Built Environment, Aalborg University, Aalborg 9220, Denmark
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Guodong Yang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Ruihua Dai
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| |
Collapse
|
5
|
Zhang Y, Shen J, Feng JM, Li XY, Liu HJ, Wang XZ. Composition, distribution, and source of organic carbon in surface sediments of Erhai Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159983. [PMID: 36356753 DOI: 10.1016/j.scitotenv.2022.159983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Lake sediment is an important organic carbon (OC) sink. Nevertheless, few studies have been conducted on sediment organic carbon (SOC) in lakes, and the effects of environmental variables on SOC pools remain poorly understood. We combined physicochemical and spectroscopic analyses to investigate the composition, distribution, and source of OC in surface sediments of Erhai Lake, southwest China, and explored the relationships between environmental variables and its SOC pool. The SOC pool consists of relatively high proportions of labile organic carbon fractions, mainly from algal production, which are rapidly decomposed and exhibit high turnover rates. The relative content of humus carbon ranges from 13.5 % to 20.5 %, with fulvic acid carbon predominating (average 52.95 %), indicating weak humification and a relatively active humus carbon pool. The dissolved organic matter in water column and sediments of Erhai Lake is largely influenced by endogenous production, with a great contribution from phytoplankton. Surface sediments contained more protein-like components than overlying waters (80.0 % vs. 63.0 %), attributed mainly to abundant algal deposition and intense bacterial metabolism. Among environmental variables, sediment chlorophyll a showed the strongest relationship with the SOC pool, and was associated with rapid decomposition and promotion of the humification process, which supported the conclusion that algae had an important influence on the SOC pool. The SOC pool in the southern region of the lake is mainly contributed by algae, other microorganisms, and sewage, exhibiting a greater potential to release organic matters into the water column. The center and northern SOC pools show relatively stable characteristics and stronger OC sink capacity, mainly because of the input of terrestrial refractory organic matters from runoff. Our data shed light on the OC storage mechanisms in the surface sediments of Erhai Lake and provide theoretical bases for enhancing the OC sink of sediments in the lake.
Collapse
Affiliation(s)
- Yao Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China
| | - Jian Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China
| | - Ji-Meng Feng
- National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Xue-Ying Li
- National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Hua-Ji Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China
| | - Xin-Ze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China.
| |
Collapse
|
6
|
Liu D, Rao L, Shi X, Du J, Chen C, Sun W, Fu ML, Yuan B. Comparison of the formation of N-nitrosodimethylamine (NDMA) from algae organic matter by chlor(am)ination and UV irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156078. [PMID: 35597338 DOI: 10.1016/j.scitotenv.2022.156078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Microcystis aeruginosa (M. aeruginosa, blue-green algae) blooms frequently in drinking water reservoirs and subsequently causes the formation of disinfection by-products (DBPs) after disinfection, which may pose a potential health risk. In this study, the formation of N-nitrosodimethylamine (NDMA) was evaluated from algal organic matter (AOM) including extracellular organic matter (EOM) and intracellular organic matter (IOM) during the disinfection process of chlorination, chloramination, or ultraviolet (UV) irradiation. The effects of a variety of factors, including reaction times, disinfectant dosages and pH, on the NDMA formation by three different disinfection methods were investigated. Additionally, this study evaluated the nitrogen sources involved in NDMA formation during chloramination of EOM and IOM using 15N-labeled monochloramine. The results showed that the NDMA formation by three different disinfection methods were ranked in the order of chlorination > UV irradiation ≈ chloramination and the specific yield from EOM was greater than that from IOM regardless of disinfection method. The yields of NDMA firstly increased and then plateaued as time prolonged during the chlorination and chloramination of AOM. Similarly, the NDMA formation from EOM was firstly increased and then remained constant with the increase of the disinfectant dosage, while it was gradually increased for IOM. The solution pH highly influenced the NDMA formation during chlorination and chloramination, while exhibited a little impact under UV irradiation. Moreover, fluorescence excitation-emission (EEM) analysis confirmed that soluble microbial by-product-like (SMPs) in EOM and IOM were the major precursors in algal-derived organic matter that contributed to the NDMA formation. Chloramination of EOM and IOM using isotope 15N-labeled monochloramine indicated that the nitroso group of the formed NDMA originates mainly from EOM and IOM of algal cells.
Collapse
Affiliation(s)
- Decai Liu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - La Rao
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Xiaoyang Shi
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jiayu Du
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Chen Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Wenjie Sun
- Department of Atmospheric and Hydrologic Science, St. Cloud State University, 720 4th Avenue South, St. Cloud, MN 56301, USA
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, PR China.
