1
|
Pratiwi R, Ramadhanti SP, Amatulloh A, Megantara S, Subra L. Recent Advances in the Determination of Veterinary Drug Residues in Food. Foods 2023; 12:3422. [PMID: 37761131 PMCID: PMC10527676 DOI: 10.3390/foods12183422] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The presence of drug residues in food products has become a growing concern because of the adverse health risks and regulatory implications. Drug residues in food refer to the presence of pharmaceutical compounds or their metabolites in products such as meat, fish, eggs, poultry and ready-to-eat foods, which are intended for human consumption. These residues can come from the use of drugs in the field of veterinary medicine, such as antibiotics, antiparasitic agents, growth promoters and other veterinary drugs given to livestock and aquaculture with the aim of providing them as prophylaxis, therapy and for promoting growth. Various analytical techniques are used for this purpose to control the maximum residue limit. Compliance with the maximum residue limit is very important for food manufacturers according to the Food and Drug Administration (FDA) or European Union (EU) regulations. Effective monitoring and control of drug residues in food requires continuous advances in analytical techniques. Few studies have been reviewed on sample extraction and preparation techniques as well as challenges and future directions for the determination of veterinary drug residues in food. This current review focuses on the overview of regulations, classifications and types of food, as well as the latest analytical methods that have been used in recent years (2020-2023) for the determination of drug residues in food so that appropriate methods and accurate results can be used. The results show that chromatography is still a widely used technique for the determination of drug residue in food. Other approaches have been developed including immunoassay, biosensors, electrophoresis and molecular-based methods. This review provides a new development method that has been used to control veterinary drug residue limit in food.
Collapse
Affiliation(s)
- Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Shinta Permata Ramadhanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Asyifa Amatulloh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Laila Subra
- Faculty of Bioeconomic, Food and Health Sciences, University of Geomatika Malaysia, Kuala Lumpur 54200, Malaysia;
| |
Collapse
|
2
|
Wu D, Hua T, Han S, Lan X, Cheng J, Wen W, Hu Y. Two-dimensional manganese-iron bimetallic MOF-74 for electro-Fenton degradation of sulfamethoxazole. CHEMOSPHERE 2023; 327:138514. [PMID: 36972871 DOI: 10.1016/j.chemosphere.2023.138514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
This study reported a novel application of Mn0.67Fe0.33-MOF-74 with two-dimensional (2D) morphology grown on carbon felt as a cathode for efficiently removing antibiotic sulfamethoxazole in the heterogeneous electro-Fenton system. Characterization demonstrated the successful synthesis of bimetallic MOF-74 by a simple one-step method. Electrochemical detection showed that the second metal addition and morphological change improved the electrochemical activity of the electrode and contributed to pollutant degradation. At pH 3 and 30 mA of current, the degradation efficiency of SMX reached 96% with 12.09 mg L-1 H2O2 and 0.21 mM ·OH detected in the system after 90 min. During the reaction, electron transfer between ≡FeII/III and ≡MnII/III promoted divalent metal ions regeneration, which ensured the continuation of the Fenton reaction. Two-dimensional structures exposed more active sites favoring ·OH production. The pathway of sulfamethoxazole degradation and the reaction mechanisms were proposed based on the intermediates identification by LC-MS and radical capture results. High degradation rates were still observed in tap and river water, revealing the potential of Mn0.67Fe0.33-MOF-74@CF for practical applications. This study provides a simple MOF-based cathode synthesis method, which enhances our understanding of constructing efficient electrocatalytic cathodes based on morphological design and multi-metal strategies.
