1
|
Doménech E, Martorell S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024; 13:714. [PMID: 38472827 PMCID: PMC10931373 DOI: 10.3390/foods13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reviews the published terminology, mathematical models, and the possible approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all the risk characterisation parameters of interest. Therefore, the present study proposes a terminology and formulation for some risk characterisation parameters based on the guidelines of international organisations and the literature review. The mathematical model used for non-genotoxic hazards is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the works reviewed generally opted for a deterministic approach, although most of those who assessed the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.
Collapse
Affiliation(s)
- Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sebastián Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
2
|
Wilman B, Normant-Saremba M, Rychter A, Bełdowska M. Total body burden of neurotoxicant Hg in Chinese mitten crab (Eriocheir sinensis) - Considerations of distribution and human risk assessment. MARINE POLLUTION BULLETIN 2024; 199:116028. [PMID: 38217916 DOI: 10.1016/j.marpolbul.2024.116028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The Chinese mitten crab (Eriocheir sinensis) is considered one of the 100 most invasive alien species in the world. Despite this, its role in ecosystems, among others, in the trophodynamics of pollutants including mercury, is still not fully understood. Becoming an increasingly important and widespread element of the trophic chain in new areas arouses interest from humans as consumers. Hence it is important to determine the level of contaminants (including Hg) in alien species. In the present study, great attention was paid separately to the soft tissues and hard tissues of the exoskeleton, which may play an important role in the detoxification of the crab's body from toxic Hg. The study was conducted on crabs collected in 2011-2021 in the Vistula Lagoon. Concentrations of total mercury and its forms were carried out using a Direct Mercury Analyzer, DMA-80 (Milestone, Italy). The present study showed that mercury accumulation of the crab's body largely occurred through the gills, followed by the oral route. The distribution of Hg in the crab's organs was related to the trophic origin of the mercury, while halide-bound mercury and semilabile forms from the respiration (filtration) process were redistributed into the crab's exoskeleton. Male crabs, compared to females, had a higher Hg burden on internal organs such as their hepatopancreas and gonads. Hg concentration in hard tissues was closely related to the type of mineralization of the carapace. The elimination of Hg from the muscles and from the hepatopancreas into the carapace was one of the important detoxification processes of the crab's body. Thus, moulting crabs effectively remove Hg protecting its body from the neurotoxin. As a result, a smaller Hg load is biomagnified, making the crab's muscle tissue fit for human consumption. The observed decrease in Hg concentrations from 2011 to 2021, as well as the spatial variability of Hg in the crab's muscles, testify that the crab can serve as a biomonitor for ecosystem changes.
Collapse
Affiliation(s)
- Bartłomiej Wilman
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography, University of Gdańsk, Al. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Monika Normant-Saremba
- Department of Marine Ecology, Faculty of Oceanography, University of Gdańsk, Al. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Agata Rychter
- Institute of Technology, State University of Applied Sciences in Elbląg, Wojska Polskiego 1, 82-300 Elbląg, Poland
| | - Magdalena Bełdowska
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography, University of Gdańsk, Al. Pilsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
3
|
Zhu R, Yuan Y, Yang Y, Yang Q, Yu A. A simple method for microwave-assisted preparation of tire samples. Sci Rep 2023; 13:20208. [PMID: 37980434 PMCID: PMC10657420 DOI: 10.1038/s41598-023-47309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023] Open
Abstract
Heavy metals content in tires affects the safety of soil and agricultural products. The digestion method is a pretreatment for determining heavy metals in tire samples, and will affect the efficiency and accuracy of the heavy metal determination. The microwave digestion process and reagents for tire samples are not currently standardized. Therefore, this study attempts to provide an appropriate method of resolution for scholars. All digestion processes were performed in Mars One. We tested 15 different acid mixtures to determine the best reagent type and dose and then investigated the effect of maximum temperature, holding time, and sample grams on the degree of digestion. In summary, the best condition to digest the tire sample was a mixture of 3 ml HNO3 and 7 ml H2SO4, taking 0.1 (± 0.0005) g tire sample, at the maximum digestion temperature of 220 °C for 25 min. The experimental conclusion will provide a reliable experimental method for scientists using MARS One to study heavy metals in tires. At the same time, researchers using the MARS series can also find valuable references in this paper.
