1
|
Jiang S, Cai W, Luo C, Zhang F. The impact of renovation on the air quality in the stadium, and prevention of indoor air pollution. ENVIRONMENTAL RESEARCH 2024; 257:119332. [PMID: 38838753 DOI: 10.1016/j.envres.2024.119332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Indoor air quality is a critical factor influencing athletic performance, particularly in professional sports settings, yet its impact remains underexplored. This study utilizes a panel dataset from 2516 Chinese Basketball Association (CBA) matches across 20 cities in China between 2014 and 2019. We integrate daily air pollution metrics with player efficiency ratings (PER) to investigate the effects of air quality on individual performance. We find that a 10% increase in the air quality index (AQI) corresponds to a 1.4223 decrease in PER, indicating a strong negative effect of poor air quality on player productivity. Different pollutants have varying effects, with some exacerbating the decline in both overall performance and precision in tasks. Notably, older players and international players exhibit greater resilience to air pollution. These insights contribute to the development of a comprehensive index for assessing work efficiency under varying air quality conditions and suggest targeted strategies to mitigate the negative impacts of air pollution in competitive athletic settings.
Collapse
Affiliation(s)
- Shujun Jiang
- Chengdu Sport University, Chengdu, 610041, China
| | - Wenfei Cai
- School of Physical Education, Shenzhen University, Shenzhen, 518060, China.
| | - Cheng Luo
- Chengdu College of University of Electronic Science and Technology of China, Chengdu, 611731, China
| | | |
Collapse
|
2
|
Chien SC, Krumins JA. Anthropogenic effects on global soil nitrogen pools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166238. [PMID: 37586519 DOI: 10.1016/j.scitotenv.2023.166238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The amount of nitrogen stored in terrestrial soils, its "nitrogen pool", moderates biogeochemical cycling affecting primary productivity, nitrogen pollution and even carbon budgets. The soil nitrogen pools and the transformation of nitrogen forms within them are heavily influenced by environmental factors including anthropogenic activities. However, our understanding of the global distribution of soil nitrogen with respect to anthropogenic activity and human land use remains unclear. We constructed a meta-analysis from a global sampling, in which we compare soil total nitrogen pools and the driving mechanisms affecting each pool across three major classifications of human land use: natural, agricultural, and urban. Although the size of the nitrogen pool can be similar across natural, agricultural and urban soils, the ecological and human associated drivers vary. Specifically, the drivers within agricultural and urban soils as opposed to natural soils are more complex and often decoupled from climatic and soil factors. This suggests that the nitrogen pools of those soils may be co-moderated by other factors not included in our analyses, like human activities. Our analysis supports the notion that agricultural soils act as a nitrogen source while urban soils as a nitrogen sink and informs a modern understanding of the fates and distributions of anthropogenic nitrogen in natural, agricultural, and urban soils.
Collapse
Affiliation(s)
- Shih-Chieh Chien
- Doctoral Program in Environmental Science and Management, Montclair State University, Montclair, NJ, 07043, USA.
| | | |
Collapse
|
3
|
Rehman A, Kumari R, Kamthan A, Tiwari R, Srivastava RK, van der Westhuizen FH, Mishra PK. Cell-free circulating mitochondrial DNA: An emerging biomarker for airborne particulate matter associated with cardiovascular diseases. Free Radic Biol Med 2023; 195:103-120. [PMID: 36584454 DOI: 10.1016/j.freeradbiomed.2022.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The association of airborne particulate matter exposure with the deteriorating function of the cardiovascular system is fundamentally driven by the impairment of mitochondrial-nuclear crosstalk orchestrated by aberrant redox signaling. The loss of delicate balance in retrograde communication from mitochondria to the nucleus often culminates in the methylation of the newly synthesized strand of mitochondrial DNA (mtDNA) through DNA methyl transferases. In highly metabolic active tissues such as the heart, mtDNA's methylation state alteration impacts mitochondrial bioenergetics. It affects transcriptional regulatory processes involved in biogenesis, fission, and fusion, often accompanied by the integrated stress response. Previous studies have demonstrated a paradoxical role of mtDNA methylation in cardiovascular pathologies linked to air pollution. A pronounced alteration in mtDNA methylation contributes to systemic inflammation, an etiological determinant for several co-morbidities, including vascular endothelial dysfunction and myocardial injury. In the current article, we evaluate the state of evidence and examine the considerable promise of using cell-free circulating methylated mtDNA as a predictive biomarker to reduce the more significant burden of ambient air pollution on cardiovascular diseases.
