1
|
Altaf MT, Liaqat W, Jamil A, Jan MF, Baloch FS, Barutçular C, Nadeem MA, Mohamed HI. Strategies and bibliometric analysis of legumes biofortification to address malnutrition. PLANTA 2024; 260:85. [PMID: 39227398 DOI: 10.1007/s00425-024-04504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024]
Abstract
MAIN CONCLUSION Biofortification of legumes using diverse techniques such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches presents a sustainable strategy to address micronutrient deficiencies of underprivileged populations. The widespread issue of chronic malnutrition, commonly referred to as "hidden hunger," arises from the consumption of poor-quality food, leading to various health and cognitive impairments. Biofortified food crops have been a sustainable solution to address micronutrient deficiencies. This review highlights multiple biofortification techniques, such as plant breeding, agronomic practices, genetic modification, and nano-technological approaches, aimed at enhancing the nutrient content of commonly consumed crops. Emphasizing the biofortification of legumes, this review employs bibliometric analysis to examine research trends from 2000 to 2023. It identifies key authors, influential journals, contributing countries, publication trends, and prevalent keywords in this field. The review highlights the progress in developing biofortified crops and their potential to improve global nutrition and help underprivileged populations.
Collapse
Affiliation(s)
- Muhammad Tanveer Altaf
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey.
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Amna Jamil
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Faheem Jan
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33343, Yenişehir, Mersin, Turkey
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Muhammad Azhar Nadeem
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
2
|
Jha UC, Nayyar H, Thudi M, Beena R, Vara Prasad PV, Siddique KHM. Unlocking the nutritional potential of chickpea: strategies for biofortification and enhanced multinutrient quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1391496. [PMID: 38911976 PMCID: PMC11190093 DOI: 10.3389/fpls.2024.1391496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
Chickpea (Cicer arietinum L.) is a vital grain legume, offering an excellent balance of protein, carbohydrates, fats, fiber, essential micronutrients, and vitamins that can contribute to addressing the global population's increasing food and nutritional demands. Chickpea protein offers a balanced source of amino acids with high bioavailability. Moreover, due to its balanced nutrients and affordable price, chickpea is an excellent alternative to animal protein, offering a formidable tool for combating hidden hunger and malnutrition, particularly prevalent in low-income countries. This review examines chickpea's nutritional profile, encompassing protein, amino acids, carbohydrates, fatty acids, micronutrients, vitamins, antioxidant properties, and bioactive compounds of significance in health and pharmaceutical domains. Emphasis is placed on incorporating chickpeas into diets for their myriad health benefits and nutritional richness, aimed at enhancing human protein and micronutrient nutrition. We discuss advances in plant breeding and genomics that have facilitated the discovery of diverse genotypes and key genomic variants/regions/quantitative trait loci contributing to enhanced macro- and micronutrient contents and other quality parameters. Furthermore, we explore the potential of innovative breeding tools such as CRISPR/Cas9 in enhancing chickpea's nutritional profile. Envisioning chickpea as a nutritionally smart crop, we endeavor to safeguard food security, combat hunger and malnutrition, and promote dietary diversity within sustainable agrifood systems.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Council of Agricultural Research (ICAR) – Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
- Department of Agronomy, Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Mahender Thudi
- College of Agriculture, Family Sciences and Technology, Fort Valley State University, Fort Valley, GA, United States
| | - Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agriculture University, Thiruvananthapuram, Kerala, India
| | - P. V. Vara Prasad
- Department of Agronomy, Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
3
|
Liu F, Edelmann M, Piironen V, Li Y, Liu X, Yan JK, Li L, Kariluoto S. How food matrices modulate folate bioaccessibility: A comprehensive overview of recent advances and challenges. Compr Rev Food Sci Food Saf 2024; 23:e13328. [PMID: 38551068 DOI: 10.1111/1541-4337.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
The incomplete absorption of dietary folate makes it crucial to understand how food matrices affect folate bioaccessibility. Bioavailability encompasses bioaccessibility, which depicts the proportion that is liberated from the food matrix during digestion and becomes available for absorption. Bioavailability studies are expensive and difficult to control, whereas bioaccessibility studies utilize in vitro digestion models to parameterize the complex digestion, allowing the evaluation of the effect of food matrices on bioaccessibility. This review covers the folate contents in various food matrices, the methods used to determine and the factors affecting folate bioaccessibility, and the advances and challenges in understanding how food matrices affect folate bioaccessibility. The methods for determining bioaccessibility have been improved in the last decade. Current research shows that food matrices modulate folate bioaccessibility by affecting the liberation and stability of folate during digestion but do not provide enough information about folate and food component interactions at the molecular level. In addition, information on folate interconversion and degradation during digestion is scant, hindering our understanding of the impact of food matrices on folate stability. Moreover, the role of conjugase inhibitors should not be neglected when evaluating the nutritional value of food folates. Due to the complexity of food digestion, holistic methods should be applied to investigate bioaccessibility. By synthesizing the current state of knowledge on this topic, this review highlights the lack of in-depth understanding of the mechanisms of how food matrices modulate folate bioaccessibility and provides insights into potential strategies for accurate evaluation of the nutritional value of dietary folate.
Collapse
Affiliation(s)
- Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Yuting Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Susanna Kariluoto
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Craine EB, Şakiroğlu M, Barriball S, Peters TE, Schlautman B. Perennial Baki™ Bean Safety for Human Consumption: Evidence from an Analysis of Heavy Metals, Folate, Canavanine, Mycotoxins, Microorganisms and Pesticides. Molecules 2024; 29:1777. [PMID: 38675597 PMCID: PMC11052107 DOI: 10.3390/molecules29081777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Global food production relies on annual grain crops. The reliability and productivity of these crops are threatened by adaptations to climate change and unsustainable rates of soil loss associated with their cultivation. Perennial grain crops, which do not require planting every year, have been proposed as a transformative solution to these challenges. Perennial grain crops typically rely on wild species as direct domesticates or as sources of perenniality in hybridization with annual grains. Onobrychis spp. (sainfoins) are a genus of perennial legumes domesticated as ancient forages. Baki™ bean is the tradename for pulses derived from sainfoins, with ongoing domestication underway to extend demonstrated benefits to sustainable agriculture. This study contributes to a growing body of evidence characterizing the nutritional quality of Baki™ bean. Through two studies, we investigated the safety of Baki™ bean for human consumption. We quantified heavy metals, folate, and canavanine for samples from commercial seed producers, and we quantified levels of mycotoxins, microorganisms, and pesticides in samples from a single year and seed producer, representing different varieties and production locations. The investigated analytes were not detectable or occurred at levels that do not pose a significant safety risk. Overall, this study supports the safety of Baki™ bean for human consumption as a novel pulse crop.
