1
|
Kumar D, Kumari V, Kumar D. Organs-specific metabolomics and anticholinesterase activity suggests a trade-off between metabolites for therapeutic advantages of Trillium govanianum Wall. ex D. Don. Sci Rep 2024; 14:10675. [PMID: 38724667 PMCID: PMC11082168 DOI: 10.1038/s41598-024-61160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Trillium govanianum is traditionally used to treat innumerable alignments like sexual disorders, cancer, inflammation etc. Mainly rhizomes of T. govanianum have been explored for phytochemical profiling but comprehensive metabolomics of other parts has not been yet deeply investigated. Thus, current study was aimed for organs-specific (roots, rhizomes, rhizomatous buds, stems, leaves, and fruits) phytochemical profiling of T. govanianum via metabolomics approach. Targeted (steroidal saponins and free sugars) and non-targeted metabolomics were performed by UPLC-PDA/ELSD & UHPLC-Q-TOF-IMS. Among steroidal compounds, 20-hydroxyecdysone, pennogenin-3-O-β-chacotrioside, dioscin were found predominantly in all samples while diosgenin was identified only in rhizomes. Further, four free sugars viz. 2-deoxyribose (116.24 ± 1.26 mg/g: leaves), fructose (454.76 ± 12.14 mg/g: rhizomes), glucose (243.21 ± 7.53 mg/g: fruits), and galactose (69.06 ± 2.14 mg/g: fruits) were found significant in respective parts of T. govanianum. Elemental analysis of targeted samples was determined by atomic absorption spectrophotometer. Heavy metals (Cd, Hg, Pd, As) were absent while micro- (Mn, Na, Zn, Cu) and macro- (Ca, Fe, Mg, K) elements were found in all samples. Furthermore, UHPLC-Q-TOF-IMS had identified 103 metabolites based on their mass fragmentation patterns and 839 were tentatively predicted using METLIN database. The multivariate statistical analysis showed organs specific clustering and variance of metabolites. Apart from this, extracts were evaluated for in vitro anticholinesterase activity, and found potentials inhibitors with IC50 values 2.02 ± 0.15 to 27.65 ± 0.89 mg/mL and 3.58 ± 0.12 to 16.81 ± 2.48 mg/mL of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzyme, respectively. Thus, comprehensive metabolomics and anti-cholinesterase activity of different parts of T. govanianum would lay the foundation for improving medicinal importance and health benefits of T. govanianum.
Collapse
Affiliation(s)
- Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176 061, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Vandana Kumari
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176 061, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176 061, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Dvorakova M, Soudek P, Pavicic A, Langhansova L. The traditional utilization, biological activity and chemical composition of edible fern species. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117818. [PMID: 38296173 DOI: 10.1016/j.jep.2024.117818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferns form an important part of the human diet. Young fern fiddleheads are mostly consumed as vegetables, while the rhizomes are often extracted for starch. These edible ferns are also often employed in traditional medicine, where all parts of the plant are used, mostly to prepare extracts. These extracts are applied either externally as lotions and baths or internally as potions, decoctions and teas. Ailments traditionally treated with ferns include coughs, colds, fevers, pain, burns and wounds, asthma, rheumatism, diarrhoea, or skin diseases (eczema, rashes, itching, leprosy). AIM OF THE REVIEW This review aims to compile the worldwide knowledge on the traditional medicinal uses of edible fern species correlating to reported biological activities and isolated bioactive compounds. MATERIALS AND METHODS The articles and books published on edible fern species were searched through the online databases Web of Science, Pubmed and Google Scholar, with critical evaluation of the hits. The time period up to the end of 2022 was included. RESULTS First, the edible fern species were identified based on the literature data. A total of 90 fern species were identified that are eaten around the world and are also used in traditional medicine. Ailments treated are often associated with inflammation or bacterial infection. However, only the most common and well-known fern species, were investigated for their biological activity. The most studied species are Blechnum orientale L., Cibotium barometz (L.) J. Sm., Diplazium esculentum (Retz.) Sw., Marsilea minuta L., Osmunda japonica Thunb., Polypodium vulgare L., and Stenochlaena palustris (Burm.) Bedd. Most of the fern extracts have been studied for their antioxidant, anti-inflammatory and antimicrobial activities. Not surprisingly, antioxidant capacity has been the most studied, with results reported for 28 edible fern species. Ferns have been found to be very rich sources of flavonoids, polyphenols, polyunsaturated fatty acids, carotenoids, terpenoids and steroids and most of these compounds are remarkable free radical scavengers responsible for the outstanding antioxidant capacity of fern extracts. As far as clinical trials are concerned, extracts from only three edible fern species have been evaluated. CONCLUSIONS The extracts of edible fern species exert antioxidant anti-inflammatory and related biological activities, which is consistent with their traditional medicinal use in the treatment of wounds, burns, colds, coughs, skin diseases and intestinal diseases. However, studies to prove pharmacological activities are scarce, and require chemical-biological standardization. Furthermore, correct botanical classification needs to be included in publications to simplify data acquisition. Finally, more in-depth phytochemical studies, allowing the linking of traditional use to pharmacological relevance are needed to be done in a standardized way.