Collapse
Affiliation(s)
- Afreen Rehman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Arunika Kamthan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | | | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
4
|
Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod Sci 2023; 30:442-463. [PMID: 35697921 PMCID: PMC9191883 DOI: 10.1007/s43032-022-00999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) approach answers questions surrounding the early events suffered by the mother during reproductive stages that can either partially or permanently influence the developmental programming of children, predisposing them to be either healthy or exhibit negative health outcomes in adulthood. Globally, vulnerable populations tend to present high obesity rates, including among school-age children and women of reproductive age. In addition, adults suffer from high rates of diabetes, hypertension, cardiovascular, and other metabolic diseases. The increase in metabolic outcomes has been associated with the combination of maternal womb conditions and adult lifestyle-related factors such as malnutrition and obesity, smoking habits, and alcoholism. However, to date, "new environmental changes" have recently been considered negative factors of development, such as maternal sedentary lifestyle, lack of maternal attachment during lactation, overcrowding, smog, overurbanization, industrialization, noise pollution, and psychosocial stress experienced during the current SARS-CoV-2 pandemic. Therefore, it is important to recognize how all these factors impact offspring development during pregnancy and lactation, a period in which the subject cannot protect itself from these mechanisms. This review aims to introduce the importance of studying DOHaD, discuss classical programming studies, and address the importance of studying new emerging programming mechanisms, known as actual lifestyle factors, during pregnancy and lactation.
Collapse
|
5
|
An Overview of the Latest Metabolomics Studies on Atopic Eczema with New Directions for Study. Int J Mol Sci 2022; 23:ijms23158791. [PMID: 35955924 PMCID: PMC9368995 DOI: 10.3390/ijms23158791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/21/2022] Open
Abstract
Atopic eczema (AE) is an inflammatory skin disorder affecting approximately 20% of children worldwide and early onset can lead to asthma and allergies. Currently, the mechanisms of the disease are not fully understood. Metabolomics, the analysis of small molecules in the skin produced by the host and microbes, opens a window to observe the mechanisms of the disease which then may lead to new drug targets for AE treatment. Here, we review the latest advances in AE metabolomics, highlighting both the lipid and non-lipid molecules, along with reviewing the metabolites currently known to reside in the skin.
Collapse
|
6
|
Lv M, Luo S, Tian Y, Lin C, Jiang L, Li L, Shi K. Controllable synthesis of a nanoparticle-modified thin-layer 3D flower-like CuZnAl-LDHs material with high NO 2 gas sensing performance at room temperature. NEW J CHEM 2022. [DOI: 10.1039/d2nj01470j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-dimensional flower-like CuZnAl-LDHs attached to nanoparticles were prepared by a one-step hydrothermal method with a detection limit of 30 ppb for NO2.
Collapse
Affiliation(s)
- Mingyue Lv
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Shuiting Luo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ye Tian
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, P. R. China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chong Lin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Lin Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, P. R. China
| | - Keying Shi
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
7
|
Protective Effect of Luminal Uric Acid Against Indomethacin-Induced Enteropathy: Role of Antioxidant Effect and Gut Microbiota. Dig Dis Sci 2022; 67:121-133. [PMID: 33569665 DOI: 10.1007/s10620-021-06848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Uric acid (UA) has anti- and pro-inflammatory properties. We previously revealed that elevated serum UA levels provide protection against murine small intestinal injury probably via luminal UA secreted in the small intestine. Luminal UA may act as an antioxidant, preventing microbiota vulnerability to oxidative stress. However, whether luminal UA is increased under hyperuricemia and plays a protective role in a dose-dependent manner as well as the mechanism by which luminal UA exerts its protective effects on enteropathy remains unknown. METHODS Inosinic acid (IMP) (1000 mg/kg, i.p.) was administered to obtain high serum UA (HUA) and moderate serum UA (500 mg/kg IMP, i.p.) mice. UA concentrations and levels of oxidative stress markers in the serum and intestine were measured. Mice received indomethacin (20 mg/kg, i.p.) to evaluate the effects of UA on indomethacin-induced enteropathy. Reactive oxygen species (ROS) on the ileal mucosa were analyzed. The fecal microbiota of HUA mice was transplanted to investigate its effect on indomethacin-induced enteropathy. RESULTS IMP increased luminal UA dose-dependently, with higher levels of luminal antioxidant markers. Indomethacin-induced enteropathy was significantly ameliorated in both UA-elevated groups, with decreased indomethacin-induced luminal ROS. The microbiota of HUA mice showed a significant increase in α-diversity and a significant difference in β-diversity from the control. Fecal microbiota transplantation from HUA mice ameliorated indomethacin-induced enteropathy. CONCLUSIONS The protective role of luminal UA in intestinal injury is likely exerted via oxidative stress elimination and microbiota composition modulation, preferably for gut immunity. Therefore, enhancing anaerobic conditions using antioxidants is a potential therapeutic target.