| |
Collapse
|
7
|
Pivokonsky M, Kopecka I, Cermakova L, Fialova K, Novotna K, Cajthaml T, Henderson RK, Pivokonska L. Current knowledge in the field of algal organic matter adsorption onto activated carbon in drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149455. [PMID: 34364285 DOI: 10.1016/j.scitotenv.2021.149455] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The increasing occurrence of algal and cyanobacterial blooms and the related formation of algal organic matter (AOM) is a worldwide issue that endangers the quality of freshwater sources and affects water treatment processes. The associated problems involve the production of toxins or taste and odor compounds, increasing coagulant demand, inhibition of removal of other polluting compounds, and in many cases, AOM acts as a precursor of disinfection by-products. Previous research has shown that for sufficient AOM removal, the conventional drinking water treatment based on coagulation/flocculation must be often accompanied by additional polishing technologies such as adsorption onto activated carbon (AC). This state-of-the-art review is intended to serve as a summary of the most current research on the adsorption of AOM onto AC concerning drinking water treatment. It summarizes emerging trends in this field with an emphasis on the type of AOM compounds removed and on the adsorption mechanisms and influencing factors involved. Additionally, also the principles of competitive adsorption of AOM and other organic pollutants are elaborated. Further, this paper also synthesizes previous knowledge on combining AC adsorption with other treatment techniques for enhanced AOM removal in order to provide a practical resource for researchers, water treatment plant operators and engineers. Finally, research gaps regarding the AOM adsorption onto AC are identified, including, e.g., adsorption of AOM residuals recalcitrant to coagulation/flocculation, suitability of pre-oxidation of AOM prior to the AC adsorption, relationships between the solution properties and AOM adsorption behaviour, or AOM as a cause of competitive adsorption. Also, focus should be laid on continuous flow column experiments using water with multi-component composition, because these would greatly contribute to transferring the theoretical knowledge to practice.
Collapse
Affiliation(s)
- Martin Pivokonsky
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic.
| | - Ivana Kopecka
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Lenka Cermakova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Katerina Fialova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Katerina Novotna
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Rita K Henderson
- School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Lenka Pivokonska
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| |
Collapse
|
8
|
Liang H, Huang X, Wang H, Xu W, Shi B. The role of extracellular organic matter on the cyanobacteria ultrafiltration process. J Environ Sci (China) 2021; 110:12-20. [PMID: 34593183 DOI: 10.1016/j.jes.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 05/09/2023]
Abstract
The membrane fouling caused by extracellular organic matter (EOM) and algal cells and organic matter removal of two typical cyanobacteria (M. aeruginosa and Pseudoanabaena sp.) during ultrafiltration (UF) process were studied in this work. The results showed that EOM had a broad molecular weight (Mw) distribution and the irreversible membrane fouling was basically caused by EOM. Moreover, humic acid and microbial metabolites were major components of EOM of two typical cyanobacteria. Since EOM could fill the voids of cake layers formed by the algal cells, EOM and algal cells played synergistic roles in membrane fouling. Fourier transform infrared spectroscopy analysis indicated that the CH2 and CH3 chemical bonds may play an important role in membrane fouling caused by EOM. Interestingly, the cake layer formed by the algal cells could trap the organic matter produced by algae and alleviate some irreversible membrane fouling. The results also showed that although the cake layer formed by the algal cells cause severe permeate flux decline, it could play a double interception role with UF membrane and increase organic matter removal efficiency. Therefore, when using UF to treat algae-laden water, the balance of membrane fouling and organic matter removal should be considered to meet the needs of practical applications.
Collapse
Affiliation(s)
- Huikai Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xin Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China.
| | - Han Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Weiying Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Shahi NK, Maeng M, Choi I, Dockko S. Degradation effect of ultraviolet-induced advanced oxidation of chlorine, chlorine dioxide, and hydrogen peroxide and its impact on coagulation of extracellular organic matter produced by Microcystis aeruginosa. CHEMOSPHERE 2021; 281:130765. [PMID: 34010716 DOI: 10.1016/j.chemosphere.2021.130765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Implementation of an ultraviolet (UV)-induced advanced oxidation process (AOP) before coagulation was found to enhance the removal of algae cells. However, the effect of UV-induced AOPs on extracellular cellular organic matter (EOM) and on its coagulation and removal was neglected. This study investigated the impact of UV-induced AOPs (UV/Cl2, UV/ClO2, and UV/H2O2) on EOM from Microcystis aeruginosa, and its coagulation and removal by a conventional gravity system (CGS), dissolved air flotation, and a low-energy flash-pressurized flotation (FPF) process. The changes in EOM characteristics before and after the UV-induced AOPs were based on UV absorbance (UV254) and liquid chromatography with organic carbon detection analysis. The reduction in UV254 increased with an increasing dose of oxidant and UV irradiation. The reduction in UV254 for UV/Cl2, UV/ClO2 and UV/H2O2 was 59.5%, 26.5%, and 17.5% respectively, for 0.71 mM equimolar concentration of oxidant and 1920 mJ/cm2 UV irradiation, as evident from a pseudo-first order kinetics study. Similarly, degradation of the high molecular weight to low molecular weight (LMW) fraction was pronounced for UV/Cl2. The coagulation efficiency decreased after UV-induced AOP in the following order: UV/H2O2 > UV/ClO2 > UV/Cl2. By contrast, the low-energy FPF process showed a higher removal of LMW fractions than CGS. Thus, low-energy FPF could be an alternative technology for the UV-induced AOP treatment system.
Collapse
Affiliation(s)
- Nirmal Kumar Shahi
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Minsoo Maeng
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ilhwan Choi
- Water Analysis and Research Center, Water Research Corporation, Daejeon, Republic of Korea
| | - Seok Dockko
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|