Collapse
Affiliation(s)
- Renchao Zhu
- College of Civil Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Yingqi Yuan
- College of Civil Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Yu Yang
- College of Civil Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Qiyue Yang
- College of Civil Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Aihua Yu
- College of Civil Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
4
|
Zhang Y, Gao J, Cao L, Du J, Xu G, Xu P. Microcystin-LR-induced autophagy via miR-282-5p/PIK3R1 pathway in Eriocheir sinensis hepatopancreas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115661. [PMID: 37948941 DOI: 10.1016/j.ecoenv.2023.115661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
With the intensifying climate warming, blue-green algae blooms have become more frequent and severe, releasing environmental hazards such as microcystin that pose potential threats to human and animal health. Autophagy has been shown to play a crucial role in regulating immune responses induced by environmental hazards, enabling cells to adapt to stress and protect against damage. Although microcystin-LR (MC-LR) has been identified to affect autophagy in mammalian, its impact on aquatic animals has been poorly studied. To investigate the toxicological effects of MC-LR in aquatic ecosystems, we constructed a microRNA profile of acute MC-LR stress in the hepatopancreas of the Chinese mitten crab. Interestingly, we found the MC-LR exposure activated autophagy in the hepatopancreas based on the following evidence. Specifically, mRNA expression level of ATG7, Beclin1 and Gabarap was significantly up-regulated, autophagy regulatory pathways were significantly enriched, and numerous autolysosomes and autophagosomes were observed. Additionally, we found that miR-282-5p and its target gene PIK3R1 played important regulatory roles in autophagy by in vivo and in vitro experiments. Overexpression of miR-282-5p mimicked MC-LR-induced autophagy by inhibiting PIK3R1 expression, while miR-282-5p silencing inhibited autophagy by promoting PIK3R1 expression. Altogether, our findings suggest that MC-LR increases miR-282-5p, which then targets inhibition of PIK3R1 to stimulate autophagy. This study focused on the stress response regulatory mechanisms of juvenile crabs to toxic pollutants in water, offering a potential target for alleviating the toxicity of MC-LR. These findings lay a foundation for reducing the toxicity of MC-LR and environmental hazards in organisms.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
5
|
Min Lao Y, Lan Qu C, Zhang B, Jin H. Development and validation of single-step microwave-assisted digestion method for determining heavy metals in aquatic products: Health risk assessment. Food Chem 2023; 402:134500. [DOI: 10.1016/j.foodchem.2022.134500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
|
6
|
Haj Heidary R, Golzan SA, Mirza Alizadeh A, Hamedi H, Ataee M. Probabilistic health risk assessment of potentially toxic elements in the traditional and industrial olive products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10213-10225. [PMID: 36068456 DOI: 10.1007/s11356-022-22864-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Iran is recognized as one of the top olive producers globally, and it forms an integral part of the countries agriculture, particularly in Zanjan province. This study measured Hg, As, Pb, Cd, and Zn concentrations and evaluated probabilistic health risk in olive products. Results showed that Zn had the highest concentration (traditional and industrial table olive, Parvardeh, and olive oil: 4.912 ± 3.957 and 9.181 ± 6.385; 16.139 ± 6.986 and 18.330 ± 8.700; 41.385 ± 7.480 and 46.043 ± 15.773 μg g-1, respectively) compared to other potentially toxic elements (PTEs). Additionally, Cd in table olive (traditional: 0.137 ± 199 and industrial: 0.059 ± 0.041 μg g-1) and Parvardeh (traditional: 0.014 ± 0.009 and industrial: 0.019 ± 0.006 μg g-1), and As in olive oil (traditional: 0.025 ± 0.006 and industrial: 0.026 ± 0.009 μg g-1) had the lowest concentrations, respectively. As and Hg in table olive (0.224 ± 0.214 and 1.158 ± 0.974 μg g-1) and Hg in Parvardeh (0.210 ± 0.213 μg g-1) samples were significantly higher in traditional than industrial products (p < 0.05). Cd in Parvardeh (0.019 ± 0.006 μg g-1) and Zn in table olive (9.181 ± 6.385 μg g-1) samples were substantially more in industrial than traditional products (p < 0.05). Results suggest that industrially processed olive products are more likely to introduce higher levels of PTEs into the body. Nevertheless, based on the health risk assessment criteria, industrial products' hazard index (HI) values were lower than traditional types due to high Hg concentrations (HI = 0.01227 and 0.2708, respectively). Adults' total carcinogenic risk (TCR) in traditional olive products was higher than in industrial (sum TCR = 0.00016 and 0.00007, respectively). In conclusion, the results indicated that the consumption of olive products in the study area offered an increased non-carcinogenic and cancer risk to the population of this region owing to PTEs exposure, especially Hg.