Collapse
|
8
|
Fu Q, Mo Z, Gu Y, Lu B, Hao S, Lyu D, Xu P, Wu L, Lou X, Jin H, Wang X, Chen Z, Yao K. Association between outpatient visits for pterygium and air pollution in Hangzhou, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118246. [PMID: 34592331 DOI: 10.1016/j.envpol.2021.118246] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Air pollution could be a risk factor for the development of pterygium. This study aimed to investigate the potential associations between outpatient visits for pterygium and air pollutants. Using a time-stratified case-crossover design, the data of 3017 outpatients with pterygium visiting an eye center in Hangzhou, China, and the air pollution data of the Environmental Protection Department of Zhejiang Province between July 1, 2014, and November 30, 2019, were examined. The relationships between the air pollutants nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone, and fine particulate matter (PM) with median aerometric diameter <2.5 μm (PM2.5) and <10 μm (PM10) and outpatient visits for primary pterygium were assessed using single- and multiple-pollutant models. Significant associations between outpatient visits for pterygium and air pollutants (PM2.5, PM10, SO2, and NO2) were observed. Younger patients were found to be more sensitive to air pollution. Interestingly, the younger female patients with pterygium were more vulnerable to PM2.5 exposure during the warm season, while the younger male patients with pterygium were more sensitive to NO2 during the cold season. Significant effects were also observed between the pterygium outpatients and PM2.5 (odds ratio [OR] = 1.06, P = 0.02), PM10 (OR = 1.04, P = 0.01), and SO2 (OR = 1.26, P = 0.01) during the warm season, as well as NO2 (OR = 1.06, P = 0.01) during the cold season. Our study provides evidence that outpatient visits for pterygium are positively associated with increases in the air pollutants PM2.5, PM10, SO2, and NO2, revealing the important role of air pollution in the occurrence and development of pterygium.
Collapse
Affiliation(s)
- Qiuli Fu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Zhe Mo
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yuzhou Gu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Bing Lu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Shengjie Hao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Danni Lyu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Peiwei Xu
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Lizhi Wu
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Xiaoming Lou
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Hongying Jin
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Xiaofeng Wang
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Zhijian Chen
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
9
|
Predictive and Preventive Mucosal Communications in Particulate Matter Exposure-Linked Renal Distress. J Pers Med 2021; 11:jpm11020118. [PMID: 33670188 PMCID: PMC7916923 DOI: 10.3390/jpm11020118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
Despite research into the epidemiological link between exposure to particulate matter (PM) and renal disorder, there is limited information available on the etiological complexity and molecular mechanisms. Among the early responsive tissues to PM exposure, the mucosal barrier of the airway and alimentary tract may be a crucial source of pathologic mediators leading to inflammatory renal diseases, including chronic kidney disease (CKD). Given that harmful responses and products in mucosa exposed to PM may enter the circulation and cause adverse outcomes in the kidney, the aim of the present review was to address the impact of PM exposure on the mucosal barrier and the vicious feedback cycle in the mucosal environment. In addition to the PM-induced alteration of mucosal barrier integrity, the microbial community has a pivotal role in the xenobiotic metabolism and individual susceptibility to PM toxicity. The dysbiosis-induced deleterious metabolites of PM and nutrients are introduced systemically via a disrupted mucosal barrier, contributing to renal injuries and pathologic severity. In contrast, the progress of mucosa-associated renal disease is counteracted by endogenous protective responses in the mucosa. Along with direct elimination of the toxic mediators, modulators of the mucosal microbial community should provide a promising platform for mucosa-based personalized interventions against renal disorders caused by air pollution.
