1
|
Yang Q, Gao J, Guo T, Yang W, Zhao Z, Wen G. The adsorption behavior and mechanism of Cu(Ⅱ), Fe(Ⅱ) and Co(Ⅱ) on straw biochar and their Fenton-like performance for ciprofloxacin decontamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123962. [PMID: 39752942 DOI: 10.1016/j.jenvman.2024.123962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
In this study, the adsorption of aqueous Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) on biochars at diverse synthesized temperatures was evaluated. The optimal sample BC-800 achieved superior adsorption performance of Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) at 10-50 mg L-1 initial concentration. Due to the larger surface area (349.6 m2/g), total pore volume (0.24 cm3/g), average pore diameter (6.4 nm), higher degree of graphitization (IG/ID = 1.00) and stable aromatic carbon structure, BC-800 achieved excellent adsorption of Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) through multilayer chemical adsorption, corresponding to the pseudo-2nd-order and Freundlich model (Qm Cu(Ⅱ) = 433.4 mg g-1, Qm Fe(Ⅱ) = 472.0 mg g-1 and Qm Co(Ⅱ) = 301.0 mg g-1). After then, the adsorbed biochars with Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) were directly used as heterogeneous catalysts in Fenton-like reaction for ciprofloxacin (CIP) degradation. Compared with Co-BC-800/peroxymonosulfate (PMS) system, Co-BC-800/H2O2 system exhibited the 56.6% decontamination of CIP with lower ions leaching (0.53 mg/L) within 70 min. The 97.9% of CIP was finally removed by Co-BC-800/H2O2 under optimized conditions: initial pH = 6.94, catalyst dosage = 1.0 g L-1, H2O2 concentration = 0.44 g L-1. Furthermore, Co-BC-800 exhibited superior acid-base adaptability (2.94-10.94) and anti-anion interference ability. The removal of CIP was achieved by the synergistic effect of adsorption and oxidative degradation. This study proposes some insights into the behavior and mechanism of metal ions adsorption on biochar and hazardous waste treatment.
Collapse
Affiliation(s)
- Qinyu Yang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Jie Gao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ting Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Weitian Yang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Zuoping Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Guang Wen
- Shaanxi Geology and Mining Hanzhong Geological Brigade Co., Ltd., Hanzhong, 723000, China
| |
Collapse
|
2
|
Zou Q, Zhao L, Guan L, Chen P, Zhao J, Zhao Y, Du Y, Xie Y. The synergistic interaction effect between biochar and plant growth-promoting rhizobacteria on beneficial microbial communities in soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1501400. [PMID: 39748822 PMCID: PMC11693716 DOI: 10.3389/fpls.2024.1501400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025]
Abstract
Excessive use of chemical fertilizers and extensive farming can degrade soil properties so that leading to decline in crop yields. Combining plant growth-promoting rhizobacteria (PGPR) with biochar (BC) may be an alternative way to mitigate this situation. However, the proportion of PGPR and BC at which crop yield can be improved, as well as the improvement effect extent on different eco-geographic region and crops, remain unclear. This research used cabbage [Brassica pekinensis (Lour.) Rupr.] as the target crop and established as treatment conventional fertilization as a control and a 50% reduction in nitrogen fertilizer at the Yunnan-Guizhou Plateau of China, adding BC or PGPR to evaluate the effects of different treatments on cabbage yield and the soil physicochemical properties. Specifically, high-throughput sequencing probed beneficial soil microbial communities and investigated the impact of BC and PGPR on cabbage yield and soil properties. The results revealed that the soil alkaline hydrolyzable nitrogen (AH-N), available phosphorus (AP), and available potassium (AK) contents were higher in the BC application than in control. The BC application or mixed with PGPR significantly increased the soil organic matter (OM) content (P<0.05), with a maximum of 42.59 g/kg. Further, applying BC or PGPR significantly increased the abundance of beneficial soil microorganisms in the whole growth period of cabbage (P<0.05), such as Streptomyces, Lysobacter, and Bacillus. Meanwhile, the co-application of BC and PGPR increased the abundance of Pseudomonas, and also significantly enhanced the Shannon index and Simpson index of bacterial community (P<0.05). Combined or not with PGPR, the BC application significantly enhanced cabbage yield (P<0.05), with the highest yield reached 1.41 fold of the control. Our research indicated that BC is an suitable and promising carrier of PGPR for soil improvement, combining BC and PGPR can effectively ameliorate the diversity of bacterial community even in acid red soil rhizosphere, and the most direct reflection is to improve soil fertility and cabbage yield.