Collapse
Affiliation(s)
- Danhui Wu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Tao Hua
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shuaipeng Han
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiuquan Lan
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianhua Cheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Weiqiu Wen
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Yongyou Hu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Yang W, Shen J, Zhu S, Si H, Song F, Zhang W, Ding H, Huang W. Preparation and Characterisation of Photoresponsive Molecularly Imprinted Polymer Based on 5-[(4-(methacryloyloxy) phenyl) diazenyl] isophthalic acid for the Determination of Sulfamethazine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Multisensory Systems Based on Perfluorosulfonic Acid Membranes Modified with Polyaniline and PEDOT for Multicomponent Analysis of Sulfacetamide Pharmaceuticals. Polymers (Basel) 2022; 14:polym14132545. [PMID: 35808592 PMCID: PMC9269069 DOI: 10.3390/polym14132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The degradation of sulfacetamide with the formation of sulfanilamide leads to a deterioration in the quality of pharmaceuticals. In this work, potentiometric sensors for the simultaneous determination of sulfanilamide, sulfacetamide and inorganic ions, and for assessing the degradation of pharmaceuticals were developed. A multisensory approach was used for this purpose. The sensor cross-sensitivity to related analytes was achieved using perfluorosulfonic acid membranes with poly(3,4-ethylenedioxythiophene) or polyaniline as dopants. The composite membranes were prepared by oxidative polymerization and characterized using FTIR and UV-Vis spectroscopy, and SEM. The influence of the preparation procedure and the dopant concentration on the membrane hydrophilicity, ion-exchange capacity, water uptake, and transport properties was investigated. The characteristics of the potentiometric sensors in aqueous solutions containing sulfanilamide, sulfacetamide and alkali metals ions in a wide pH range were established. The introduction of proton-acceptor groups and π-conjugated moieties into the perfluorosulfonic acid membranes increased the sensor sensitivity to organic analytes. The relative errors of sulfacetamide and sulfanilamide determination in the UV-degraded eye drops were 1.2 to 1.4 and 1.7 to 4%, respectively, at relative standard deviation of 6 to 9%.
Collapse
|
5
|
Yang X, He L, Xu Z. Pressure-assisted electrokinetic injection for the stacking of biogenic amines gives enhancement factor up to 1000 in CE with UV detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1782-1787. [PMID: 35475508 DOI: 10.1039/d2ay00430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pressure-assisted electrokinetic injection (PAEKI) was applied for stacking of positively charged biogenic amines (BAs) to improve the sensitivity of capillary electrophoresis (CE). It is well known that the essential step for PAEKI is finding a stationary state of the running buffer such that the movement of the running buffer due to electroosmotic flow (EOF) is counterbalanced by external pressure in the opposite direction of the EOF under a given electric field. In order to find the balance point systematically and integrally, we studied the velocity of the whole BGE in the capillary by the impetus of opposite direction pressure (-0.1 to -0.6 psi), and the velocity of EOF with different voltages. According to the two sets of linear data, the EOF of CE coupled with PAEKI could be counterbalanced at the opposite direction pressure (-0.1 psi) and voltage (7.8 kV). In this study, the injection time was extended up to 0.35 min for all BAs and 0.70 min for the direct ultraviolet (UV) detection of BAs. Compared with hydrodynamic injection (HDI), the enrichment factors for sample injection times of 0.35 min and 0.70 min were 480-fold and 970-fold, respectively. The limits of detection (LODs) (S/N = 3) of indirect and direct UV detection were respectively 8.7-24.3 nmol L-1 and 0.4-4.5 nmol L-1, which reaches the sensitivity of high-performance liquid chromatography-mass spectrophotometry (HPLC-MS). With appropriate sample dilution, PAEKI can be used in the analysis of BAs in chicken.
Collapse
Affiliation(s)
- Xue Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Lili He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Zhongqi Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Dao AQ, Thi Thanh Nhi L, Mai Nguyen D, Thanh Tam Toan T. A REVIEW ON DETERMINATION OF THE VETERINARY DRUG RESIDUES IN FOOD PRODUCTS. Biomed Chromatogr 2022; 36:e5364. [PMID: 35274322 DOI: 10.1002/bmc.5364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
In this paper, we discuss veterinary medicine and its applications in the food field as well as its risk to the health of humans and animals by the residues. We review how the veterinary residues enter and cause some detrimental effects. We also mention two techniques to determine the residue of veterinary medication that existed in food originating from animals, including classic and advanced techniques. Finally, we discuss the potential of various developed methods compared to some traditional techniques.