Collapse
Affiliation(s)
- Rasool Haj Heidary
- Department of Food Safety and Hygiene, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Food and Drug Deputy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - S Amirhossein Golzan
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, Canada
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Hassan Hamedi
- Department of Food Safety and Hygiene, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Ataee
- Department of Food Safety, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Wu H, Tan M, Li Y, Zheng L, Xu J, Jiang D. The immunotoxicity of Cd exposure to gypsy moth larvae: An integrated analysis of cellular immunity and humoral immunity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113434. [PMID: 35338967 DOI: 10.1016/j.ecoenv.2022.113434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/26/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal exposure-triggered growth retardation and physiology disorder in phytophagous insects have been widely understood, but only a few studies have investigated its immunomodulatory effects on herbivorous insects. Here, the innate immunity of gypsy moth (Lymantria dispar) larvae under Cd stress was evaluated by integrating cellular and humoral immunity, and the immunomodulation mechanism of Cd stress was further understood by the proteomics analysis of larval hemolymph. Our results showed that the total hemocyte count, as well as phagocytic, encapsulation and bacteriostatic activity, of hemolymph in gypsy moth larvae exposed to Cd stress was significantly lower than that in un-treated larvae. Further proteomic analysis revealed that Cd exposure may reduce the total hemocyte count in larval hemolymph by inducing endoplasmic reticulum pathway-mediated hemocyte apoptosis, thereby causing the collapse of cellular immunity in gypsy moth larvae. In addition, the transcriptional level of signal transduction genes (IMD, Toll, Relish, JAK and STAT) and antimicrobial peptide genes (cecropin and lebocin), as well as the protein abundance of pattern recognition receptors (PGRP and GNBP3) in the Toll, IMD and JAK/STAT signaling pathways was significantly decreased in Cd-treated larvae, clearly implying an immunosuppresive effect of Cd stress on pathogen recognition, signal transduction and effector synthesis of humoral immunity in gypsy moth larvae. Taken together, these results suggest that Cd exposure decreases both cellular immunity and humoral immunity of gypsy moth larvae, and provides a new entry point for systematically and comprehensively unraveling the heavy metal pollutants-caused immunotoxicity.
Collapse
Affiliation(s)
- Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yaning Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lin Zheng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jinsheng Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
8
|
Du R, Yang X, Jin P, Guo Y, Cheng Y, Yu H, Xie Y, Qian H, Yao W. G-quadruplex based biosensors for the detection of food contaminants. Crit Rev Food Sci Nutr 2022; 63:8808-8822. [PMID: 35389275 DOI: 10.1080/10408398.2022.2059753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
G-quadruplex (G4) is a very interesting DNA structure, commonly associated with cancer and its treatment. With flexible binding ability, G4 has been extended as a significant component in biosensors. On account of its simple operation, high sensitivity and low cost, G4-based biosensors have attracted considerable interest for the detection of food contaminants. In this review, research published in recent 5 years is collated from a principle perspective, that is target recognition and signal transduction. Contaminants with G4 binding capacity are illustrated, emerging G4-based biosensors including colorimetric, electrochemical and fluorescent sensors are also elaborated. The current review indicates that G4 has provided an efficient and effective solution for the rapid detection of food contaminants. A distinctive feature of G4 as recognition unit is the simple composition, but the selectivity is still unsatisfactory. As signal reporter, G4/hemin DNAzyme has not only achieved amplified signals, but also enabled visualized detection, which offers great potential for on-site measurement. With improved selectivity and visualized signal, the combination of aptamer and G4 seems to be an ideal strategy. This promising combination should be developed for the real-time monitor of multiple contaminants in food matrix.