Collapse
Affiliation(s)
- Qianmei Zou
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Longyuan Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lirong Guan
- College of Chemical Engineering, Yunnan Open University, Kunming, China
| | - Ping Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jie Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yueying Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yunlong Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yong Xie
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Zhang C, Chen N, Zhao M, Zhong W, Wu WJ, Jin YC. High-performance electrode materials of heteroatom-doped lignin-based carbon materials for supercapacitor applications. Int J Biol Macromol 2024; 273:133017. [PMID: 38876242 DOI: 10.1016/j.ijbiomac.2024.133017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Supercapacitors are the preferred option for supporting renewable energy sources owing to many benefits, including fast charging, long life, high energy and power density, and saving energy. While electrode materials with environmentally friendly preparation, high performance, and low cost are important research directions of supercapacitors. At present, the growing global population and the increasingly pressing issue of environmental pollution have drawn the focus of numerous researchers worldwide to the development and utilization of renewable biomass resources. Lignin, a renewable aromatic polymer, has reserves second only to cellulose in nature. Ten million tonnes of industrial lignin are produced in pulp and paper mills annually, most of which are disposed of as waste or burned for fuel, seriously depleting natural resources and polluting the environment. One practical strategy to accomplish sustainable development is to employ lignin resources to create high-value materials. Based on the high carbon content and rich functional groups of lignin, the lignin-based carbon materials generated after carbonization treatment display specific electrochemical properties as electrode materials. Nevertheless, low electrochemical activity of untreated lignin precludes it from achieving its full potential for application in energy storage. Heteroatom doping is a common modification method that aims to improve the electrochemical performance of the electrode materials by optimizing the structure of the lignin, improving its pore structure and increasing the number of active sites on its surface. This paper aims to establish theoretical foundations for design, preparation, and optimizing the performance of heteroatom-doped lignin-based carbon materials, as well as for developing high-value-added lignin materials. The most reported the mechanism of supercapacitors, the doping process involving various types of heteroatoms, and the analysis of how heteroatoms affect the performance of lignin-based carbon materials are also detailed in this review.
Collapse
Affiliation(s)
- Cheng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Nuo Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Miao Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wen-Juan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yong-Can Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
4
|
Phiri Z, Moja NT, Nkambule TT, de Kock LA. Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon 2024; 10:e25785. [PMID: 38375270 PMCID: PMC10875440 DOI: 10.1016/j.heliyon.2024.e25785] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Biochar usage for removing heavy metals from aqueous environments has emerged as a promising research area with significant environmental and economic benefits. Using the PICO approach, the research question aimed to explore using biochar to remove heavy metals from aqueous media. We merged the data from Scopus and the Web of Science Core Collection databases to acquire a comprehensive perspective of the subject. The PRISMA guidelines were applied to establish the search parameters, identify the appropriate articles, and collect the bibliographic information from the publications between 2010 and 2022. The bibliometric analysis showed that biochar-based heavy metal remediation is a research field with increasing scholarly attention. The removal of Cr(VI), Pb(II), Cd(II), and Cu(II) was the most studied among the heavy metals. We identified five main clusters centered on adsorption, water treatment, adsorption models, analytical techniques, and hydrothermal carbonization by performing keyword co-occurrence analysis. Trending topics include biochar reusability, modification, acid mine drainage (AMD), wastewater treatment, and hydrochar. The reutilization of heavy metal-loaded spent biochar includes transforming it into electrodes for supercapacitors or stable catalyst materials. This study provides a comprehensive overview of biochar-based heavy metal remediation in aquatic environments and highlights knowledge gaps and future research directions.