Collapse
Affiliation(s)
- Evan B. Craine
- The Land Institute, Salina, KS 67401, USA; (S.B.); (T.E.P.)
| | - Muhammet Şakiroğlu
- Bioengineering Department, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey;
| | | | | | | |
Collapse
|
5
|
Siitonen A, Nieminen F, Kallio V, Tuccillo F, Kantanen K, Ramos-Diaz JM, Jouppila K, Piironen V, Kariluoto S, Edelmann M. B Vitamins in Legume Ingredients and Their Retention in High Moisture Extrusion. Foods 2024; 13:637. [PMID: 38472750 DOI: 10.3390/foods13050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Legumes have been recognised as healthy and environmentally friendly protein sources. Knowledge about the vitamin B contents in legume ingredients and extrudates is scarce. In this study, we investigated thiamin, riboflavin, niacin, and folate in various faba bean, lupin, and pea ingredients. Further, the retention of B vitamins in high moisture extrusion was studied. Prior to liquid chromatographic determinations of thiamin, riboflavin, niacin, and folate, vitamins were extracted by acid hydrolysis (niacin), enzymatic treatment (folate), or their combination (thiamin and riboflavin). The contents (on a dry matter basis) varied greatly among different ingredients: the thiamin content was 0.2-14.2 µg/g; riboflavin, 0.3-5.9 µg/g; niacin, 8.8-35.5 µg/g, and folate, 45-1453 ng/g. Generally, the highest levels were in flours and protein concentrates, whereas low levels were observed in isolates. The retention of B vitamins was excellent in high moisture extrusion, except for folate in faba bean, where the folate contents were 42-67% lower in the extrudates than in the respective ingredient mixtures. In terms of both vitamin B contents and their retention, extrudates containing substantial amounts of flour or protein concentrate are promising plant-based sources of thiamin, riboflavin, niacin, and folate.
Collapse
Affiliation(s)
- Aino Siitonen
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland
| | - Faisa Nieminen
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland
| | - Veronika Kallio
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland
| | - Fabio Tuccillo
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland
| | - Katja Kantanen
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland
| | - Jose Martin Ramos-Diaz
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland
| | - Kirsi Jouppila
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland
| | - Susanna Kariluoto
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, FI-00014 Helsinki, Finland
| |
Collapse
|
6
|
Gharib FAEL, Osama K, Sattar AMAE, Ahmed EZ. Impact of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis as bio-stimulants on common bean plant growth, yield and antioxidant capacity. Sci Rep 2024; 14:1398. [PMID: 38228623 PMCID: PMC10791689 DOI: 10.1038/s41598-023-50040-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
The use of bio-stimulants in agriculture has emerged as a promising strategy to improve crop growth and yield. One type of bio-stimulant that has gained attention is microalgae extracts, which are known for their high metabolic activity, bioactive compounds, and ability to enhance plant growth and development. To investigate their effectiveness, a pot experiment was conducted at the Experimental Farm of Helwan University in Egypt during the 2022 season. The experiment aimed to evaluate the efficacy of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis (Spirulina platensis) extracts as bio-stimulants, applied through foliar spray at concentrations ranging from 0.25 to 2.0%, on common bean plants. Analysis of algal extract showed that . N. salina had the highest content of promotive growth hormones gibberellins (GA3) (74.85 ± 2.7mg100 g-1 d.wt). and auxins (IAA) (34.57 ± 2.7µg 100 g-1 d.wt.) compared to Chlorella and Arthrospira..The results revealed that the application of C. vulgaris, N. salina, and A. platensis extracts at concentrations up to 1.0% significantly improved various growth parameters, such as root, and shoot length, number of leaves and flowers per plant, leaf area, and total fresh and dry weight per plant. These extracts also positively affected yield attributes, including the number and fresh weight of pods per plant, seed index, seed yield per plant, and per feddan [a unit of land area]. Furthermore, the application of these extracts increased the chlorophyll content index with the maximum values of CCI (17.95. and 17.81%) was obtained at 0.50% N. salina, followed by 0.50% C.vulgaris. In addition to increase in the capacity of both non-enzymatic antioxidants [such as total antioxidant capacity, phenolics, and flavonoids] and enzymatic antioxidants [including catalase and ascorbic oxidase]. The most promising results were observed with the application of N. salina, and C. vulgaris extracts at a concentration of 0.5%. Additionally, the extracts significantly reduced the content of oxidative stress markers, such as malondialdehyde, percentage of electrolyte leakage, and hydrogen peroxide, in common bean plants compared to the control group. Contrarily, the measured parameters were reduced, while the levels of oxidative stress markers and some antioxidants including peroxidase, ascorbic peroxidase, superoxide dismutase, glutathione peroxidase, and glutathione transferase were increased by three algal extracts at a concentration of 2.0%, compared to control plants. Additionally, the application of these microalgae extracts improved the quality parameters, proximate composition, seed energy, and mineral contents of the harvested seeds, with the most significant positive impact was observed at 0.5% concentration of algal extract. These findings demonstrate the successful and safe utilization of extracts from C. vulgaris, N. salina, and A. platensis at concentrations up to 1.0% as bio-stimulants to enhance common bean yields and improve the nutritional quality of dried beans for consumers.
Collapse
Affiliation(s)
| | - Kholoud Osama
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | | | - Eman Zakaria Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt.
| |
Collapse
|
7
|
Marshall J, Vargas A, Bett K. B vitamin quantification in lentil seed tissues using ultra-performance liquid chromatography-selected reaction monitoring mass spectrometry. Food Chem 2024; 430:136922. [PMID: 37517945 DOI: 10.1016/j.foodchem.2023.136922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Lentils are a nutritious food in the human diet. High in protein and with low glycemic index, lentils are also a source of folate and other B vitamins. Understanding variability in B vitamin contents among lentils will allow breeders to select for increased levels. We analyzed 34 cultivated and three wild genotypes for vitamins B1, B2, B3, B5, B6, B7, and B9 in the cotyledons and seed coats. Variation for all B vitamins was observed across the genotypes. Cotyledons had higher concentrations of B1 and B3, while seed coats had higher concentrations of B2, B5, B6, and B9. Wild accessions had the highest concentrations of vitamin B9 and were among the highest for B2. Differential distribution of B vitamins across seed tissues and lentil genotypes has implications for consumption and for breeding. There is useful genetic variability which could be used to increase B vitamin levels in future lentil varieties.
Collapse
Affiliation(s)
- Jeremy Marshall
- Dept. of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada.
| | - Ana Vargas
- Dept. of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada.
| | - Kirstin Bett
- Dept. of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
8
|
Peñalver R, Ros G, Nieto G. Development of Functional Gluten-Free Sourdough Bread with Pseudocereals and Enriched with Moringa oleifera. Foods 2023; 12:3920. [PMID: 37959040 PMCID: PMC10650811 DOI: 10.3390/foods12213920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Celiac patients tend to have an unbalanced diet, because gluten-free products typically contain a high amount of fats and carbohydrates and a low amount of proteins, minerals, and dietary fiber. This research focused on the development of gluten-free functional breads using pseudocereals, psyllium, and gluten-free sourdough to replace commercial yeast, fortifying them with Moringa oleifera. Six different gluten-free breads were made with sourdough: three control breads differentiated by sourdough (quinoa, amaranth, and brown rice) and three breads enriched with moringa leaf differentiated by sourdough. The antioxidant capacity, phenolic compounds, nutritional composition, physicochemical parameters (color, pH, and acidity), folate content, amino acid profile, reducing sugars, mineral composition, mineral bioaccessibility, fatty acid profile, and sensory acceptability were evaluated. A commercial gluten-free (COM) bread was included in these analyses. Compared with COM bread, the reformulated breads were found to have better nutritional properties. Moringa leaf increased the nutritional properties of bread, and highlighted the QM (quinoa/moringa) bread as having increased protein, fiber, sucrose, glucose, maltose, phenylalanine, and cysteine. The AM (amaranth/moringa) bread was also shown to have a higher total folate content, antioxidant capacity, phenolic compounds, 9t,11t-C18:2 (CLA), and 9t-C18:1. Reformulated breads enriched with moringa could meet nutritional requirements and provide health benefits to people with celiac disease.