Collapse
Affiliation(s)
- Rong Du
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiebingqing Yang
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ping Jin
- Suzhou Product Quality Supervision and Inspection Institute, Suzhou, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Engineering Research Center of Dairy Quality and Safety Control Technology (Ministry of Education), Inner Mongolia University, Inner Mongolia Autonomous Region, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Engineering Research Center of Dairy Quality and Safety Control Technology (Ministry of Education), Inner Mongolia University, Inner Mongolia Autonomous Region, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Zihao F, Qian W, Xi C, Liping Q, Yuting Y, Limin F, Chao S, Shunlong M. Quantitative benefit and risk assessment of arsenic and nutrient levels in cooked and raw chinese mitten crab (Eriocheir sinensis) using an in vitro digestion model. Food Chem 2022; 368:130826. [PMID: 34454369 DOI: 10.1016/j.foodchem.2021.130826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
The safety and quality of aquatic foods are a public concern due to their content of pollutants, such as arsenic. A formula is derived for quantifying the benefit-risk ratio (HQ) of the essential polyunsaturated fatty acids vs. arsenic in Chinses mitten crabs. Among these arsenic species, the proportion of inorganic arsenic, which is extremely harmful to the human body, is<5%, and its level does not exceed the national standard limit. Meanwhile, comparing with the HQ from the original method, the HQs from groups 0 min, 5 min, 15 min are significantly higher(p < 0.05). This suggests the original assessment method could underestimate the risk of eating crabs. Eating steamed crabs is easier to digest essential fatty acids (EFAs) than eating raw crabs, and it also protects consumers against arsenic exposure. To achieve a good balance of dietary benefits and risks, the steaming duration of the crabs should exceed 30 min.
Collapse
Affiliation(s)
- Fan Zihao
- Wuxi Fishery College of Nanjing Agricultural University, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, PR China
| | - Wang Qian
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, PR China
| | - Chen Xi
- Wuxi Fishery College of Nanjing Agricultural University, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Qiu Liping
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, PR China
| | - Yin Yuting
- Wuxi Fishery College of Nanjing Agricultural University, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, PR China
| | - Fan Limin
- Wuxi Fishery College of Nanjing Agricultural University, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, PR China
| | - Song Chao
- Wuxi Fishery College of Nanjing Agricultural University, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing, PR China.
| | - Meng Shunlong
- Wuxi Fishery College of Nanjing Agricultural University, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, Wuxi, PR China.
| |
Collapse
|
10
|
Spatial-Temporal Variations, Ecological Risk Assessment, and Source Identification of Heavy Metals in the Sediments of a Shallow Eutrophic Lake, China. TOXICS 2022; 10:toxics10010016. [PMID: 35051058 PMCID: PMC8778156 DOI: 10.3390/toxics10010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/10/2022]
Abstract
The contamination of heavy metals (Pb, Cr, Hg, Cd, Ni, Cu, Zn, As, and Sb) in the sediments were investigated in Lake Yangcheng, a eutrophic lake in China. Results showed that the average concentrations of each metal in the surface sediments generally exceeded their corresponding background values. Higher values were observed in deeper zones, supporting the retention and accumulation of heavy metals in the core sediments. The spatial distributions of metal averages, pollution load index (PLI), and combined ecological risk index (RI) revealed that ecological risks were highest in the west lake, followed by middle lake, and were lowest in the east section. For the temporal variations of metal contents, the highest concentration was usually observed in the winter. However, the seasonal dynamics of Hg showed a different pattern with higher values in the autumn and lower values in the winter. According to contamination factor (CF), the Hg and Sb contaminations were considerable, while the other metals were moderate contamination. In terms of geoaccumulation index (Igeo) values, sediments were moderately–heavily polluted by Sb and moderately polluted by Hg, Cd, and Ni. Meanwhile, Hg exhibited a considerable health risk, while Cd and Sb were moderate risks, based on single ecological risk index (Er) values. Significant positive correlations among heavy metals and principal component analysis (PCA) indicated that anthropogenic activities were major sources. The source of Sb might be different from other metals, with industrial discharge as the main loading. This study highlighted the urgency of taking measures to prevent Hg, Sb, and Cd pollutions in Lake Yangcheng, especially the west region of this lake.