Collapse
Affiliation(s)
- Zebron Phiri
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Nathaniel T. Moja
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Thabo T.I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Lueta-Ann de Kock
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| |
Collapse
|
5
|
Murtaza G, Ahmed Z, Valipour M, Ali I, Usman M, Iqbal R, Zulfiqar U, Rizwan M, Mahmood S, Ullah A, Arslan M, Rehman MHU, Ditta A, Tariq A. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants. Sci Rep 2024; 14:217. [PMID: 38167973 PMCID: PMC10762257 DOI: 10.1038/s41598-023-50623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The pollution of soil and aquatic systems by inorganic and organic chemicals has become a global concern. Economical, eco-friendly, and sustainable solutions are direly required to alleviate the deleterious effects of these chemicals to ensure human well-being and environmental sustainability. In recent decades, biochar has emerged as an efficient material encompassing huge potential to decontaminate a wide range of pollutants from soil and aquatic systems. However, the application of raw biochars for pollutant remediation is confronting a major challenge of not getting the desired decontamination results due to its specific properties. Thus, multiple functionalizing/modification techniques have been introduced to alter the physicochemical and molecular attributes of biochars to increase their efficacy in environmental remediation. This review provides a comprehensive overview of the latest advancements in developing multiple functionalized/modified biochars via biological and other physiochemical techniques. Related mechanisms and further applications of multiple modified biochar in soil and water systems remediation have been discussed and summarized. Furthermore, existing research gaps and challenges are discussed, as well as further study needs are suggested. This work epitomizes the scientific prospects for a complete understanding of employing modified biochar as an efficient candidate for the decontamination of polluted soil and water systems for regenerative development.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China.
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, 80217, USA
| | - Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh, Pakistan
| | - Muhammad Usman
- Department of Botany, Government College University, Katcheri Road, Lahore, 54000, Punjab, Pakistan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, 410011, China
| | - Salman Mahmood
- Faculty of Economics and Management, Southwest Forestry, Kunming, Yunnan, 650224, China
| | - Abd Ullah
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Muhammad Habib Ur Rehman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology (IPBB), MNS-University of Agriculture, Multan, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal Dir (U), KPK, Sheringal, Pakistan.
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Akash Tariq
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| |
Collapse
|
6
|
Liu B, Zhang Z, Guan DX, Wang B, Zhou S, Chen T, Wang J, Li Y, Gao B. Qualitative and quantitative analysis for Cd 2+ removal mechanisms by biochar composites from co-pyrolysis of corn straw and fly ash. CHEMOSPHERE 2023; 330:138701. [PMID: 37062388 DOI: 10.1016/j.chemosphere.2023.138701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/14/2023]
Abstract
Removal of heavy metals (e.g., Cd) from contaminated water using waste-converted adsorbents is promising, but the efficiency still needs to be improved. Here, we prepared a functional biochar composite as novel Cd adsorbents by co-pyrolysis of two typical solid wastes, i.e., agricultural corn straw and industrial fly ash. The adsorption behavior and mechanism were investigated using batch and column adsorption experiments and modern characterization techniques. Results showed that alkali-modified fly ash (AMFA) was loaded onto the surface of the corn straw biochar as some fine particle forms, with quartz (SiO2) and silicate being the main mineral phases on the surface. The maximum sorption capacity fitted by Langmuir model for functionalized biochar composite (FBC700) was up to 137.1 mg g-1, which was 7.7 times higher than that of the original corn straw biochar (BC700). Spectroscopic analysis revealed that adsorption mechanisms of Cd onto the FBC700 included mainly precipitation and ion exchange, with complexation and Cd-π interaction also contributing. The AMFA could effectively improve the mineral precipitation with Cd. The adsorption columns filled with FBC700 exhibited a longer breakthrough time than that filled with BC700. The adsorption capacity calculated by Thomas model for FBC700 was also approximately 6.0 times higher than that for BC700, showing that FBC700 was more suited to practical applications. This study provided a novel perspective for recycling solid wastes and treating Cd-contaminated water.
Collapse
Affiliation(s)
- Bingxiang Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230601, China.