Collapse
Affiliation(s)
| | | | - Gema Nieto
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, 30071 Murcia, Spain; (R.P.); (G.R.)
| |
Collapse
|
9
|
Servent A, Cazals G, Perfetto C, Achir N. Kinetic modeling of four folates in a model solution at different temperatures and
pH
to mimic their behavior in foods during processing. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Adrien Servent
- IRD, Qualisud, Univ Montpellier, Institut Agro, CIRAD Avignon Université, Univ de La Réunion Montpellier France
- CIRAD, UMR Qualisud Montpellier France
| | | | - Carmen Perfetto
- IRD, Qualisud, Univ Montpellier, Institut Agro, CIRAD Avignon Université, Univ de La Réunion Montpellier France
- IBMM Université de Montpellier II Montpellier France
| | - Nawel Achir
- IRD, Qualisud, Univ Montpellier, Institut Agro, CIRAD Avignon Université, Univ de La Réunion Montpellier France
| |
Collapse
|
10
|
Biochemical and proteomic insights revealed selenium priming induced phosphorus stress tolerance in common bean (Phaseolus vulgaris L.). Mol Biol Rep 2023; 50:3141-3153. [PMID: 36693987 DOI: 10.1007/s11033-023-08242-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Mineral stress is one of the dominating abiotic stresses, which leads to decrease in crop production. Selenium (Se) seed priming is a recent approach to mitigate the plant's mineral deficiency stress. Although not an essential element, Se has beneficial effects on the plants in terms of growth, quality, yield and plant defense system thus, enhancing plant tolerance to mineral deficiency. METHODS AND RESULTS The present research was accomplished to find out the effect of Se priming on common bean plant (SFB-1 variety) under phosphorus (P) stress. The seeds were grown invitro on four different MGRL media which are normal MGRL media as control with non-Se primed seeds (Se- P+), non -Se primed seeds grown on P deficient MGRL media (Se- P-), Se primed seeds grown on normal MGRL media (Se+P+) and Se primed seeds grown on P deficient MGRL media (Se+P -). The various morphological and biochemical parameters such as proline content, total sugar content, polyphenols and expression of proteins were analyzed under P stress. The results showed that Se priming has significantly (p ≤ 0.05) affected the morphological as well as biochemical parameters under normal and P stress conditions. The morphological parameters-length, weight, number of nodes and leaves of Se+P+, Se+P- root and shoot tissue showed significant increase as compared to Se-P+, Se-P-. Similarly various biochemical parameters such as total chlorophyll content, proline, total sugar content and polyphenols of Se+P+, Se+P- increased significantly as compared to Se-P+, Se-P-. The differential protein expression in both Se+P+, Se+P- and Se-P+, Se-P- plants were determined using MALDI-MS/MS. The differentially expressed proteins in Se+P+, Se+P- plants were identified as caffeic acid-3-O-methyltransferase (COMT) and SecA protein (a subunit of Protein Translocan transporter), and are found responsible for lignin synthesis in root cell walls and ATP dependent movement of thylakoid proteins across the membranes in shoot respectively. The differential expression of proteins in plant tissues, validated morphological and biochemical responses such as maintaining membrane integrity, enhanced modifications in cellular metabolism, improved polyphenol activities and expression of defensive proteins against mineral deficiency. CONCLUSIONS The study provided an understanding of Se application as a potential approach increasing tolerance and yield in crop plants against mineral deficiency.
Collapse
|
11
|
Agyenim-Boateng KG, Zhang S, Zhang S, Khattak AN, Shaibu A, Abdelghany AM, Qi J, Azam M, Ma C, Feng Y, Feng H, Liu Y, Li J, Li B, Sun J. The nutritional composition of the vegetable soybean (maodou) and its potential in combatting malnutrition. Front Nutr 2023; 9:1034115. [PMID: 36687682 PMCID: PMC9849953 DOI: 10.3389/fnut.2022.1034115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/25/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Global malnutrition continues to be a canker owing to poor eating habits and over-reliance on the major staple crops. Vegetable soybean (maodou) is gaining popularity globally as an affordable snack and vegetable. Methods In this study, we profiled the nutritional composition of 12 soybean cultivars at the vegetable (R6-R7) and mature (R8) stages. We also conducted an RNA-seq analysis during seed development, focusing on key biosynthesis enzymes for quality traits. Results The results showed that 100 g of maodou contained 66.54% moisture, 13.49% protein, 7.81% fatty acids, 2.47% soluble sugar, abundant content of minerals, and micronutrients, including folate (462.27 μg FW) and carotenoids (3,935.41 μg FW). Also, the isoflavone content of maodou ranged between 129.26 and 2,359.35 μg/g FW. With regard to the recommended daily allowance, 100 g fresh weight of maodou can contribute 26.98, 115.57, and 11.60% of protein, folate, and zinc, respectively, and significant proportions of other nutrients including linoleic acid (21.16%), linolenic acid (42.96%), zinc (11.60%), and iron (18.01%). On a dry weight basis, maodou has two to six folds higher contents of folate, tocopherol, and carotenoid than the mature soybean. Furthermore, RNA-seq analysis revealed that key biosynthesis enzymes of quality traits are differentially expressed during seed development and may contribute to variations in the content of quality traits at the vegetable and mature stages. Correlation analysis of quality traits at both stages revealed that protein only correlated positively with zinc at the vegetable stage but negatively correlated with total tocopherol and total fatty acid at the mature stage. Complex associations among folates, soluble sugar, and isoflavones were also identified. Discussion This study provides insight into the nutritional contents of vegetable soybean and demonstrates that maodou is essential for meeting the nutritional requirements of most countries.