Collapse
Affiliation(s)
- Marcela Dvorakova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Petr Soudek
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Antonio Pavicic
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic; Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005, Hradec Králové, Czech Republic.
| | - Lenka Langhansova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| |
Collapse
|
3
|
Saleem H, Yaqub A, Rafique R, Ali Chohan T, Malik DES, Tousif MI, Khurshid U, Ahemad N, Ramasubburayan R, Rengasamy KR. Nutritional and medicinal plants as potential sources of enzyme inhibitors toward the bioactive functional foods: an updated review. Crit Rev Food Sci Nutr 2023; 64:9805-9828. [PMID: 37255100 DOI: 10.1080/10408398.2023.2217264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Enzymes are biologically active complex protein molecules that catalyze most chemical reactions in living organisms, and their inhibitors accelerate biological processes. This review emphasizes medicinal food plants and their isolated chemicals inhibiting clinically important enzymes in common diseases. A mechanistic overview was investigated to explain the mechanism of these food bases enzyme inhibitors. The enzyme inhibition potential of medicinal food plants and their isolated substances was searched in Ovid, PubMed, Science Direct, Scopus, and Google Scholar. Cholinesterase, amylase, glucosidase, xanthine oxidase, tyrosinase, urease, lipoxygenase, and others were inhibited by crude extracts, solvent fractions, or isolated pure chemicals from medicinal food plants. Several natural compounds have shown tyrosinase inhibition potential, including quercetin, glabridin, phloretin-4-O-β-D-glucopyranoside, lupinalbin, and others. Some of these compounds' inhibitory kinetics and molecular mechanisms are also discussed. Phenolics and flavonoids inhibit enzyme activity best among the secondary metabolites investigated. Several studies showed flavonoids' significant antioxidant and anti-inflammatory activities, highlighting their medicinal potential. Overall, many medicinal food plants, their crude extracts/fractions, and isolated compounds have been studied, and some promising compounds depending on the enzyme have been found. Still, more studies are recommended to derive potential pharmacologically active functional foods.
Collapse
Affiliation(s)
- Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Anam Yaqub
- Fatima Memorial Medical and Dental College, Lahore, Pakistan
| | | | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Durr-E-Shahwar Malik
- Institute of Pharmaceutical Sciences, Peoples University of Medical and Health Sciences, NawabShah, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Pakistan
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ramasamy Ramasubburayan
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Department of Prosthodotics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kannan Rr Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
4
|
Shahanaj I, Ramakrishnan J, Poomani K, Devarajan N. Lawsonia inermis flower aqueous extract expressed better anti-alpha-glucosidase and anti-acetylcholinesterase activity and their molecular dynamics. J Biomol Struct Dyn 2023; 41:13752-13765. [PMID: 36905654 DOI: 10.1080/07391102.2023.2179546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/13/2023]
Abstract
Lawsonia inermis (henna) has been used in traditional medicine throughout the world and biological property of its flower has been least explored. In the present study, the phytochemical characterization and biological activity (in vitro radical scavenging activity, anti-alpha glucosidase and anti-acetylcholinesterase) of aqueous extract prepared from henna flower (HFAE) was carried out by both Qualitative and quantitative phytochemical analysis and Fourier-transform infrared spectroscopy revealed the functional group of the phytoconstituents such as phenolics, flavonoids, saponin, tannins and glycosides. The phytochemicals present in HFAE was preliminary identified by liquid chromatography/electrospray ionization tandem mass spectrometry. The HFAE showed potent in vitro antioxidant activity and the HFAE inhibited mammalian α-glucosidase (IC50 = 129.1 ± 5.3 µg/ml; Ki = 38.92 µg/ml) and acetylcholinesterase (AChE; IC50 = 137.77 ± 3.5 µg/ml; Ki = 35.71 µg/ml) activity by competitive manner. In silico molecular docking analysis revealed the interaction of active constituents identified in HFAE with human α-glucosidase and AChE. Molecular dynamics simulation for 100 ns showed the stable binding of top two ligand/enzyme complexes with lowest binding energy such as 1,2,3,6-Tetrakis-O-galloyl-beta-D-glucose (TGBG)/human α-glucosidase, Kaempferol 3-glucoside-7-rhamnoside (KGR)/α-glucosidase, agrimonolide 6-O-β-D-glucopyranoside (AMLG)/human AChE and KGR/AChE. Through MM/GBSA analysis, the binding energy for TGBG/human α-glucosidase, KGR/α-glucosidase, AMLG/human AChE and KGR/AChE was found to be -46.3216, -28.5772, -45.0077 and -47.0956 kcal/mol, respectively. Altogether, HFAE showed an excellent antioxidant, anti-alpha glucosidase and anti-AChE activity under in vitro. This study suggest HFAE with remarkable biological activities could be further explored for therapeutics against type 2 diabetes and diabetes-associated cognitive decline.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ismail Shahanaj