| | - Zihang Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bing Wang
- College of Resources and Environment Engineering, Guizhou University, Guiyang, 550025, China
| | - Shaoqi Zhou
- College of Resources and Environment Engineering, Guizhou University, Guiyang, 550025, China
| | - Tong Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Jintao Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Bo Gao
- Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
7
|
Annamalai S, Shin WS. Algae-derived metal-free boron-doped biochar acts as a catalyst for the activation of peroxymonosulfate toward the degradation of diclofenac. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121850. [PMID: 37211229 DOI: 10.1016/j.envpol.2023.121850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
In this study, plain seaweed biochar (SW) and boron-doped seaweed biochar (BSW) were prepared through a simple pyrolysis process using Undaria pinnatifida (algae biomass) and boric acid. The BSW catalyst was utilized to degrade organic pollutants in aqueous environments by activating peroxymonosulfate (PMS). Surface characterization of the BSW demonstrated successful doping of boron into the biochar materials. BSW600 exhibited greater catalytic activity than SW600, as evidenced by the former's maximum adsorption capacity of diclofenac (DCF) onto BSW600 (qmax = 30.01 mg g-1) and the activation of PMS. Complete degradation of DCF was achieved in 30 min using 100 mg L-1 BSW600, 0.5 mM PMS, and 6.5 initial solution pH as critical parameters. The pseudo-first-order kinetic model accurately described the DCF degradation kinetics. The scavenger experiment displayed that radical and non-radical reactive oxygen species (ROS) formed in the BSW600/PMS system. Furthermore, the generation of ROS in the BSW600/PMS system was confirmed by electron spin resonance spectroscopy (ESR). The percentage contribution of ROS was assessed to be 10, 65, and 25% for HO•, SO4•-, and 1O2, respectively. Additionally, the electron transfer pathway was also confirmed by electrochemical analysis. Moreover, the influence of water matrics on the BSW600/PMS system was demonstrated. The co-existence of anions and humic acid (HA) did not affect the catalytic activity of the BSW600/PMS system. The recyclability of BSW600 was assessed by DCF removal (86.3%) after three cycles. Ecological structure-activity relationships software was used to assess by-product toxicity. This study demonstrates the efficacy of non-metallic heteroatom-doped biochar materials as eco-friendly catalysts in groundwater applications.
Collapse
Affiliation(s)
- Sivasankar Annamalai
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Yang Y, Kang Z, Xu G, Yu Y. Enhanced adsorption performance of bensulfuron methyl with B doping biochar: Mechanism and density functional theory calculations. BIORESOURCE TECHNOLOGY 2023; 372:128657. [PMID: 36690217 DOI: 10.1016/j.biortech.2023.128657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
It is an urgent task to develop suitable adsorbents for the control of herbicide-bensulfuron methyl (BSM) in the paddy rice fields at cold regions. Herein, B doping biochar was synthesized via one-step method. Results showed that the adsorption capacity for BSM on 1.0BBC was significantly superior to BC at 15 °C. Besides, low temperature resistance, wide pH adaptability, stable adsorption performance and reusability test suggested that 1.0BBC have potential practical application. The mechanisms of BSM removal by 1.0BBC were mainly attributed to pore filling and π-π electron donor-acceptor (EDA) interaction. Theoretical calculations revealed that BCO2 could enhance the adsorption capacity by π-π EDA between BSM and adsorbent. Meanwhile, hydroponic experiment demonstrated that the toxicity to soybean after adsorption of BSM by 1.0BBC was within the safe range. This study proves that 1.0BBC is an easy-to-prepare adsorbent with promising application in BSM removal in the rice paddy fields at lower temperature.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
9
|
Ke Y, Zhu X, Si S, Zhang T, Wang J, Zhang Z. A Novel Adsorbent of Attapulgite & Carbon Composites Derived from Spent Bleaching Earth for Synergistic Removal of Copper and Tetracycline in Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1573. [PMID: 36674334 PMCID: PMC9865348 DOI: 10.3390/ijerph20021573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Simultaneously eliminating tetracycline (TC) and copper (Cu-II) from wastewater was investigated by applying a novel adsorbent fabricated by transforming spent bleaching earth (SBE) into attapulgite & carbon composites (A&Cs). Pyrolysis temperature for A&Cs preparation exhibited a positive effect on Cu(II) adsorption, while the AC500 possessed the greatest performance for TC remediation. Interestingly, a synergistic effect instead of competitive adsorption occurred between Cu(II) and TC under the combined binary system, as both TC and Cu(II) adsorption amount on A&C500 increased more than that in the single system, which could be mainly attributed to the bridge actions between the TC and Cu(II). In addition, hydrogen bonding, ᴨ-ᴨ EDA interaction, pore-filling and complexation exerted significant roles in the adsorption process of TC and Cu(II). In general, this study offered a new perspective on the regeneration of livestock and poultry industry wastewater polluted with antibiotics and heavy metals.
