1
|
Laxmi V, Agarwal S, Khan S. Advanced nanoribbons in water purification: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122645. [PMID: 39342836 DOI: 10.1016/j.jenvman.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The increasing scarcity of clean water, coupled with the environmental repercussions of municipal and industrial wastewater, underscores the imperative for advancing novel technologies aimed at clean water production and effectively removing impurities and toxic contaminants. Research focusing on ribbon-based technologies has garnered substantial attention in recent years due to their promising applications in various fields. This article presents a comprehensive review of the diverse applications of ribbon in water and wastewater treatment. It delves into the various types of ribbon employed for water purification, elucidating their effectiveness in removing contaminants such as heavy metals, dyes, pesticides, medical waste, oil pollutants, and radioactive waste. We will also discuss methods such as adsorption, membrane separation, and advanced oxidation processes, which help to understand how ribbons remove pollutants from water. This review summarizes the recent progress in the field of water purification and discusses the current state-of-the-art research on the use of ribbons in wastewater treatment. The end of this article gives information about the regeneration and reusability of ribbons and about challenges and prospects.
Collapse
Affiliation(s)
- Vijay Laxmi
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Swati Agarwal
- Drumlins Water Technologies Pvt. Ltd., Jaipur, Rajasthan, 302005, India
| | - Suphiya Khan
- Shriram Institute for Industrial Research, Gurugram, Haryana, 122015, India.
| |
Collapse
|
2
|
Deng Z, Zhao B, Li S, Li Z, Zhang S, Zhang K, Zhu Z. An efficient CuZr-based metallic glasses electrode material for electrocatalytic degradation of azo dyes. J Environ Sci (China) 2024; 136:537-546. [PMID: 37923462 DOI: 10.1016/j.jes.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2023]
Abstract
Metallic glasses have received a lot of attention on wastewater treatment due to their unique atomic structure, and the use of metallic glasses as electrodes has produced unexpected electrocatalytic degradation effects for many pollutants through combining with electrochemical technology. However, it still is a formidable challenge to find a metallic glass electrode material with both efficient and clean for the catalytic degradation of pollutants. In this work, the Cu55Zr45 metallic glassy ribbons are used as an electrode to degrade azo dyes and show the excellent degradation effect, which can reach 95.6% within 40 min. In the degradation process, almost no additives are produced and Cu55Zr45 metallic glassy ribbons have excellent effects under different pH conditions. Meanwhile, it exhibits good stability for degradation efficiency during the 8 cycle degradation tests of the amorphous alloy electrode. When the copper nanoparticles are exposed on the surface of the ribbons, the oxidized copper obtained synergistically produce activated radicals is the primary degradation mechanism, where the auxiliary degradation mechanisms include electron transfer and the promotion of active chlorine. This research develops a new type of electrode material for wastewater treatment, and the economy and high efficiency of Cu55Zr45 metallic glass endow it the expandable functional applications.
Collapse
Affiliation(s)
- Zhiwang Deng
- Taiyuan University of Science and Technology, School of materials science and engineering, Taiyuan 030024, China; Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bowen Zhao
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Songtao Li
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhengkun Li
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Chinese Academy of Sciences Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shiming Zhang
- Qingdao Yunlu Advanced Materials Technology Co., Ltd., Qingdao 266232, China
| | - Kewei Zhang
- Taiyuan University of Science and Technology, School of materials science and engineering, Taiyuan 030024, China.
| | - Zhengwang Zhu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Chinese Academy of Sciences Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
3
|
Dang G, Jia Y, Guo L, Yang Y, Zhi J, Li X. Tannin-functionalized Mn3O4 as support for FeNiB alloy to construct sono-Fenton-like reaction for the degradation of antibiotic pollutants in water. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/10/2023]
|
4
|
Zuo M, Moztahida M, Lee DS, Yi S. Synthesis of enhanced corrosion resistant Fe-B-C-Ti amorphous ribbons and evaluation of their photodegradation efficiency under light irradiation. CHEMOSPHERE 2022; 287:132175. [PMID: 34826903 DOI: 10.1016/j.chemosphere.2021.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Fe-based amorphous alloys have been found to be very efficient in the degradation of water pollutants due to their unique atomic arrangements with long-range disordered structure. In this work, Fe-B-C-Ti amorphous ribbons were successfully synthesized and showed high catalytic efficiency in the degradation of methylene blue (MB) under simulated sunlight and across a wide pH range. The catalytic efficiency was evaluated under different conditions to optimize the degradation performance. The amorphous ribbon Fe75B10C10Ti5 was found to exhibit the highest photocatalytic activity as explained by its optical and photoelectrochemical properties. It can degrade MB completely with low Fe-leaching and significant recyclability at pH close to a neutral range (pH 5). The degradation mechanisms can be explained in terms of photocatalytic activity along with the galvanic cell effect which contributed to the efficient MB degradation. This work provides a comprehensive idea for the synthesis of amorphous alloys by optimizing their elemental composition and also explains the catalytic activity of partially crystallized regions on the ribbon surface. The significant corrosion resistance and the quick degradation of MB in a wide pH range in a recyclable manner by these easily separable and highly efficient catalysts indicate great potential for their practical application.
Collapse
Affiliation(s)
- Mingqing Zuo
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Mokrema Moztahida
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| | - Seonghoon Yi
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
5
|
Balci B, Aksoy N, Erkurt FE, Budak F, Basibuyuk M, Zaimoglu Z, Turan ES, Yilmaz S. Removal of a reactive dye from simulated textile wastewater by environmentally friendly oxidant calcium peroxide. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present study, calcium peroxide (CaO2) was used separately for potential application as an environmentally friendly and low-cost oxidant for the removal of a textile dye ‘Reactive Black 5’ (RB5) from simulated textile wastewater containing auxiliary chemicals of textile production. The specific morphology, elemental analysis, particle size distribution, specific surface area, identification of crystalline phases and surface functional groups of the synthesized CaO2 were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), laser diffraction (LD), Brunaure–Emmett–Teller method (BET), X-ray diffraction (XRD) and Fourier transmission infrared (FTIR), respectively. X-ray Diffraction analysis confirmed the synthesized oxidant as CaO2 with the tetragonal crystalline structure. The signal corresponded to a bending vibration of O–Ca–O was detected in the fingerprint region of the FTIR spectroscopy. The effects of various independent parameters such as contact time, pH, initial RB5 concentration and CaO2 dosage on decolorization were investigated. The results of the study showed that pH, initial dye concentration and the CaO2 amounts have significant effects on removal of the RB5. The optimum pH was determined 7 for the removal of RB5 by CaO2. 2.0 g CaO2 was found to be sufficient for the removal of 300 mg/L RB5 with 96.93% removal efficiency. Also 82.8% chemical oxygen demand (COD) removal efficiency from simulated textile wastewater (STW) was obtained by 2.0 g CaO2. The results of the present study showed that the CaO2 can be used as an environmentally friendly and low-cost oxidant for effective removal of reactive textile dyes.
Collapse
Affiliation(s)
- Behzat Balci
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - Nurevsan Aksoy
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - F. Elcin Erkurt
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - Fuat Budak
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - Mesut Basibuyuk
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - Zeynep Zaimoglu
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - E. Su Turan
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| | - Sevgi Yilmaz
- Department of Environmental Engineering , Cukurova University , Balcali/Saricam , Adana 01136 , Turkey
| |
Collapse
|