- Natural Drug Research Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India
| | - Jaganathan Ramakrishnan
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, Tamil Nadu, India
| | - Kumaradhas Poomani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, Tamil Nadu, India
| | - Natarajan Devarajan
- Natural Drug Research Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
5
|
Chear NJY, Ching-Ga TAF, Khaw KY, León F, Tan WN, Yusof SR, McCurdy CR, Murugaiyah V, Ramanathan S. Natural Corynanthe-Type Cholinesterase Inhibitors from Malaysian Uncaria attenuata Korth.: Isolation, Characterization, In Vitro and In Silico Studies. Metabolites 2023; 13:metabo13030390. [PMID: 36984830 PMCID: PMC10059728 DOI: 10.3390/metabo13030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
The Uncaria genus is notable for its therapeutic potential in treating age-related dementia, such as Alzheimer’s disease. A phytochemical study of the leaves of Malaysian Uncaria attenuata Korth., afforded an undescribed natural corynanthe-type oxindole alkaloid, isovillocarine D (1) together with two known indole alkaloids, villocarine A (2) and geissoschizine methyl ether (3), and their structural identification was performed with extensive mono- and bidimensional NMR and MS spectroscopic methods. The isolated alkaloids were evaluated for their acetylcholinesterase (AChE)- and butyrylcholinesterase (BChE)-inhibitory activity. The results indicated that compound (2) was the most potent inhibitor against both AChE and BChE, with IC50 values of 14.45 and 13.95 µM, respectively, whereas compounds (1) and (3) were selective BChE inhibitors with IC50 values of 35.28 and 17.65 µM, respectively. In addition, molecular docking studies revealed that compound (2) interacts with the five main regions of AChE via both hydrogen and hydrophobic bonding. In contrast to AChE, the interactions of (2) with the enzymatic site of BChE are established only through hydrophobic bonding. The current finding suggests that U. attenuata could be a good source of bioactive alkaloids for treating age-related dementia.
Collapse
Affiliation(s)
| | - Tan Ai Fein Ching-Ga
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Kooi-Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29201, USA
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Siti R. Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence: (V.M.); (S.R.)
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence: (V.M.); (S.R.)
| |
Collapse
|
6
|
Aly SH, Eldahshan OA, Al-Rashood ST, Binjubair FA, El Hassab MA, Eldehna WM, Dall’Acqua S, Zengin G. Chemical Constituents, Antioxidant, and Enzyme Inhibitory Activities Supported by In-Silico Study of n-Hexane Extract and Essential Oil of Guava Leaves. Molecules 2022; 27:molecules27248979. [PMID: 36558111 PMCID: PMC9781903 DOI: 10.3390/molecules27248979] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Psidium guajava (Guava tree) is one of the most widely known species in the family Myrtaceae. The Guava tree has been reported for its potential antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities. In the current study, the chemical compositions of the n-hexane extract and the essential oil of P. guajava were investigated using the GC/MS analysis, along with an evaluation of their antioxidant potential, and an investigation into the enzyme inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BchE), tyrosinase, α-amylase, and α-glucosidase. Moreover, molecular docking of the major identified active sites of the target enzymes were investigated. The chemical characterization of the n-hexane extract and essential oil revealed that squalene (9.76%), α-tocopherol (8.53%), and γ-sitosterol (3.90%) are the major compounds in the n-hexane extract. In contrast, the major constituents of the essential oil are D-limonene (36.68%) and viridiflorol (9.68%). The n-hexane extract showed more antioxidant potential in the cupric reducing antioxidant capacity (CUPRAC), the ferric reducing power (FRAP), and the metal chelating ability (MCA) assays, equivalent to 70.80 ± 1.46 mg TE/g, 26.01 ± 0.97 mg TE/g, and 24.83 ± 0.35 mg EDTAE/g, respectively. In the phosphomolybdenum (PM) assay, the essential oil showed more antioxidant activity equivalent to 2.58 ± 0.14 mmol TE/g. The essential oil demonstrated a potent BChE and tyrosinase inhibitory ability at 6.85 ± 0.03 mg GALAE/g and 61.70 ± 3.21 mg KAE/g, respectively. The α-amylase, and α-glucosidase inhibitory activity of the n-hexane extract and the essential oil varied from 0.52 to 1.49 mmol ACAE/g. Additionally, the molecular docking study revealed that the major compounds achieved acceptable binding scores upon docking with the tested enzymes. Consequently, the P. guajava n-hexane extract and oil can be used as a promising candidate for the development of novel treatment strategies for oxidative stress, neurodegeneration, and diabetes mellitus diseases.