Collapse
|
10
|
Ferrara F, Pambianchi E, Pecorelli A, Woodby B, Messano N, Therrien JP, Lila MA, Valacchi G. Redox regulation of cutaneous inflammasome by ozone exposure. Free Radic Biol Med 2020; 152:561-570. [PMID: 31778733 DOI: 10.1016/j.freeradbiomed.2019.11.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Several pollutants have been shown to affect skin physiology, among which ozone (O3) is one of the most toxic. Prolonged exposure to O3 leads to increased oxidative damage and cutaneous inflammation. The correlation between O3 exposure and inflammatory cutaneous conditions (atopic dermatitis, psoriasis, acne and eczema) has been already suggested, although the mechanism involved is still unclear. In the last few decades, a new multiprotein complex, the inflammasome, has been discovered and linked to tissue inflammation, including inflammatory skin conditions. The inflammasome activates inflammatory responses and contributes to the maturation of cytokines such as interleukin 1β (IL-1β) and interleukin 18. This complex is also responsive to reactive oxygen species (ROS), which plays a role in triggering the activation of the complex. On this basis it is possible hypothesize that the activation of the inflammasome could be the link between the inflammatory skin conditions associated to O3 exposure. In the present work, the ability of O3 to induce inflammasome activation was determined in different skin models, ranging from 2D (human keratinocytes) to 3D models in vitro and ex vivo. Results clearly showed that O3 exposure increased both transcript and protein levels of the main inflammasome complex, such as ASC and caspase-1. Furthermore, by using both immunofluorescence and an ASC oligomerization assay the formation of the complex was determined together with increased secreted levels of both IL-18 and IL-1β. Of note is that H2O2 and to a less extent 4HNE (both considered the main mediators of O3 interaction with cellular membranes) were also able to activate skin inflammasome while the use of catalase prevents the activation. This study demonstrated that O3 can activate cutaneous inflammasome in a redox dependent manner suggesting a possible role of this new pathway in pollution induced inflammatory skin conditions.
Collapse
Affiliation(s)
- Francesca Ferrara
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA
| | - Alessandra Pecorelli
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA
| | - Brittany Woodby
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA
| | - Nicolo' Messano
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA
| | | | - Mary Ann Lila
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA
| | - Giuseppe Valacchi
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
11
|
Shrestha P, Zhang Y, Chen WJ, Wong TY. Triclosan: antimicrobial mechanisms, antibiotics interactions, clinical applications, and human health. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:245-268. [PMID: 32955413 DOI: 10.1080/26896583.2020.1809286] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The large-scale applications of Triclosan in industrial and household products have created many health and environmental concerns. Despite the fears of its drug-resistance and other issues, Triclosan is still an effective drug against many infectious organisms. Knowing the cross-interactions of Triclosan with different antibiotics, bacteria, and humans can provide much-needed information for the risk assessment of this drug. We review the current understanding of the antimicrobial mechanisms of Triclosan, how microbes become resistant to Triclosan, and the synergistic and antagonistic effects of Triclosan with different antibiotics. Current literature on the clinical applications of Triclosan and its effect on fetus/child development are also summarized.
Collapse
Affiliation(s)
- Prabin Shrestha
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| | | | - Wen-Jen Chen
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| | - Tit-Yee Wong
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
12
|
Curpen S, Francois‐Newton V, Moga A, Hosenally M, Petkar G, Soobramaney V, Ruchaia B, Lutchmanen Kolanthan V, Roheemun N, Sokeechand BN, Aumeeruddy Z, Ramracheya RD. A novel method for evaluating the effect of pollution on the human skin under controlled conditions. Skin Res Technol 2019; 26:50-60. [DOI: 10.1111/srt.12763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/28/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Seerooven Curpen
- Department of Biophysics Centre International de Développement Pharmaceutique Ltée (CIDP) Phoenix Mauritius
| | - Veronique Francois‐Newton
- Pre‐Clinical Department Centre International de Développement Pharmaceutique Ltée (CIDP) Phoenix Mauritius
| | - Alain Moga
- Synelvia SAS Prologue Biotech Labège Cedex France
| | - Muzzammil Hosenally
- Biostats Department Centre International de Développement Pharmaceutique Ltée (CIDP) Phoenix Mauritius
- Department of Economics and Statistics, Faculty of Social Sciences & Humanities University of Mauritius Réduit Mauritius
| | - Gitanjali Petkar
- Clinical Research Department Centre International de Développement Pharmaceutique Ltée (CIDP) Phoenix Mauritius
| | - Vitisha Soobramaney
- Clinical Research Department Centre International de Développement Pharmaceutique Ltée (CIDP) Phoenix Mauritius
| | - Bryna Ruchaia
- Clinical Research Department Centre International de Développement Pharmaceutique Ltée (CIDP) Phoenix Mauritius