Collapse
Affiliation(s)
- Anh Quang Dao
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Le Thi Thanh Nhi
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Vietnam
| | - Do Mai Nguyen
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Tran Thanh Tam Toan
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| |
Collapse
|
7
|
Semail NF, Abdul Keyon AS, Saad B, Kamaruzaman S, Mohamad Zain NN, Lim V, Miskam M, Wan Abdullah WN, Yahaya N, Chen DDY. Simultaneous preconcentration and determination of sulfonamide antibiotics in milk and yoghurt by dynamic pH junction focusing coupled with capillary electrophoresis. Talanta 2022; 236:122833. [PMID: 34635223 DOI: 10.1016/j.talanta.2021.122833] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
A dynamic pH junction was used in capillary electrophoresis (CE-DAD) to on-line preconcentrate, separate, and determine trace amounts of sulfonamide antibiotics (SAs) in milk and yoghurt samples in this study. A sample matrix with 0.15% acetic acid and 10% methanol (MeOH) at a pH of 4.0, and a background electrolyte (BGE) that contained 35 mM sodium citrate with 10% MeOH at a pH of 8.5, and an acidic barrage of 0.4% acetic acid with 10% MeOH at a pH of 2.5 were utilised to achieve a stacking effect for SAs through a dynamic pH junction. Under optimised conditions, the proposed preconcentration method showed good linearity (30-500 ng/mL, r2 ≥ 0.9940), low limits of detection (LODs) of 4.1-6.3 ng/mL, and acceptable analytes recovery (81.2-106.9%) with relative standard deviations (RSDs) within 5.3-13.7 (n = 9). The limits of quantification (LOQs) were below the maximum residue limit approved by the European Union (EU) in this type of matrices. Sensitivity enhancement factors of up to 129 were reached with the optimised dynamic pH junction using CE with a diode array detector (DAD). The method was used to determine SAs in fresh milk, low-fat milk, full-cream milk, and yoghurt samples.
Collapse
Affiliation(s)
- Nadhiratul-Farihin Semail
- Integrative Medicine Clusters, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Aemi Syazwani Abdul Keyon
- Department of Chemistry, Faculty of Science and Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Bahruddin Saad
- Fundamental & Applied Sciences Department, Universiti Teknologi PETRONAS, 32601, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Sazlinda Kamaruzaman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Integrative Medicine Clusters, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Clusters, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Mazidatulakmam Miskam
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, USM Pulau Pinang, Malaysia
| | | | - Noorfatimah Yahaya
- Integrative Medicine Clusters, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada.
| |
Collapse
|
8
|
Rapid quantitative detection for multiple antibiotics in honey using a quantum dot microsphere immunochromatographic strip. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Yang S, Han Y, Wang K, Wang Y, Li L, Li N, Xu X. Simultaneous determination of four phenolic acids in traditional Chinese medicine by capillary electrophoresis-chemiluminescence. RSC Adv 2021; 11:33996-34003. [PMID: 35497318 PMCID: PMC9042319 DOI: 10.1039/d1ra06608k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Chlorogenic, ferulic, vanillic, and caffeic acids are phenolic acids found in natural drugs. They possess the biological activities of scavenging free radicals and inhibiting thrombus formation. Phenolic acids can inhibit the oxidation of low-density lipoprotein, as well as have anti-inflammatory effects. This paper reports for the first time a capillary electrophoresis-chemiluminescence (CE-CL) method for the simultaneous determination of the four phenolic acids found in traditional and proprietary Chinese medicine, including Lycium chinense Miller, Shuanghuanglian oral liquid, and Taraxacum mongolicum granules. Capillary electrophoretic separation was performed on a self-assembled CE-CL device with an uncoated fused-silica capillary (66 cm effective length, 50 μm i.d.), and the background electrolyte was composed of 3.0 × 10-5 M Ag(iii) (pH = 12.01), 3.0 mM luminol (pH = 9.20), and 10 mM sodium tetraborate solution. The injection time was 12 s (under gravity) and the separation voltage was 22 kV. The combination of solid-phase extraction (SPE) and CE-CL improves the sensitivity. Under optimal conditions, calibration graphs displayed a linear range between 0.625 and 20.0, 1.000 and 30.0, 0.150 and 1.50, and 0.045 and 1.00 μg mL-1 for chlorogenic, ferulic, vanillic, and caffeic acid, respectively. The detection limit ranged from 0.014 to 0.300 μg mL-1. The practicality of using the proposed method to determine the four target analytes in traditional Chinese medicine was also validated, in which recoveries ranged from 90.9% to 119.8%. Taken together, these results indicate that the developed method is sensitive and reliable. Furthermore, the method was successfully applied to real traditional Chinese medicine samples.