Collapse
Affiliation(s)
- Shaza H. Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Omayma A. Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (O.A.E.); (G.Z.)
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faizah A. Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
- Correspondence: (O.A.E.); (G.Z.)
| |
Collapse
|
7
|
Free Radical Scavenging, Anti-Infectious, and Toxicity Activities from Stenochlaena palustris (Burm.f.) Bedd. Extracts. Adv Pharmacol Pharm Sci 2022; 2022:5729217. [PMID: 36389123 PMCID: PMC9643064 DOI: 10.1155/2022/5729217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022] Open
Abstract
Stenochlaena palustris (Burm.f.) Bedd. (Blechnaceae) or Kelakai is a traditional medicinal plant found in the Indonesian islands of Borneo and Sumatra. It has been used to treat wound healing, infection, and diabetes. This study looked into the free radical scavenging activity, antiplasmodial activity, toxicity, and antibacterial activity against pathogenic bacteria. The species' aerial part was extracted with methanol, followed by a liquid-liquid extraction against (n-hexane, dichloromethane, and ethyl acetate). The extracts' free radical scavenging activities were determined using DPPH and NO radicals. The antiplasmodial and toxicity assays were conducted using two Plasmodium falciparum strains (3D7 and W2) and the brine shrimp lethality test. In addition, antibacterial activity was determined using the well diffusion method. The results revealed that ethyl acetate depicted potential activities toward the assay. The ethyl acetate showed potential free radical scavenging activities with an IC50 value of 51.63 ± 0.46 μg/mL (DPPH) and 60.03 ± 0.65 μg/mL (NO). The antiplasmodial activities showed that the ethyl acetate had potential activities among the extracts with an IC50 value of 11.06 ± 0.45 μg/mL. However, all the extracts demonstrated nontoxic toward Artemia salina with LC50 > 1000 μg/mL. Furthermore, the ethyl acetate demonstrated intermediate susceptibility against B. cereus ATCC 10876, V. parahaemolyticus ATCC 17802, L. monocytogenes ATCC 7644, and S. Typhimurium ATCC 14028 at a concentration of 500 μg/disc. According to these findings, the ethyl acetate extract of S. palustris (Burm.f.) Bedd is a promising source of natural antioxidants and antiplasmodial agents.
Collapse
|
8
|
Bajracharya GB, Bajracharya B. A comprehensive review on Nepalese wild vegetable food ferns. Heliyon 2022; 8:e11687. [DOI: 10.1016/j.heliyon.2022.e11687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
|
9
|
Unveiling Natural and Semisynthetic Acylated Flavonoids: Chemistry and Biological Actions in the Context of Molecular Docking. Molecules 2022; 27:molecules27175501. [PMID: 36080269 PMCID: PMC9458193 DOI: 10.3390/molecules27175501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Acylated flavonoids are widely distributed natural metabolites in medicinal plants and foods with several health attributes. A large diversity of chemical structures of acylated flavonoids with interesting biological effects was reported from several plant species. Of these, 123 compounds with potential antimicrobial, antiparasitic, anti-inflammatory, anti-nociceptive, analgesic, and anti-complementary effects were selected from several databases including SCI-Finder, Scopus, Google Scholar, Science Direct, PubMed, and others. Some selected reported biologically active flavonoids were docked in the active binding sites of some natural enzymes, namely acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, aldose reductase, and HIV integrase, in an attempt to underline the key interactions that might be responsible for their biological activities.