Collapse
|
12
|
Liang Q, Islam MS, Wang S, Wang L, Chen H, Cheng X, Zhang C. Investigation of folate composition and influence of processing on folate stability in pulse accessions developed in China. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Zheng J, Wang X, Wu B, Qiao L, Zhao J, Pourkheirandish M, Wang J, Zheng X. Folate (vitamin B9) content analysis in bread wheat (Triticum aestivum L.). Front Nutr 2022; 9:933358. [PMID: 36337661 PMCID: PMC9633958 DOI: 10.3389/fnut.2022.933358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Vitamin B9, particularly folic acid, is an essential molecule for human health. Wheat flour is one of the major sources of calorie intake by humans. The selection of folate-rich genotypes in wheat breeding can enhance the natural folate value in the daily diet. This study used a precise, high-performance liquid chromatography (HPLC) assay to analyze folate content in a 262-accession Chinese wheat mini-core collection (MCC) grown under three environments. Four folate derivatives in grains including tetrahydrofolate (THF), 5-methyltetrahydrofolate (5-CH3-THF), 5-formyltetrahydrofolate (5-CHO-THF), and 5,10-methenyltetrahydrofolate (5,10-CH+THF) were considered. An association analysis of water regimes, accession types, released years, geographical origin, and agronomic traits with folate content was conducted for the first time. There was a large amount of variation in folate content in the analyzed accessions, with genotype identified as the main influencing factor. Total folate content was significantly correlated with the content of the four MCC derivatives under the three environments. 5-CH3-THF and 5-CHO-THF were the most abundant among the four folate derivatives and were positively correlated with high folate content. The 12 accessions with the highest folate content showed an average of more than 80 μg/100 g. The analysis demonstrated that this Chinese wheat had not undergone extensive selection for folate content during breeding, which is unrelated to the geographical origin, accession types, winter/spring types, and grain colors of wheat. The content of THF, 5-CH3-THF, and 5,10-CH+THF was significantly negatively correlated with grain width, grain thickness, and thousand kernel weight. A relatively weak negative relationship manifested between folate contents and flowering date, whereas no significant correlation with tiller number, grain number per spike, maturity date, height, and spike length was detected. The investigation benefits wheat breeders for folate enhancement.
Collapse
Affiliation(s)
- Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Xingsu Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Mohammad Pourkheirandish
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
- Mohammad Pourkheirandish,
| | - Juanling Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
- Juanling Wang,
| | - Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
- *Correspondence: Xingwei Zheng,
| |
Collapse
|
14
|
Jha R, Yadav HK, Raiya R, Singh RK, Jha UC, Sathee L, Singh P, Thudi M, Singh A, Chaturvedi SK, Tripathi S. Integrated breeding approaches to enhance the nutritional quality of food legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:984700. [PMID: 36161025 PMCID: PMC9490089 DOI: 10.3389/fpls.2022.984700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/26/2022] [Indexed: 05/31/2023]
Abstract
Global food security, both in terms of quantity and quality remains as a challenge with the increasing population. In parallel, micronutrient deficiency in the human diet leads to malnutrition and several health-related problems collectively known as "hidden hunger" more prominent in developing countries around the globe. Biofortification is a potential tool to fortify grain legumes with micronutrients to mitigate the food and nutritional security of the ever-increasing population. Anti-nutritional factors like phytates, raffinose (RFO's), oxalates, tannin, etc. have adverse effects on human health upon consumption. Reduction of the anti-nutritional factors or preventing their accumulation offers opportunity for enhancing the intake of legumes in diet besides increasing the bioavailability of micronutrients. Integrated breeding methods are routinely being used to exploit the available genetic variability for micronutrients through modern "omic" technologies such as genomics, transcriptomics, ionomics, and metabolomics for developing biofortified grain legumes. Molecular mechanism of Fe/Zn uptake, phytate, and raffinose family oligosaccharides (RFOs) biosynthesis pathways have been elucidated. Transgenic, microRNAs and genome editing tools hold great promise for designing nutrient-dense and anti-nutrient-free grain legumes. In this review, we present the recent efforts toward manipulation of genes/QTLs regulating biofortification and Anti-nutrient accumulation in legumes using genetics-, genomics-, microRNA-, and genome editing-based approaches. We also discuss the success stories in legumes enrichment and recent advances in development of low Anti-nutrient lines. We hope that these emerging tools and techniques will expedite the efforts to develop micronutrient dense legume crop varieties devoid of Anti-nutritional factors that will serve to address the challenges like malnutrition and hidden hunger.
Collapse
Affiliation(s)
- Rintu Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Hemant Kumar Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Raiya
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Uday Chand Jha
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
- Shandong Academy of Agricultural Sciences, Jinan, China
- Center for Crop Health, University of Southern Queensland, Toowmba, QLD, Australia
| | - Anshuman Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Sushil Kumar Chaturvedi
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Shailesh Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
15
|
Agyenim-Boateng KG, Zhang S, Islam MS, Gu Y, Li B, Azam M, Abdelghany AM, Qi J, Ghosh S, Shaibu AS, Gebregziabher BS, Feng Y, Li J, Li Y, Zhang C, Qiu L, Liu Z, Liang Q, Sun J. Profiling of naturally occurring folates in a diverse soybean germplasm by HPLC-MS/MS. Food Chem 2022; 384:132520. [PMID: 35217465 DOI: 10.1016/j.foodchem.2022.132520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
Soybean is a rich source of folates. We optimised the extraction and detection of folates from soybean seeds by HPLC-MS/MS and analysed the folate content and composition of 1074 accessions. Total folate content ranged from 64.51 to 691.24 μg/100 g fresh weight, with 10-fold variation, and 60 elite accessions with over 400 μg/100 g of total folate were identified. The most abundant component was 5-CHO-H4folate, which accounted for an average of 60% of total folate content. Seed-coat colour, seed weight, ecoregion, and accession type significantly affected soybean folate content. Furthermore, 5-CH3-H4folate correlated positively with seed protein (r = 0.24***) and negatively with oil (r = -0.26***). The geographical distribution of folate according to accession origin revealed that accessions from Northeast China contain higher amounts of total folate and 5-CHO-H4folate. This study provides comprehensive and novel insights into the folate profile of soybean, which will benefit soybean breeding for folate enhancement.
Collapse
Affiliation(s)
- Kwadwo Gyapong Agyenim-Boateng
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shengrui Zhang
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Md Shariful Islam
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongzhe Gu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Germplasm and Biotechnology (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muhammad Azam
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ahmed M Abdelghany
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Jie Qi
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suprio Ghosh
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Abdulwahab S Shaibu
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Department of Agronomy, Bayero University, Kano 700001, Nigeria
| | - Berhane Sibhatu Gebregziabher
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Crop Sciences Research Department, Mehoni Agricultural Research Center, Maichew 7020, Ethiopia
| | - Yue Feng
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Li
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Germplasm and Biotechnology (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Germplasm and Biotechnology (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhangxiong Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Germplasm and Biotechnology (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Junming Sun
- The National Engineering Research Center of Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Nascimento CP, Cipriano TM, Aragão FJ. Natural variation of folate content in cowpea (Vigna unguiculata) germplasm and its correlation with the expression of the GTP cyclohydrolase I coding gene. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Martin CJ, Torkamaneh D, Arif M, Pauls KP. Genome-Wide Association Study of Seed Folate Content in Common Bean. FRONTIERS IN PLANT SCIENCE 2021; 12:696423. [PMID: 34531882 PMCID: PMC8438126 DOI: 10.3389/fpls.2021.696423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/03/2021] [Indexed: 06/10/2023]
Abstract
Plant-derived folates (Vitamin B9) are essential components of the human diet. They provide one-carbon units that are required for the synthesis of nucleic acids and proteins, and folate deficiency is associated with numerous adverse health conditions. The development of high-folate cultivars of common bean (Phaseolus vulgaris L.) and other staple crops is an important tool to combat folate deficiency. A population of 96 P. vulgaris accessions, representing major North American market classes, was grown in 2 years in Ontario, Canada. The population was genotyped for 5,361 molecular markers with an Illumina Infinium platform. Total folate was extracted from mature seeds using the tri-enzyme extraction method and quantified based on a microbiological assay with Lactobacillus rhamnosus. Significant genetic diversity for folate content was observed among the population in both years of study, and folate content had a range 113-222 μg per 100 g of seeds. Quantitative trait loci (QTL) for seed folate content were identified based on a genome-wide association study (GWAS). Six QTL were identified on Chr. 4, 6, 8, and 11, with three in each year of field trials. Both QTL on Chr. 11 occurred in genomic regions that were syntenic to seed folate QTL detected in previous work with P. vulgaris, Z. mays, and O. sativa. Candidate genes were identified for these QTL that might be targets for the development of molecular markers for selecting P. vulgaris cultivars with improved seed folate content. This work reports the largest survey of genetic diversity for seed folate content in P. vulgaris and identified several genotypes, including SCN4, Bat 93, OAC Redstar, and Pompadour 1014, that would be useful for breeding beans with higher than average folate levels.