| | - Vimi Lutchmanen Kolanthan
- Clinical Research Department Centre International de Développement Pharmaceutique Ltée (CIDP) Phoenix Mauritius
| | - Naailah Roheemun
- Pre‐Clinical Department Centre International de Développement Pharmaceutique Ltée (CIDP) Phoenix Mauritius
| | - Bibi N. Sokeechand
- Biostats Department Centre International de Développement Pharmaceutique Ltée (CIDP) Phoenix Mauritius
| | - Zaahira Aumeeruddy
- Department of Pharmaceutical Studies Centre International de Développement Pharmaceutique Ltée (CIDP) Phoenix Mauritius
| | - Reshma D. Ramracheya
- Department of Pharmaceutical Studies Centre International de Développement Pharmaceutique Ltée (CIDP) Phoenix Mauritius
- Oxford center for Diabetes, Endocrinology and Metabolism Churchill Hospital Oxford UK
| |
Collapse
|
13
|
Wang L, Cheng H, Wang D, Zhao B, Zhang J, Cheng L, Yao P, Di Narzo A, Shen Y, Yu J, Li Y, Xu S, Chen J, Fan L, Lu J, Jiang J, Zhou Y, Wang C, Zhang Z, Hao K. Airway microbiome is associated with respiratory functions and responses to ambient particulate matter exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:269-277. [PMID: 30342360 PMCID: PMC6257984 DOI: 10.1016/j.ecoenv.2018.09.079] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 07/21/2023]
Abstract
BACKGROUND Ambient particulate matter (PM) exposure has been associated with respiratory function decline in epidemiological studies. We hypothesize that a possible underlying mechanism is the perturbation of airway microbiome by PM exposure. METHODS During October 2016-October 2017, on two human cohorts (n = 115 in total) in Shanghai China, we systematically collected three categories of data: (1) respiratory functions, (2) airway microbiome from sputum, and (3) PM2.5 (PM of ≤ 2.5 µm in diameter) level in ambient air. We investigated the impact of PM2.5 on airway microbiome as well as the link between airway microbiome and respiratory functions using linear mixed regression models. RESULTS The respiratory function of our primary interest includes forced vital capacity (FVC) and forced expiratory volume in 1st second (FEV1). FEV1/FVC, an important respiratory function trait and key diagnosis criterion of COPD, was significantly associated with airway bacteria load (p = 0.0038); and FEV1 was associated with airway microbiome profile (p = 0.013). Further, airway microbiome was significantly influenced by PM2.5 exposure (p = 4.48E-11). CONCLUSIONS To our knowledge, for the first time, we demonstrated the impact of PM2.5 on airway microbiome, and reported the link between airway microbiome and respiratory functions. The results expand our understanding on the scope of PM2.5 exposure's influence on human respiratory system, and point to novel etiological mechanism of PM2.5 exposure induced diseases.
Collapse
Affiliation(s)
- Liping Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongbin Wang
- School of Environment, Tsinghua University, Beijing, China
| | - Bo Zhao
- School of Life Sciences, Tongji University, Shanghai, China
| | - Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Long Cheng
- School of Software Engineering, Tongji University, Shanghai, China
| | - Pengfei Yao
- School of Software Engineering, Tongji University, Shanghai, China
| | - Antonio Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jianwei Lu
- School of Software Engineering, Tongji University, Shanghai, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing, China
| | - Yang Zhou
- School of Life Sciences, Tongji University, Shanghai, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ke Hao
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Zhao H, Zhang M, Liu Q, Wang X, Zhao R, Geng Y, Wong T, Li S, Wang X. A comprehensive screening shows that ergothioneine is the most abundant antioxidant in the wild macrofungus Phylloporia ribis Ryvarden. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:98-111. [PMID: 29667505 DOI: 10.1080/10590501.2018.1450201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The polar and non-polar extracts from the authenticated wild mushroom Phylloporia ribis were separated by hydrophilic interaction liquid chromatography (HILIC) and by reverse phase (RP)-HPLC, respectively. A split valve separated the eluents into two fractions for free-radical scavenging analysis and for structural identification. Forty-six compounds showed scavenging activity of the stable-free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). The structures of 8 antioxidants (inosine, caffeic acid, ergothioneine, p-hydroxybenzoic acid, adenosine, 3,4-dihydroxybenzaldehyde, apigenin, and naringenin) are characterized by Mass Spectrometer. Among them, ergothioneine was the most abundant (>65%) and most active antioxidant in P. ribis.
Collapse
Affiliation(s)
- Hengqiang Zhao
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Minmin Zhang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Qian Liu
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Xiaoli Wang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Ruixuan Zhao
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Yanling Geng
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Tityee Wong
- b Biological Sciences , University of Memphis , Memphis , Tennessee , USA
| | - Shengbo Li
- c Shandong Yate Eco-tech Co. LTD. , Linyi , China
| | - Xiao Wang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| |
Collapse
|