Collapse
|
10
|
Farràs A, Mitjans M, Maggi F, Caprioli G, Vinardell MP, López V. Polypodium vulgare L. ( Polypodiaceae) as a Source of Bioactive Compounds: Polyphenolic Profile, Cytotoxicity and Cytoprotective Properties in Different Cell Lines. Front Pharmacol 2021; 12:727528. [PMID: 34603041 PMCID: PMC8482143 DOI: 10.3389/fphar.2021.727528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Pteridophytes, represented by ferns and allies, are an important phytogenetic bridge between lower and higher plants. Ferns have evolved independently of any other species in the plant kingdom being its secondary metabolism a reservoir of phytochemicals characteristic of this taxon. The study of the potential uses of Polypodium vulgare L. (Polypodiaceae) as medicinal plant has increased in recent years particularly when in 2008 the European Medicines Agency published a monograph about the rhizome of this species. Our objective is to provide scientific knowledge on the polar constituents extracted from the fronds of P. vulgare, one of the main ferns of European distribution, to contribute to the validation of certain traditional uses. Specifically, we have characterized the methanolic extract of P. vulgare fronds (PVM) by HPLC-DAD and investigated its potential cytotoxicity, phototoxicity, ROS production and protective effects against oxidative stress by using in vitro methods. The 3T3, HaCaT, HeLa, HepG2, MCF-7 and A549 were the cell lines used to evaluate the possible cytotoxic behaviour of the PVM. HPLC-DAD was utilized to validate the polyphenolic profile of the extract. H2O2 and UVA were the prooxidant agents to induce oxidative stress by different conditions in 3T3 and HaCaT cell lines. Antioxidant activity of in vitro PVM in 3T3 and HaCaT cell lines was evaluated by ROS assay. Our results demonstrate that PVM contains significant amounts of shikimic acid together with caffeoylquinic acid derivatives and flavonoids such as epicatechin and catechin; PVM is not cytotoxic at physiological concentrations against the different cell lines, showing cytoprotective and cellular repair activity in 3T3 fibroblast cells. This biological activity could be attributed to the high content of polyphenolic compounds. The fronds of the P. vulgare are a source of polyphenolic compounds, which can be responsible for certain traditional uses like wound healing properties. In the present work, fronds of the common polypody are positioned as a candidate for pharmaceutical applications based on traditional medicine uses but also as potential food ingredients due to lack of toxicity at physiological concentrations.
Collapse
Affiliation(s)
- Adrià Farràs
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
| | - Montserrat Mitjans
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Filippo Maggi
- School of Pharmacy, Università di Camerino, Camerino, Italy
| | | | - María Pilar Vinardell
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
11
|
Tamfu AN, Kucukaydin S, Yeskaliyeva B, Ozturk M, Dinica RM. Non-Alkaloid Cholinesterase Inhibitory Compounds from Natural Sources. Molecules 2021; 26:5582. [PMID: 34577053 PMCID: PMC8472022 DOI: 10.3390/molecules26185582] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder of different brain regions accompanied by distresses and affecting more than 25 million people in the world. This progressive brain deterioration affects the central nervous system and has negative impacts on a patient's daily activities such as memory impairment. The most important challenge concerning AD is the development of new drugs for long-term treatment or prevention, with lesser side effects and greater efficiency as cholinesterases inhibitors and the ability to remove amyloid-beta(Aβ) deposits and other related AD neuropathologies. Natural sources provide promising alternatives to synthetic cholinesterase inhibitors and many have been reported for alkaloids while neglecting other classes with potential cholinesterase inhibition. This review summarizes information about the therapeutic potential of small natural molecules from medicinal herbs, belonging to terpenoids, coumarins, and phenolic compounds, and others, which have gained special attention due to their specific modes of action and their advantages of low toxicity and high efficiency in the treatment of AD. Some show superior drug-like features in comparison to synthetic cholinesterase inhibitors. We expect that the listed phytoconstituents in this review will serve as promising tools and chemical scaffolds for the discovery of new potent therapeutic leads for the amelioration and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Alfred Ngenge Tamfu
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, 454 Ngaoundere, Cameroon
- Department of Chemistry, Mugla Sitki Kocman University, Mugla 48000, Turkey; (B.Y.); (M.O.)
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey;
| | - Balakyz Yeskaliyeva
- Department of Chemistry, Mugla Sitki Kocman University, Mugla 48000, Turkey; (B.Y.); (M.O.)
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Mehmet Ozturk
- Department of Chemistry, Mugla Sitki Kocman University, Mugla 48000, Turkey; (B.Y.); (M.O.)