Collapse
Affiliation(s)
- C. Joe Martin
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada
| | - Muhammad Arif
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Karl Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Nchanji EB, Lutomia CK. COVID-19 challenges to sustainable food production and consumption: Future lessons for food systems in eastern and southern Africa from a gender lens. SUSTAINABLE PRODUCTION AND CONSUMPTION 2021; 27:2208-2220. [PMID: 36118161 PMCID: PMC9464269 DOI: 10.1016/j.spc.2021.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 05/30/2023]
Abstract
Despite fears that sub-Sahara Africa would be severely impacted by COVID-19, the implications of the pandemic on sustainable production and consumption have not been studied in detail. Notwithstanding, implications vary depending on country, region, and strictness of coronavirus containment measures. Thus, the impact of COVID-19 on food and nutritional security was expected to be dire in sub-Saharan Africa because of its enormous reliance on global food systems. This article explored the implications of COVID-19 on sustainable production and consumption by focusing on common beans, vegetables, fish, and fruits produced and consumed in rural, peri-urban and urban areas. Two surveys were conducted to collect quantitative data from 619 producers in rural areas and 307 consumers from peri-urban and urban areas of ten Eastern and Southern African countries. Descriptive statistics (frequencies and percentages) and chi-square test for independence were used to analyse the data. The results show that the pandemic disrupted bean production and consumption across the two sub-regions. However, Southern African farmers and consumers were disproportionately more affected. While farmers in Eastern Africa reported input market challenges, those in Southern Africa identified challenges related to marketing farm produce. We also report that home gardening in urban and peri-urban areas enhanced urban food systems' resilience to the impacts of the pandemic on food security. The study argues that short food supply chains can sustain rural and urban livelihood against adverse effects of the pandemics and contribute towards sustainable production and consumption. Therefore, local input and food distribution models and inclusive institutional and legal support for urban agriculture are crucial drivers for reducing food and nutritional insecurity, poverty, and gender inequality. They are also critical to supporting sustainable production and consumption.
Collapse
|
19
|
Guindon MF, Cazzola F, Palacios T, Gatti I, Bermejo C, Cointry E. Biofortification of pea (Pisum sativum L.): a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3551-3563. [PMID: 33417241 DOI: 10.1002/jsfa.11059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/29/2020] [Accepted: 01/08/2021] [Indexed: 05/21/2023]
Abstract
Biofortification refers to an approach to increase micronutrient concentrations in the edible parts of plants with increased bioavailability to the human population. Conventional, agronomic and transgenic breeding methods can be used to develop these biofortified crops, offering sustainable and cost-effective strategies. Pea has long been recognized as a valuable, nutritious food for the human diet, but there is a limited amount of information about it, which prevents the full micronutrient enrichment potential of this pulse crop to be reached. Considerations must include not only micronutrient concentrations but also the amount of the nutrient that can be absorbed by the consumer, after processing and cooking. Development of biofortified pea that retains nutrients during cooking and processing is not only essential for fighting micronutrient malnutrition, but also necessary to improve agricultural productivity. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- María Fernanda Guindon
- Grupo Mejoramiento de Legumbres de Grano, Parque Villarino, Instituto de Investigaciones en Ciencias Agrarias de Rosario-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IICAR-CONICET), Zavalla, Argentina
| | - Federico Cazzola
- Grupo Mejoramiento de Legumbres de Grano, Parque Villarino, Instituto de Investigaciones en Ciencias Agrarias de Rosario-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IICAR-CONICET), Zavalla, Argentina
| | - Tatiana Palacios
- Grupo Mejoramiento de Legumbres de Grano, Parque Villarino, Instituto de Investigaciones en Ciencias Agrarias de Rosario-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IICAR-CONICET), Zavalla, Argentina
| | - Ileana Gatti
- Cátedra de Mejoramiento Vegetal y Producción de Semillas, CIUNR - Consejo de Investigadores Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carolina Bermejo
- Grupo Mejoramiento de Legumbres de Grano, Parque Villarino, Instituto de Investigaciones en Ciencias Agrarias de Rosario-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IICAR-CONICET), Zavalla, Argentina
| | - Enrique Cointry
- Grupo Mejoramiento de Legumbres de Grano, Parque Villarino, Instituto de Investigaciones en Ciencias Agrarias de Rosario-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IICAR-CONICET), Zavalla, Argentina
| |
Collapse
|
20
|
Zhang H, De Silva D, Dissanayaka D, Warkentin TD, Vandenberg A. Validated B vitamin quantification from lentils by selected reaction monitoring mass spectrometry. Food Chem 2021; 359:129810. [PMID: 33957327 DOI: 10.1016/j.foodchem.2021.129810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/04/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
A validated method for B vitamin separation and quantification from lentil seeds using ultra high performance liquid chromatography-selected reaction monitoring mass spectrometry (UHPLC-SRM MS) was reported. The use of three enzymes (acid phosphatase, β-glucosidase, and rat serum) with a 4 h incubation was sufficient to convert bound B vitamins into their free forms. Twenty B vitamers were selected and a 5-min UHPLC-SRM MS method was optimized for rapid analysis. This method was applied to quantify B vitamin concentration during lentil seed germination over a 5-day period. Total B vitamins increased up to 1.5-fold on day 5 (from 39.2 µg/g to 60.6 µg/g of dry weight) comparing with dry seeds. Vitamin B5 (pantothenic acid) was the most abundant B vitamin in both dry seeds (34.2%) and in germinated seeds (17.7%-24.5% of total B vitamins); B8 (biotin) and B12 (cyanocobalamin) were not detected in lentil samples.