Collapse
Affiliation(s)
- Shuopeng Yang
- School of Public Health, Key Laboratory of Environment and Human Health of Hebei Medical University Shijiazhuang 050017 China
| | - Yanzhen Han
- Tianjin Center for Disease Control and Prevention Tianjin 300011 China
| | - Kairui Wang
- School of Public Health, Key Laboratory of Environment and Human Health of Hebei Medical University Shijiazhuang 050017 China
| | - Yu Wang
- School of Public Health, Key Laboratory of Environment and Human Health of Hebei Medical University Shijiazhuang 050017 China
| | - Liping Li
- School of Public Health, Key Laboratory of Environment and Human Health of Hebei Medical University Shijiazhuang 050017 China
| | - Nan Li
- Hebei University of Chinese Medicine Shijiazhuang 050200 China
| | - Xiangdong Xu
- School of Public Health, Key Laboratory of Environment and Human Health of Hebei Medical University Shijiazhuang 050017 China
| |
Collapse
|
10
|
O’Sullivan-Carroll E, Howlett S, Pyne C, Downing P, Rafael A, Lynch M, Hogan AM, Moore EJ. Determination of Pharmaceuticals in Surface and Wastewater by Capillary Electrophoresis (CE): A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1942031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Emma O’Sullivan-Carroll
- Sensing and Separation Group, School of Chemistry, University College Cork, Cork, Ireland
- Hovione Ltd, Loughbeg, Cork, Ireland
| | | | | | | | | | | | - Anna Maria Hogan
- Sensing and Separation Group, School of Chemistry, University College Cork, Cork, Ireland
| | - Eric J. Moore
- Sensing and Separation Group, School of Chemistry, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
CHAI P, SONG Z, LIU W, XUE J, WANG S, LIU J, LI J. [Application of carbon dots in analysis and detection of antibiotics]. Se Pu 2021; 39:816-826. [PMID: 34212582 PMCID: PMC9404157 DOI: 10.3724/sp.j.1123.2021.04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/25/2022] Open
Abstract
Antibiotics have been overused in recent years because of their remarkable curative effect, but this has led to considerable environmental pollution. Therefore, the development of approaches aimed at the effective detection and control of the antibiotics is vital for protecting the environment and human health. Many conventional strategies (such as high-performance liquid chromatography (HPLC), gas chromatography (GC), high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)) are currently in use for the detection of antibiotics. These strategies have aroused a great deal of interest because of their outstanding features of high efficiency and speed, good reproducibility, automation, etc. However, various problems such as tedious sample pretreatment, low detection sensitivity, and high cost must be overcome for the effective detection of antibiotics in environmental samples. Consequently, it is of great significance to improve the detection sensitivity of antibiotics. The development of new materials combined with the existing detection technology has great potential to improve the detection results for antibiotics. Carbon dots (CDs) are a new class of nanomaterials with particle sizes in the range of 0-10 nm. In addition, CDs have desirable properties such as small particle effect, excellent electrical properties, unique optical properties, and good biocompatibility. Hence, they have been widely utilized for the detection of antibiotics in environmental samples. In this review, the application of CDs combined with sensors and chromatographic technology for the detection of antibiotics in the last five years are summarized. The development prospects of CD-based materials and their application to the analysis and detection of antibiotics are presented. In this review, many new sensors (CDs combined with molecularly imprinted polymer sensors, aptamer sensors, electrochemiluminescence sensors, fluorescence sensors, and electrochemical sensors) combined with CD-based materials and their use in the detection of antibiotics are summarized. Furthermore, advanced analysis methods such as ratiometric sensor and array sensor methods are reviewed. The novel analysis methods provide a new direction toward the detection of antibiotics by CDs combined with a sensor. Moreover, CD-based chromatographic stationary phases for the separation of antibiotics are also summarized in this manuscript. It is reported that the detection sensitivity for antibiotics can be greatly improved by the combination