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|
12
|
Molo Z, Tel-Çayan G, Deveci E, Öztürk M, Duru ME. Insight into isolation and characterization of compounds of Chaerophyllum bulbosum aerial part with antioxidant, anticholinesterase, anti-urease, anti-tyrosinase, and anti-diabetic activities. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Khor BK, Chear NJY, Azizi J, Khaw KY. Chemical Composition, Antioxidant and Cytoprotective Potentials of Carica papaya Leaf Extracts: A Comparison of Supercritical Fluid and Conventional Extraction Methods. Molecules 2021; 26:molecules26051489. [PMID: 33803330 PMCID: PMC7967148 DOI: 10.3390/molecules26051489] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
The leaves of Carica papaya (CP) are rich in natural antioxidants. Carica papaya has traditionally been used to treat various ailments, including skin diseases. This study aims to decipher the antioxidant effects and phytochemical content of different CP leaf extracts (CPEs) obtained using supercritical carbon dioxide (scCO2) and conventional extraction methods. The antioxidant activities of CPEs were evaluated by cell-free (1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric-reduced antioxidative power (FRAP)) and cell-based (H2O2) assay. Both C. papaya leaf scCO2 extract with 5% ethanol (CPSCE) and C. papaya leaf scCO2 extract (CPSC) exhibited stronger DPPH radical scavenging activity than conventional extracts. In the FRAP assay, two hydrophilic extracts (C. papaya leaf ethanol extract (CPEE) and C. papaya freeze-dried leaf juice (CPFD)) showed relatively stronger reducing power compared to lipophilic extracts. Cell-based assays showed that CPFD significantly protected skin fibroblasts from H2O2-induced oxidative stress in both pre-and post-treatment. CPEE protected skin fibroblasts from oxidative stress in a dose-dependent manner while CPSCE significantly triggered the fibroblast recovery after treatment with H2O2. GC-MS analysis indicated that CPSCE had the highest α-tocopherol and squalene contents. By contrast, both CP hydrophilic extracts (CPEE and CPFD) had a higher total phenolic content (TPC) and rutin content than the lipophilic extracts. Overall, CPEs extracted using green and conventional extraction methods showed antioxidative potential in both cell-based and cell-free assays due to their lipophilic and hydrophilic antioxidants, respectively.
Collapse
Affiliation(s)
- Boon-Keat Khor
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| | | | - Juzaili Azizi
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
- Correspondence: (J.A.); (K.-Y.K.)
| | - Kooi-Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Correspondence: (J.A.); (K.-Y.K.)
| |
Collapse
|
14
|
Alagasamy SV, Ramanathan S, Chear NJY, Tan WN, Ramachandram DS, Ching-Ga AFT, Ponnusamy Y, Lai CS, Murugaiyah V. The potentiation of beta-lactam and anti-bacterial activities of lipophilic constituents from Mesua ferrae leaves against methicillin-resistant Staphylococcus aureus. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:339-345. [PMID: 34187118 DOI: 10.1515/jcim-2019-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 06/23/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Mesua ferrae, from the family of Calophyllaceae, is traditionally used for the treatment of piles, fever and renal disorders. The present study was aimed to examine the antibacterial compounds from the leaves of M. ferrae and their β-lactam antibiotic potentiate activities against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). METHODS Stigmasterol (1) and β-caryophyllene oxide (2) were isolated from the n-hexane fraction of the leaves of M. ferrae using a bioassay-guided fractionation approach. RESULTS The isolated compounds displayed anti-Staphylococcus and anti-MRSA activities. It is worth to note that both compounds demonstrated synergism with β-lactam antibiotics against S. aureus and MRSA. Gas chromatography-mass spectrometry (GC-MS) analysis indicated the n-hexane fraction was dominated by triterpenes and sesquiterpenes, suggesting the total antibacterial activity exhibited by the fraction. CONCLUSION Based on the findings, it could conclude that M. ferrae is a promising natural source for the discovery of new anti-MRSA lead compounds.