Collapse
Affiliation(s)
- Haixia Zhang
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Canada.
| | - Devini De Silva
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Canada
| | - Dilanganie Dissanayaka
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Canada
| | - Thomas D Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Canada
| | - Albert Vandenberg
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Canada
| |
Collapse
|
21
|
Bioaccessibility of folate in faba bean, oat, rye and wheat matrices. Food Chem 2021; 350:129259. [PMID: 33621818 DOI: 10.1016/j.foodchem.2021.129259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 01/31/2021] [Indexed: 11/24/2022]
Abstract
Cereals and legumes are rich in folate. However, due to the instability of folate, processing and digestion can induce significant folate loss. In this paper, folate bioaccessibility of faba bean, oat, rye and wheat flours and pastes was studied using a static in vitro digestion model. Folate bioaccessibility depended on food matrices, varying from 42% to 67% in flours and from 40% to 123% in pastes. Digestion was associated with the interconversion of formyl folates, as well as the increase of oxidised vitamers and decrease of reduced vitamers. Especially in faba bean, 5-methyltetrahydrofolate showed surprisingly good stability both in digestion and heat treatment, resulting in high bioaccessibility. The physiological concentration of ascorbic acid did not stabilise folate in digestion; however, a higher level helped to maintain reduced vitamers. Heat treatment (10-min paste making) could improve folate bioaccessibility by liberating folate from the food matrices and by altering folate vitamer distribution.
Collapse
|
22
|
Marshall J, Zhang H, Khazaei H, Mikituk K, Vandenberg A. Targeted quantification of B vitamins using ultra-performance liquid chromatography-selected reaction monitoring mass spectrometry in faba bean seeds. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Roorkiwal M, Pandey S, Thavarajah D, Hemalatha R, Varshney RK. Molecular Mechanisms and Biochemical Pathways for Micronutrient Acquisition and Storage in Legumes to Support Biofortification for Nutritional Security. FRONTIERS IN PLANT SCIENCE 2021; 12:682842. [PMID: 34163513 PMCID: PMC8215609 DOI: 10.3389/fpls.2021.682842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 05/10/2023]
Abstract
The world faces a grave situation of nutrient deficiency as a consequence of increased uptake of calorie-rich food that threaten nutritional security. More than half the world's population is affected by different forms of malnutrition. Unhealthy diets associated with poor nutrition carry a significant risk of developing non-communicable diseases, leading to a high mortality rate. Although considerable efforts have been made in agriculture to increase nutrient content in cereals, the successes are insufficient. The number of people affected by different forms of malnutrition has not decreased much in the recent past. While legumes are an integral part of the food system and widely grown in sub-Saharan Africa and South Asia, only limited efforts have been made to increase their nutrient content in these regions. Genetic variation for a majority of nutritional traits that ensure nutritional security in adverse conditions exists in the germplasm pool of legume crops. This diversity can be utilized by selective breeding for increased nutrients in seeds. The targeted identification of precise factors related to nutritional traits and their utilization in a breeding program can help mitigate malnutrition. The principal objective of this review is to present the molecular mechanisms of nutrient acquisition, transport and metabolism to support a biofortification strategy in legume crops to contribute to addressing malnutrition.
Collapse
Affiliation(s)
- Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Sarita Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Dil Thavarajah
- Plant and Environmental Sciences, Poole Agricultural Center, Clemson University, Clemson, SC, United States
| | - R. Hemalatha
- ICMR-National Institute of Nutrition (NIN), Hyderabad, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- *Correspondence: Rajeev K. Varshney, ;
| |
Collapse
|
24
|
Ullah A, Al-Sadi AM, Al-Subhi AM, Farooq M. Characterization of chickpea genotypes of Pakistani origin for genetic diversity and zinc grain biofortification. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4139-4149. [PMID: 32356568 DOI: 10.1002/jsfa.10453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/27/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Intake of food low in essential minerals, like zinc (Zn), is one of the major reasons of malnutrition. Development of genotypes with grains enriched in essential minerals may help to solve the issue of malnutrition. In this study, 16 chickpea genotypes (eight each of desi and kabuli types) of Pakistani origin were evaluated for genetic diversity and grain Zn biofortification potential with and without Zn fertilization. RESULTS A wide variation was noted for agronomic, physiological, agro-physiological, utilization, and apparent recovery efficiencies of Zn in the chickpea genotypes tested. Genotypes also differed for grain Zn concentration (37.5-48.6 mg kg-1 ), bioavailable Zn (3.72-4.42 mg day-1 ), and grain yield. The highest grain Zn concentration and bioavailable Zn were noted in genotypes NIAB-CH-2016 (47.1 mg kg-1 and 4.30 mg day-1 respectively) and Noor-2013 (48.6 mg kg-1 and 4.38 mg day-1 respectively) among the desi and kabuli types respectively. The same genotypes were the highest yielders. Cluster analysis showed that all (eight) kabuli genotypes grouped together, whereas most (six) of the desi genotypes clustered in a separate group. There was low to moderate genetic diversity (0.149 for desi and 0.104 for kabuli types) and a low level of genetic differentiation between the two chickpea types (0.098). CONCLUSION Two populations of chickpea had low to moderate genetic diversity, with consistent gene flow. This genetic diversity in both chickpea types allows the breeding gains for improving the grain yield and grain Zn biofortification potential of chickpea genotypes. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aman Ullah
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, Oman
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah M Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, Oman
| | - Ali M Al-Subhi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, Oman
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, Oman
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
25
|
Folate monoglutamate in cereal grains: Evaluation of extraction techniques and determination by LC-MS/MS. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Ashokkumar K, Govindaraj M, Karthikeyan A, Shobhana VG, Warkentin TD. Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition. Front Genet 2020; 11:414. [PMID: 32547594 PMCID: PMC7274173 DOI: 10.3389/fgene.2020.00414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/01/2020] [Indexed: 12/30/2022] Open
Abstract
Globally, two billion people suffer from micronutrient deficiencies. Cereal grains provide more than 50% of the daily requirement of calories in human diets, but they often fail to provide adequate essential minerals and vitamins. Cereal crop production in developing countries achieved remarkable yield gains through the efforts of the Green Revolution (117% in rice, 30% in wheat, 530% in maize, and 188% in pearl millet). However, modern varieties are often deficient in essential micronutrients compared to traditional varieties and land races. Breeding for nutritional quality in staple cereals is a challenging task; however, biofortification initiatives combined with genomic tools increase the feasibility. Current biofortification breeding activities include improving rice (for zinc), wheat (for zinc), maize (for provitamin A), and pearl millet (for iron and zinc). Biofortification is a sustainable approach to enrich staple cereals with provitamin A, carotenoids, and folates. Significant genetic variation has been found for provitamin A (96-850 μg and 12-1780 μg in 100 g in wheat and maize, respectively), carotenoids (558-6730 μg in maize), and folates in rice (11-51 μg) and wheat (32.3-89.1 μg) in 100 g. This indicates the prospects for biofortification breeding. Several QTLs associated with carotenoids and folates have been identified in major cereals, and the most promising of these are presented here. Breeding for essential nutrition should be a core objective of next-generation crop breeding. This review synthesizes the available literature on folates, provitamin A, and carotenoids in rice, wheat, maize, and pearl millet, including genetic variation, trait discovery, QTL identification, gene introgressions, and the strategy of genomics-assisted biofortification for these traits. Recent evidence shows that genomics-assisted breeding for grain nutrition in rice, wheat, maize, and pearl millet crops have good potential to aid in the alleviation of micronutrient malnutrition in many developing countries.