of CDs and a sensor. Nevertheless, a literature survey reveals that the detection of antibiotics in complex environmental samples is confronted with numerous challenges, including the fabrication of highly sensitive sensors in combination with CDs. Furthermore, the development of novel high-performance materials is of imperative. In addition, it is important to develop new methods for effective data processing. The separation of antibiotics with CDs as the chromatographic stationary phases is in the preliminary stage, and the separation mechanism remains to be clarified. In conclusion, there are still many problems to be overcome when using CDs as novel materials for the detection of antibiotics in environmental samples. Nowadays, CD-based materials are being intensively studied, and various analytical detection technologies are being rapidly developed. In the future, CD-based materials are expected to play an important role in the detection of antibiotics and other environmental pollutants.
Collapse
|
12
|
Zhao T, Lin H, Li N, Shi H, Kang W, Xu X. Determination of folic acid by capillary zone electrophoresis with indirect chemiluminescence detection. RSC Adv 2021; 11:20063-20069. [PMID: 35479876 PMCID: PMC9033656 DOI: 10.1039/d1ra02502c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 01/19/2023] Open
Abstract
A capillary electrophoresis method with on-line inhibited chemiluminescence (CL) detection was first used to determine folic acid (FA). This method was established based on the quenching effect of FA on the CL reaction of luminol with a Ag(iii) complex in alkaline medium. The separation was conducted with a 20.0 mM sodium borate buffer containing 1.0 mmol L-1 luminol. Under optimized conditions, FA was baseline separated and detected in less than 10 min. The limit of detection of FA was 1.3 mg L-1, with a linear range of 5.0-150.0 mg L-1 (r = 0.9953). The RSD value was 2.8% for intra-day precision and 5.4% inter-day precision. The recoveries of the standard addition of tablets and human urine ranged from 90.3% to 107.5% and from 82.0 to 105.7%, respectively. The proposed method was successfully applied to determine FA contents in commercial pharmaceutical tablets and human urine samples. Results suggested that this method was simple and robust.
Collapse
Affiliation(s)
- Tangjuan Zhao
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 PR China
| | - Huaping Lin
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 PR China
| | - Nan Li
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 PR China
| | - Hongmei Shi
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 PR China
| | - Weijun Kang
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 PR China
| | - Xiangdong Xu
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 PR China
| |
Collapse
|
13
|
Huang W, Si H, Zhang L, Yin X, Ji Z, Ni X, Xu W. Photoresponsive molecularly imprinted polymers based on 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid for the determination of sulfamethazine. J Sep Sci 2021; 44:2536-2544. [PMID: 33929080 DOI: 10.1002/jssc.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
Core-shell structured photoresponsive molecularly imprinted polymers were developed for the determination of sulfamethazine in milk samples. The photoresponsive imprinted polymers were prepared with polymethyl methacrylate containing a mass of ester groups as core, sulfamethazine as template molecules, self-synthesized water-soluble 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid as a photoresponsive monomer, and ethylene dimethacrylate as cross-linker. Interestingly, the imprinted polymer can specifically adsorb sulfamethazine under dark and 440 nm irradiation, and release it at 365 nm. A series of adsorption experiments showed that the maximum adsorption capacity reached 12.5 mg⋅g-1 , and the adsorption equilibrium was achieved within 80 min. Moreover, the imprinted polymers display excellent reusability, with almost no performance loss after four times photo-controlled adsorption-release cycles, and the imprinted polymers have excellent selectively for sulfamethazine (imprinting factor = 3.01). In the end, the imprinted polymers realized effective separation and enrichment of sulfamethazine in milk, with a recovery rate of over 97.5%. The material can be used as a solid-phase extractant in the process of enrichment and separation for the quantitative detection of sulfamethazine in milk samples.