Collapse
Affiliation(s)
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | - Yasodha Ponnusamy
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Choon-Sheen Lai
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | | |
Collapse
|
15
|
Abbas-Mohammadi M, Moridi Farimani M, Salehi P, Ebrahimi SN, Sonboli A, Kelso C, Skropeta D. Molecular networking based dereplication of AChE inhibitory compounds from the medicinal plant Vincetoxicum funebre (Boiss. & Kotschy). J Biomol Struct Dyn 2020; 40:1942-1951. [PMID: 33054569 DOI: 10.1080/07391102.2020.1834455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease affecting 47 million people worldwide. While acetylcholinesterase (AChE) inhibitors such as donepezil and galantamine are leading drugs in the symptomatic treatment of AD, new AChE inhibitors continue to be explored for improved potency and selectivity. Herein, a molecular networking approach using high resolution (HR-MS) and tandem mass spectrometry (MS2) has been used for rapid chemical profiling of an extract of the medicinal plant Vincetoxicum funebre Boiss. & Kotschy (Apocynaceae family) that was active against AChE. A total of 44 compounds were identified by combining the MN with traditional natural product methods, including the isolation and identification of five known compounds (13, 41-44) and a novel C13-norisoprenoid (40). In addition, the potential inhibitory activity of all 44 compounds was evaluated against the AChE enzyme via molecular docking to provide further support to the proposed structures. The glycosylated flavonoid querciturone (31) exhibited the highest affinity with a docking score value of -13.43 kJ/mol. Another five compounds showed stronger docking scores against AChE than the clinically used donepezil including the most active isolated compound daucosterol (44), with a binding affinity of -10.11 kJ/mol towards AChE. These findings broaden our understanding of Vincetoxicum metabolites and highlight the potential of glycosylated flavonoids as AChE inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahdi Abbas-Mohammadi
- Department of Phytochemistry, Medicinal Plants & Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.,School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants & Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants & Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants & Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Ali Sonboli
- Department of Phytochemistry, Medicinal Plants & Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Celine Kelso
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health & Medical Research Institute, Wollongong, NSW, Australia
| | - Danielle Skropeta
- School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health; Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health & Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Free Radical Scavenging and Cytotoxic Properties of Acylated and Non-Acylated Kaempferol Glycosides from Stenochlaena Palustris: a Perspective on Their Structure – Activity Relationships. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01977-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Optimization of ultrasound-assisted extraction of total phenolic contents and antioxidant activity using response surface methodology from jujube leaves (Ziziphus jujuba) and evaluation of anticholinesterase inhibitory activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9947-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
HPTLC-FLD-SERS as a facile and reliable screening tool: Exemplarily shown with tyramine in cheese. J Food Drug Anal 2018; 26:688-695. [PMID: 29567239 PMCID: PMC9322226 DOI: 10.1016/j.jfda.2017.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 12/15/2022] Open
Abstract
The serious cytotoxicity of tyramine attracted marked attention as it induced necrosis of human intestinal cells. This paper presented a novel and facile high performance thin-layer chromatography (HPTLC) method tailored for screening tyramine in cheese. Separation was performed on glass backed silica gel plates, using methanol/ethyl acetate/ ammonia (6/4/1 v/v/v) as the mobile phase. Special efforts were focused on optimizing conditions (substrate preparation, laser wavelength, salt types and concentrations) of surface enhanced Raman spectroscopy (SERS) measurements directly on plates after derivatization, which enabled molecule-specific identification of targeted bands. In parallel, fluorescent densitometry (FLD) scanning at 380</400 nm offered satisfactory quantitative performances (LOD 9 ng/zone, LOQ 17 ng/zone, linearity 0.9996 and %RSD 6.7). Including a quick extraction/cleanup step, the established method was successfully validated with different cheese samples, both qualitatively (straightforward confirmation) and quantitatively (recovery rates from 83.7 to 108.5%). Beyond this application, HPTLC-FLD-SERS provided a new horizon in fast and reliable screening of sophisticated samples like food and herb drugs, striking an excellent balance between specificity, sensitivity and simplicity.
Collapse
|
19
|
Singh D, Müller CP, Murugaiyah V, Hamid SBS, Vicknasingam BK, Avery B, Chear NJY, Mansor SM. Evaluating the hematological and clinical-chemistry parameters of kratom (Mitragyna speciosa) users in Malaysia. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:197-206. [PMID: 29248450 DOI: 10.1016/j.jep.2017.12.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kratom (Mitragyna speciosa Korth.) from the Rubiaceae family is an indigenous tropical medicinal tree of Southeast Asia. Kratom leaves have been used for decades in Malaysia and Thailand in traditional context for its perceived vast medicinal value, and as a mild stimulant among manual labourers. Kratom consumption has been reported to cause side-effects in kratom users. AIM OF THE STUDY To evaluate kratom's effects towards hematological and clinical-chemistry parameters among regular kratom users in Malaysia. METHODS A total of 77 subjects (n=58 regular kratom users, and n=19 healthy controls) participated in this cross-sectional study. All the surveys were conducted through face-to-face interview to elicit subject's socio-demographic characteristics and kratom use history. A full-blood test was also administered. Laboratory analysis was conducted using GC-MS to determine mitragynine content in the acquired kratom samples in order to relate mitragynine consumption with possible alterations in the blood parameters of kratom users. RESULTS Findings showed that there were no significant differences in the hematological and clinical-chemistry parameters of traditional kratom users and healthy controls, except for HDL and LDL cholesterol values; these were found to be above the normal reference range for the former. Similarly, long-term kratom consumption (>5 years), and quantity of daily kratom use (≥3 ½ glasses; mitragynine content 76.3-114.8mg) did not appear to alter the hematological and biochemical parameters of kratom users. CONCLUSION These data suggest that even long-term and heavy kratom consumption did not significantly alter the hematological and clinical-chemistry parameters of kratom users in a traditional setting.