Collapse
Affiliation(s)
| | - Mahalingam Govindaraj
- Crop Improvement program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| | - V. G. Shobhana
- Crop Improvement program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Thomas D. Warkentin
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
27
|
Jha AB, Warkentin TD. Biofortification of Pulse Crops: Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2020; 9:E73. [PMID: 31935879 PMCID: PMC7020478 DOI: 10.3390/plants9010073] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 01/08/2023]
Abstract
Biofortification through plant breeding is a sustainable approach to improve the nutritional profile of food crops. The majority of the world's population depends on staple food crops; however, most are low in key micronutrients. Biofortification to improve the nutritional profile of pulse crops has increased importance in many breeding programs in the past decade. The key micronutrients targeted have been iron, zinc, selenium, iodine, carotenoids, and folates. In recent years, several biofortified pulse crops including common beans and lentils have been released by HarvestPlus with global partners in developing countries, which has helped in overcoming micronutrient deficiency in the target population. This review will focus on recent research advances and future strategies for the biofortification of pulse crops.
Collapse
Affiliation(s)
| | - Thomas D. Warkentin
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
28
|
Traditional Uses, Phytochemistry, and Pharmacological Properties of Zingiber officinale Essential Oil and Extracts. ACTA ACUST UNITED AC 2020. [DOI: 10.4018/978-1-7998-2524-1.ch005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Ginger (Zingiber officinale) has been traditionally employed in south East Asia as well as India and China for treatment of nausea, asthma, fever, vomiting, cough, constipation, pain, arthritis, inflammation, etc. This chapter discusses the phytochemical composition and pharmacological studies of ginger extracts, ginger essential oil (GEO), and active bioactive constituents. The essential oil of fresh and dry ginger was ranged between 0.2% - 2.62% and 0.72% - 4.17% respectively. The bioactive constituent zingiberene, β-sesquiphellandrene, curcumene, β-bisabolene, β-farnesene, camphene, and gingerol and shogal are the major constituents in ginger extracts. These compounds are chief bioactive substances responsible for pharmacological activities such antioxidant, antidiabetic, anticancer, anticoagulant, antiradiation, anti-inflammatory, gastrointestinal, antimicrobial, cardiovascular, anti-obesity, and weight loss effects. Future research needs to investigate the suitable duration, maximum dosage of ginger, concerns of overdosage, and its side effects in animal models and humans.
Collapse
|
29
|
Robinson GHJ, Balk J, Domoney C. Improving pulse crops as a source of protein, starch and micronutrients. NUTR BULL 2019; 44:202-215. [PMID: 31598097 PMCID: PMC6772023 DOI: 10.1111/nbu.12399] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement.
Collapse
Affiliation(s)
- G. H. J. Robinson
- Department of Metabolic BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - J. Balk
- Department of Biological ChemistryJohn Innes Centre, Norwich Research ParkNorwichUK
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichUK
| | - C. Domoney
- Department of Metabolic BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
30
|
Zhang H, Jha AB, De Silva D, Purves RW, Warkentin TD, Vandenberg A. Improved folate monoglutamate extraction and application to folate quantification from wild lentil seeds by ultra-performance liquid chromatography-selective reaction monitoring mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1121:39-47. [DOI: 10.1016/j.jchromb.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/23/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
|
31
|
Isidra-Arellano MC, Reyero-Saavedra MDR, Sánchez-Correa MDS, Pingault L, Sen S, Joshi T, Girard L, Castro-Guerrero NA, Mendoza-Cozatl DG, Libault M, Valdés-López O. Phosphate Deficiency Negatively Affects Early Steps of the Symbiosis between Common Bean and Rhizobia. Genes (Basel) 2018; 9:E498. [PMID: 30326664 PMCID: PMC6210973 DOI: 10.3390/genes9100498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/04/2023] Open
Abstract
Phosphate (Pi) deficiency reduces nodule formation and development in different legume species including common bean. Despite significant progress in the understanding of the genetic responses underlying the adaptation of nodules to Pi deficiency, it is still unclear whether this nutritional deficiency interferes with the molecular dialogue between legumes and rhizobia. If so, what part of the molecular dialogue is impaired? In this study, we provide evidence demonstrating that Pi deficiency negatively affects critical early molecular and physiological responses that are required for a successful symbiosis between common bean and rhizobia. We demonstrated that the infection thread formation and the expression of PvNSP2, PvNIN, and PvFLOT2, which are genes controlling the nodulation process were significantly reduced in Pi-deficient common bean seedlings. In addition, whole-genome transcriptional analysis revealed that the expression of hormones-related genes is compromised in Pi-deficient seedlings inoculated with rhizobia. Moreover, we showed that regardless of the presence or absence of rhizobia, the expression of PvRIC1 and PvRIC2, two genes participating in the autoregulation of nodule numbers, was higher in Pi-deficient seedlings compared to control seedlings. The data presented in this study provides a mechanistic model to better understand how Pi deficiency impacts the early steps of the symbiosis between common bean and rhizobia.
Collapse
Affiliation(s)
- Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico, Coyoacan 04510, Ciudad de Mexico, Mexico.
| | - María Del Rocio Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| | - Maria Del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| | - Lise Pingault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA.
| | - Sidharth Sen
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA.
| | - Trupti Joshi
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA.
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO 65211, USA.
| | - Lourdes Girard
- Departamento de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Morelos, Mexico.
| | - Norma A Castro-Guerrero
- Division of Plant Sciences, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - David G Mendoza-Cozatl
- Division of Plant Sciences, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA.
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| |
Collapse
|
32
|
Ryland D, Zahradka P, Taylor CG, Bell RC, Aliani M. Acceptability of Pulse-Fortified Foods by Two Groups: Participants in a Clinical Trial and Participants in a Consumer Acceptability Panel. Foods 2018; 7:foods7080129. [PMID: 30126186 PMCID: PMC6111517 DOI: 10.3390/foods7080129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
Pulses are nutrient-rich ingredients used as interventions in clinical trials to determine their effect on lowering blood lipids, which are risk factors for cardiovascular disease. Acceptability of these foods is critical for compliance by participants in clinical trials as well as regular consumption by those eating them for their health benefit. Commercialisation of foods that prove positive for health is required to make them available to the general population. Since the target for commercialisation would be products that will be procured by as many people as possible, the research question becomes whether or not testing is required by the clinical trial participants, by consumer acceptability testing in a sensory unit, or by both to ensure acceptability. The objective of this study was to determine the acceptability of pulse-based soups and casseroles destined for a clinical trial by both the participants in the clinical trial and by consumer participants not in the clinical trial. Neither group received any training regarding sensory analysis. Acceptability of aroma, appearance, flavor, texture, overall acceptability, and the frequency of eating the samples of five formulations fortified with either peas or beans was measured. Groups differed in their acceptability of foods for different attributes with the clinical trial participants providing less discrimination among the sensory attributes for their acceptability. Influential factors could include motivation for healthy eating, age, number of times the product was consumed, amount of the product consumed, and where it was consumed. In conclusion, acceptance measures from both groups are required in order to gain as much information as possible regarding acceptability of attributes for commercialisation of pulse-fortified foods that provide a health benefit.