Collapse
Affiliation(s)
- Weihong Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Haojie Si
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Liming Zhang
- Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang, P. R. China
| | - Xifeng Yin
- Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang, P. R. China
| | - Zehua Ji
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaoni Ni
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, P. R. China
| | - Wanzhen Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
14
|
Kırkan E, Tahir AO, Bengü AŞ, Aslan H, Çiftçi M, Aydoğan C. Rapid determination of sulfonamide residues in honey samples using non‐targeted liquid chromatography‐high resolution mass spectrometry. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ertuğ Kırkan
- Central Laboratory Bingöl University Bingöl Turkey
| | | | | | - Hakiye Aslan
- Department of Food Engineering Bingöl University Bingöl Turkey
| | - Mehmet Çiftçi
- Department of Chemistry Bingöl University Bingöl Turkey
| | - Cemil Aydoğan
- Department of Food Engineering Bingöl University Bingöl Turkey
| |
Collapse
|
15
|
Xiong Y, Long C. An ethnoveterinary study on medicinal plants used by the Buyi people in Southwest Guizhou, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2020; 16:46. [PMID: 32807192 PMCID: PMC7433110 DOI: 10.1186/s13002-020-00396-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The Buyi (Bouyei) people in Qianxinan Buyi and Miao Autonomous Prefecture, Southwest Guizhou, China, have used medicinal plants and traditional remedies for ethnoveterinary practices, such as treating domestic animals during livestock breeding, since ancient times. However, the unique ethnoveterinary practices of the Buyi have rarely been recorded. This study aimed to identify the plants used in their traditional ethnoveterinary practices, and to propose suggestions for future conservation and sustainable use of this knowledge. METHODS Ethnobotanical fieldwork was conducted in 19 villages/townships in Qianxinan Prefecture between 2017 and 2018. Data were collected from the local Buyi people through semi-structured interviews and participatory observations. The informant consensus factor (FIC) and use reports (URs) were utilized to evaluate the consent of the current ethnoveterinary practices among the local communities, and 83 informants were interviewed during the field investigations. Plant samples and voucher specimens were collected for taxonomic identification. RESULTS A total of 122 plant species, belonging to 60 families and 114 genera, were recorded as being used in ethnoveterinary practices by the Buyi people. The most used ethnoveterinary medicinal plant (EMP) parts included the roots, whole plant, and bulb, and the most common preparation methods included decoction, crushing, and boiling. Some EMPs, such as Quisqualis indica and Paris polyphylla, have special preparation methods. The informant consensus factor (FIC) and use reports (URs) of the EMP species were analyzed. Twenty EMP species with the highest URs were noted as having particular importance in the daily lives of Buyi people in Qianxinan Prefecture. CONCLUSION In this study, we identified traditional ethnoveterinary knowledge of the medicinal plants among the Buyi communities in Qianxinan Prefecture. This knowledge has previously been limited to local vets, herders, and aged community members. Plants with important medicinal uses need to be validated phytochemically and pharmacologically in the future, to develop new alternative drugs for veterinary purposes.
Collapse
Affiliation(s)
- Yong Xiong
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education of China, Minzu University of China, Beijing, 100081, China
- School of Ethnomedicine & Ethnopharmacy, Yunnan Minzu University, Kunming, 650500, China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Key Laboratory of Ethnomedicine, Ministry of Education of China, Minzu University of China, Beijing, 100081, China.
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|