Collapse
Affiliation(s)
- Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Vikneswaran Murugaiyah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Shahrul Bariyah Sahul Hamid
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | | | - Bonnie Avery
- College of Pharmacy, University of Florida, Gainesville 32610, United States
| | | | | |
Collapse
|
20
|
Qi L, Zhang J, Zhao Y, Zuo Z, Wang YZ, Jin H. Characterization of Gentiana rigescens by Ultraviolet–Visible and Infrared Spectroscopies with Chemometrics. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1225751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- LuMing Qi
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
- Yunnan Academy of Agricultural Sciences, Institute of Medicinal Plants, Kunming, China
| | - Ji Zhang
- Yunnan Academy of Agricultural Sciences, Institute of Medicinal Plants, Kunming, China
| | - YanLi Zhao
- Yunnan Academy of Agricultural Sciences, Institute of Medicinal Plants, Kunming, China
| | - ZhiTian Zuo
- Yunnan Academy of Agricultural Sciences, Institute of Medicinal Plants, Kunming, China
| | - Yuan-Zhong Wang
- Yunnan Academy of Agricultural Sciences, Institute of Medicinal Plants, Kunming, China
| | - Hang Jin
- Yunnan Academy of Agricultural Sciences, Institute of Medicinal Plants, Kunming, China
| |
Collapse
|
21
|
Qi LM, Zhang J, Zhao YL, Zuo ZT, Jin H, Wang YZ. Quantitative and Qualitative Characterization of Gentiana rigescens Franch (Gentianaceae) on Different Parts and Cultivations Years by HPLC and FTIR Spectroscopy. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:3194146. [PMID: 28656121 PMCID: PMC5471563 DOI: 10.1155/2017/3194146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/20/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Gentiana rigescens Franch (Gentianaceae) is a famous medicinal plant for treatments of rheumatism, convulsion, and jaundice. Comprehensive investigation of different parts and cultivation years of this plant has not yet been conducted. This study presents the quantitative and qualitative characterization of iridoid glycosides from G. rigescens performed by HPLC and FTIR spectroscopy techniques. The accumulations of loganic acid, swertiamarin, gentiopicroside, and sweroside were determined. Results indicated that their content and distribution in different parts and cultivation years exhibit great variations. Gentiopicroside was identified as the most abundant compound among iridoid glycosides and its highest level was observed in the root of 2-year-old plant. With respect to qualitative variation of metabolic profile, the 1800-800 cm-1 band of FTIR spectra successfully discriminated different parts and cultivation years with the aid of PLS-DA. In addition, combined with PLSR, the feasibility of FTIR spectroscopy for determination of gentiopicroside was investigated by selecting characteristic wavelengths (1800-800 cm-1), which presented a good performance with a residual predictive deviation (RPD) of 3.646. Our results suggested that HPLC and FTIR techniques can complement each other and could be simultaneously applied for comparing and analyzing different parts and cultivation years of G. rigescens.
Collapse
Affiliation(s)
- Lu-Ming Qi
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Yunnan Technical Center for Quality of Chinese Materia Medica, Kunming 650200, China
| | - Ji Zhang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Yunnan Technical Center for Quality of Chinese Materia Medica, Kunming 650200, China
| | - Yan-Li Zhao
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Yunnan Technical Center for Quality of Chinese Materia Medica, Kunming 650200, China
| | - Zhi-Tian Zuo
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Yunnan Technical Center for Quality of Chinese Materia Medica, Kunming 650200, China
| | - Hang Jin
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Yunnan Technical Center for Quality of Chinese Materia Medica, Kunming 650200, China
| | - Yuan-Zhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Yunnan Technical Center for Quality of Chinese Materia Medica, Kunming 650200, China
| |
Collapse
|