Collapse
Affiliation(s)
- Donna Ryland
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada.
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), St., Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada.
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), St., Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- The Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), St., Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
33
|
Folate stability and method optimization for folate extraction from seeds of pulse crops using LC-SRM MS. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:443. [PMID: 29681913 PMCID: PMC5897740 DOI: 10.3389/fpls.2018.00443] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta.
Collapse
|
35
|
Ashokkumar K, Sivakumar P, Saradhadevi M. Identification and determination of naturally occurring folates in grains of rice (Oryza sativa L.) by UPLC-MS/MS analysis. Nat Prod Res 2017; 32:1733-1737. [PMID: 29058482 DOI: 10.1080/14786419.2017.1392957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The genetic potential and biofortification of India-grown rice with bioavailable folate has not been studied yet. The objectives of this study were to determine the folates concentration in four cultivars of rice through UPLC-MS/MS. Total folate concentration in rice cultivars ranged from 11.0 to 51 μg/100 g with a mean of 26.0 μg/100 g. Among the four rice cultivars, the pigmented grain cultivar Nootripathu possesses two-fold rich sources of total folates than the other three non-pigmented grain cultivars. The average value of 100 g serving of rice grains could provide the amount of recommended daily allowance (% RDA) of dietary folates (6.5%) for adults, which ranged from 2.7-12.7%. Among the 5 individual forms of folates, 5-methyltetrahydrofolate was most abundant in rice cultivars followed by 10-Formylfolic acid and folic acid. The result of this study has been useful for biofortification of folates in rice.
Collapse
Affiliation(s)
- Kaliyaperumal Ashokkumar
- a Department of Plant Biotechnology, School of Agriculture , PRIST University , Thanjavur , India.,b Department of Plant Sciences , University of Saskatchewan , Saskatchewan , Canada
| | - Paramasivam Sivakumar
- c Department of Plant Biotechnology , Agricultural College and Research Institute , Thanjavur , India
| | | |
Collapse
|
36
|
Testing of different extraction procedures for folate HPLC determination in fresh fruits and vegetables. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2016.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Strobbe S, Van Der Straeten D. Folate biofortification in food crops. Curr Opin Biotechnol 2017; 44:202-211. [DOI: 10.1016/j.copbio.2016.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/09/2016] [Accepted: 12/17/2016] [Indexed: 10/19/2022]
|
38
|
Towards Zinc Biofortification in Chickpea: Performance of Chickpea Cultivars in Response to Soil Zinc Application. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Hall C, Hillen C, Garden Robinson J. Composition, Nutritional Value, and Health Benefits of Pulses. Cereal Chem 2017. [DOI: 10.1094/cchem-03-16-0069-fi] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Clifford Hall
- Department of Plant Science, North Dakota State University, Fargo, ND 58108-6050, U.S.A
| | - Cassandra Hillen
- Department of Plant Science, North Dakota State University, Fargo, ND 58108-6050, U.S.A
| | | |
Collapse
|
40
|
Kumar J, Gupta DS, Kumar S, Gupta S, Singh NP. Current Knowledge on Genetic Biofortification in Lentil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6383-96. [PMID: 27507630 DOI: 10.1021/acs.jafc.6b02171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Micronutrient deficiency in the human body, popularly known as "hidden hunger", causes many health problems. It presently affects >2 billion people worldwide, especially in South Asia and sub-Saharan Africa. Biofortification of food crop varieties is one way to combat the problem of hidden hunger using conventional plant breeding and transgenic methods. Lentils are rich sources of protein, micronutrients, and vitamins including iron, zinc, selenium, folates, and carotenoids. Lentil genetic resources including germplasm and wild species showed genetic variability for these traits. Studies revealed that a single serving of lentils could provide a significant amount of the recommended daily allowance of micronutrients and vitamins for adults. Therefore, lentils have been identified as a food legume for biofortification, which could provide a whole food solution to the global micronutrient malnutrition. The present review discusses the current ongoing efforts toward genetic biofortification in lentils using classical breeding and molecular marker-assisted approaches.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research , Kanpur, Uttar Pradesh 208024, India
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research , Kanpur, Uttar Pradesh 208024, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institutes , B.P. 6299, Rabat, Morocco
| | - Sanjeev Gupta
- AICRP on MULLaRP, ICAR-Indian Institute of Pulses Research , Kanpur, Uttar Pradesh 208024, India
| | - Narendra Pratap Singh
- Division of Biotechnology, ICAR-Indian Institute of Pulses Research , Kanpur, Uttar Pradesh 208024, India
| |
Collapse
|
41
|
Wang W, Liang H, Sun B, Xu J, Zeng Z, Zhao X, Li Q. Pharmacokinetics and Tissue Distribution of Folate-Decorated Human Serum Albumin Loaded With Nano-Hydroxycamptothecin for Tumor Targeting. J Pharm Sci 2016; 105:1874-1880. [DOI: 10.1016/j.xphs.2016.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 12/17/2022]
|
42
|
Castro-Guerrero NA, Isidra-Arellano MC, Mendoza-Cozatl DG, Valdés-López O. Common Bean: A Legume Model on the Rise for Unraveling Responses and Adaptations to Iron, Zinc, and Phosphate Deficiencies. FRONTIERS IN PLANT SCIENCE 2016; 7:600. [PMID: 27200068 PMCID: PMC4853408 DOI: 10.3389/fpls.2016.00600] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/18/2016] [Indexed: 05/19/2023]
Abstract
Common bean (Phaseolus vulgaris) was domesticated ∼8000 years ago in the Americas and today is a staple food worldwide. Besides caloric intake, common bean is also an important source of protein and micronutrients and it is widely appreciated in developing countries for their affordability (compared to animal protein) and its long storage life. As a legume, common bean also has the economic and environmental benefit of associating with nitrogen-fixing bacteria, thus reducing the use of synthetic fertilizers, which is key for sustainable agriculture. Despite significant advances in the plant nutrition field, the mechanisms underlying the adaptation of common bean to low nutrient input remains largely unknown. The recent release of the common bean genome offers, for the first time, the possibility of applying techniques and approaches that have been exclusive to model plants to study the adaptive responses of common bean to challenging environments. In this review, we discuss the hallmarks of common bean domestication and subsequent distribution around the globe. We also discuss recent advances in phosphate, iron, and zinc homeostasis, as these nutrients often limit plant growth, development, and yield. In addition, iron and zinc are major targets of crop biofortification to improve human nutrition. Developing common bean varieties able to thrive under nutrient limiting conditions will have a major impact on human nutrition, particularly in countries where dry beans are the main source of carbohydrates, protein and minerals.
Collapse
Affiliation(s)
- Norma A. Castro-Guerrero
- Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, ColumbiaMO, USA
| | - Mariel C. Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, FES Iztacala, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| | - David G. Mendoza-Cozatl
- Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, ColumbiaMO, USA
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, FES Iztacala, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| |
Collapse
|