Collapse
|
11
|
Zheng X, Jiang W, Zhang L, Abasubong KP, Zhang D, Li X, Jiang G, Chi C, Liu W. Protective effects of dietary icariin on lipopolysaccharide-induced acute oxidative stress and hepatopancreas injury in Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109192. [PMID: 34597777 DOI: 10.1016/j.cbpc.2021.109192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
To investigate the effects of dietary icariin (ICA) supplementation on acute oxidative stress and hepatopancreatic injury induced by lipopolysaccharide (LPS) injection in Eriocheir sinensis, an 8-week feeding trial of crabs was conducted using 4 diets with different supplementation levels of ICA (0, 50, 100, and 200 mg/kg diet weight, respectively), and then challenged with LPS of 400 μg/kg body weight for 6 h. Results showed that 100 mg/kg ICA supplementation increased the antioxidant capacity, reduced the stress-related indicators in haemolymph, strengthen the mitochondrial membrane potential, and reduce apoptosis compared to the single LPS-treated crabs. The expressions of apoptosis-related genes and proteins were also evaluated to further understand the effects of dietary ICA pretreatment on LPS-induced cell apoptosis. As a result, dietary 100 mg/kg diet weight ICA pre-addition significantly down-regulated the expression of HSP60, HSP70, Caspase 3c, Caspase 8, Caspase 3, Caspase 9, P38, and Bax (P < 0.05), and alleviated the suppressed expression of PI3K, AKT, MEK, and Bcl-2 (P < 0.05) in crabs challenged with LPS. Overall, this research reveals that ICA supplementation of 100 mg/kg diet weight could enhance the resistance to oxidative damage and apoptosis in E. sinensis facing LPS challenge.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Weibo Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Kenneth P Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
12
|
Zhang H, Zhang H, Zhao L, Zhou B, Li P, Liu B, Wang Y, Yang C, Huang K, Zhang C. Ecosystem impact and dietary exposure of polychlorinated biphenyls (PCBs) and heavy metals in Chinese mitten crabs (Eriocheir sinensis) and their farming areas in Jiangsu, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112936. [PMID: 34755631 DOI: 10.1016/j.ecoenv.2021.112936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the presence of 18 dioxin-like and non-dioxin-like polychlorinated biphenyls (dl- and ndl-PCBs), heavy metals (Cd, Hg, Pb, and As) in Chinese mitten crabs (Eriocheir sinensis) and their distribution in Jiangsu, China. Risk assessment and source apportionment were employed for evaluating the eco-toxicological impact and human exposure. It was found that the compositions of PCBs varied spatially, suggesting different sources of pollutants, whilst PCB 28, 105, 114, and 126 were consistently found in all sample types, suggesting a common pollution source remained, and the bio-accumulation process was in effect. The total PCBs in sediment were found much higher than in water, and brown meat had the highest and most diverse PCB congeners among all tissues. The presence of heavy metals was found in all samples in descending order of As>Cd>Pb>Hg and in the order of shell>brown meat>white meat>gill for crabs. The results of risk assessment indicated that the potential carcinogenic and non-carcinogenic risks were within the acceptable range for long-term consumption of the crabs overall. However, the highest toxic equivalent (TEQ), carcinogenic, and non-carcinogenic risks were all recorded in Location C, where dl-PCB 126, 169, and As contributed to the majority of the risks. The ecological risk posed by all HMs was low, but cases of serious point source pollution have been found in the investigated regions, and risks caused by Cd individually should raise concerns. Source apportionment study revealed that the contaminants mostly originated from anthropogenic activities. Natural deposition and transportation played an important role as well.
Collapse
Affiliation(s)
- Hanxiaoya Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China; School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Haoran Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China; College of Plant protection, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, PR China
| | - Ling Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China; College of Plant protection, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, PR China
| | - Beilei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China
| | - Pan Li
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China
| | - Beibei Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China
| | - Yulong Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China
| | - Cuifeng Yang
- Taiyuan University, 030032 Taiyuan, Shanxi, PR China
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China; College of Plant protection, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|