Collapse
Affiliation(s)
- Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Shaocheng Si
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Ting Zhang
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Junqiang Wang
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Xi’an Jinborui Ecological Tech. Co., Ltd., Xi’an 710065, China
| | - Ziye Zhang
- Xi’an Jinborui Ecological Tech. Co., Ltd., Xi’an 710065, China
| |
Collapse
|
10
|
Sui L, Tang C, Cheng K, Yang F. Biochar addition regulates soil phosphorus fractions and improves release of available phosphorus under freezing-thawing cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157748. [PMID: 35926613 DOI: 10.1016/j.scitotenv.2022.157748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Currently, the shortage of phosphorus resources is becoming more and more serious. In general, phosphorus fertilizer is poorly utilized in soil and tends to gradually accumulate. Freezing-thawing cycles (FT) are seasonal phenomenon occurring in high latitudes and altitudes regions, which have obvious influence on the form of phosphorus in soil. This study investigates the effect of biochar on soil physicochemical properties, phosphorus form and availability under FT and thermostatic incubation (TH) condition. Compared with treatment without biochar, 4 % biochar addition increased the soil pH value, electrical conductivity, organic matter and Olsen-P of soil by a maximum of 0.76, 285.55 μS/cm, 28.60 g/kg and 139.27 mg/kg, respectively. Moreover, according to Hedley-P classification results, under FT condition, the content of labile phosphorus pool is always higher than those under TH. FT may promote the conversion of phosphorus from other fractions to labile phosphorus pool. Redundancy analysis results show that biochar addition and FT can not only directly change the soil phosphorus pool, but also alter the soil physicochemical properties and microbial community, which further affect the adsorption and mineralization of phosphorus in soil. The results of this study will be devoted to understanding the changes in soil phosphorus fractions under the effects of biochar addition and FT, providing references for agricultural production in areas where FT occur.
Collapse
Affiliation(s)
- Long Sui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Chunyu Tang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China.
| |
Collapse
|
11
|
Zhao J, Ye ZL, Pan X, Cai G, Wang J. Screening the functions of modified rice straw biochar for adsorbing manganese from drinking water. RSC Adv 2022; 12:15222-15230. [PMID: 35702442 PMCID: PMC9115647 DOI: 10.1039/d2ra01720b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/01/2022] [Indexed: 11/21/2022] Open
Abstract
The seasonal out-of-limit of manganese ions (Mn2+) in the drinking water reservoirs is an intractable problem to water supply, which can pose a threat to the human health. In this study, the removal of Mn2+ by using pristine (BC), pre-alkali (Pre-BC) and post-alkali (Post-BC) modified biochar originating from rice straw was investigated. The maximum adsorption capacities obtained for BC, Pre-BC, and Post-BC were 20.59, 28.37, and 8.06 mg g−1, respectively. The Langmuir isotherm model and the pseudo-second-order kinetic model were suitable fitting models to describe the adsorption process. The investigation of adsorption functions was carried out that revealed that the predominant forces were precipitation and cation exchange with the proportions of 43.38–69.15% and 38.05–55.79%, respectively. With regard to precipitation, Mn(ii) particles (Al–Si–O–Mn and MnCO3) and insignificantly oxidized insoluble Mn(iv) particles (MnO2) were formed on the biochar surface. Alkali and alkaline earth metals facilitated the behavior of cation exchange, where the primary contributing ions for cation exchange were Na+, Mg2+ and Ca2+ during the adsorption process. These outcomes suggest that alkali pre-treated modification of biochar is practical for the application of manganese pollution control in lakes and reservoirs. Modified biochar was used to remove Mn2+ from water with principal adsorption functions of precipitation and cation exchange. The MnCO3 and Al–Si–O–Mn mainly driven precipitation and Na+, Mg2+ and Ca2+ primarily contributed to the cation exchange.![]()
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences No. 1799 Jimei Road Xiamen City Fujian 361021 China .,College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Zhi-Long Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences No. 1799 Jimei Road Xiamen City Fujian 361021 China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences No. 1799 Jimei Road Xiamen City Fujian 361021 China
| | - Guangjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences No. 1799 Jimei Road Xiamen City Fujian 361021 China
| | - Jiani Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences No. 1799 Jimei Road Xiamen City Fujian 361021 China
| |
Collapse
|