1
|
Yang J, Lin J, Gu T, Sun Q, Xu W, Peng Y. Chicoric Acid Effectively Mitigated Dextran Sulfate Sodium (DSS)-Induced Colitis in BALB/c Mice by Modulating the Gut Microbiota and Fecal Metabolites. Int J Mol Sci 2024; 25:841. [PMID: 38255916 PMCID: PMC10815209 DOI: 10.3390/ijms25020841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Chicoric acid (CA) has been reported to exhibit biological activities; it remains unclear, however, whether CA could regulate colitis via modulation of the gut microbiota and metabolites. This study aimed to assess CA's impact on dextran sulfate sodium (DSS)-induced colitis, the gut microbiota, and metabolites. Mice were induced with 2.5% DSS to develop colitis over a 7-day period. CA was administered intragastrically one week prior to DSS treatment and continued for 14 days. The microbial composition in the stool was determined using 16S rRNA sequencing, while non-targeted metabolomics was employed to analyze the metabolic profiles of each mouse group. The results show that CA effectively alleviated colitis, as evidenced by an increased colon length, lowered disease activity index (DAI) and histological scores, and decreased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression levels. CA intervention restored the structure of gut microbiota. Specifically, it decreased the abundance of Bacteroidetes and Cyanobacteria at the phylum level and Bacteroides, Rosiarcus, and unclassified Xanthobacteraceae at the genus level, and increased the abundance of unclassified Lachnospiraceae at the genus level. Metabolomic analysis revealed that CA supplementation reversed the up-regulation of asymmetric dimethylarginine, N-glycolylneuraminic acid, and N-acetylneuraminic acid, as well as the down-regulation of phloroglucinol, thiamine, 4-methyl-5-thiazoleethanol, lithocholic acid, and oxymatrine induced by DSS. Our current research provides scientific evidence for developing CA into an anti-colitis functional food ingredient. Further clinical trials are warranted to elucidate the efficacy and mechanism of CA in treating human inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Jiani Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jie Lin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Y.); (T.G.)
| | - Quancai Sun
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; (J.L.); (Q.S.)
| | - Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
2
|
Khatib M, Cecchi L, Bellumori M, Zonfrillo B, Mulinacci N. Polysaccharides and Phenolic Compounds Recovered from Red Bell Pepper, Tomato and Basil By-Products Using a Green Extraction by Extractor Timatic ®. Int J Mol Sci 2023; 24:16653. [PMID: 38068976 PMCID: PMC10706253 DOI: 10.3390/ijms242316653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Fruits and vegetables processing produces significant amounts of by-products rich in valuable bioactive compounds such as polyphenols and dietary fiber. Food by-product re-use promotes the eco-sustainability of several crops. This study aimed to apply green extractions of bioactive compounds from by-products of basil, tomato, and red bell pepper production. Tests were performed by applying extraction procedures both at laboratory scale and using the Timatic® extractor. Water and ethanol 10% and 20% were used for extraction of red bell pepper and tomato, testing different temperatures (30, 50, and 90 °C; water at 90 °C and ethanol 20% were applied for basil. The obtained phenolic extracts were analyzed by HPLC-DAD-MS. Polysaccharides of tomato and red bell pepper were extracted at laboratory scale and chemically characterized using 1H-NMR to define the methylation and acylation degree, and DLS to estimate the hydrodynamic volume. Laboratory extraction tests allowed efficient scaling-up of the process on the Timatic® extractor. Phenolic content in the dried extracts (DE) ranged 8.0-11.2 mg/g for tomato and red bell pepper and reached 240 mg/g for basil extracts. Polysaccharide yields (w/w on DM) reached 6.0 and 10.4% for dried tomato and red bell pepper, respectively. Dry extracts obtained using the Timatic® extractor and water can be useful sources of bioactive phenols. The study provided new data on tomato and red bell pepper polysaccharides that may be useful for future applications.
Collapse
Affiliation(s)
- Mohamad Khatib
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
- National Interuniversity Consortium of Materials Science & Technology, Via Giusti 9, 50121 Florence, Italy
| | - Lorenzo Cecchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144 Florence, Italy;
| | - Maria Bellumori
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| | - Beatrice Zonfrillo
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| | - Nadia Mulinacci
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| |
Collapse
|
3
|
Petrova A, Ognyanov M, Petkova N, Denev P. Phytochemical Characterization of Purple Coneflower Roots ( Echinacea purpurea (L.) Moench.) and Their Extracts. Molecules 2023; 28:3956. [PMID: 37175366 PMCID: PMC10180171 DOI: 10.3390/molecules28093956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Echinacea purpurea is a perennial plant that belongs to the Asteraceae family. It has a wide range of applications mainly in the treatment and prevention of inflammations in the respiratory system. The current study aimed to perform a phytochemical characterization of purple coneflower (Echinacea purpurea) roots and their extracts (water, 40%, 50%, 60% ethanol, and 60% glycerol). Phytochemical characterization was carried out by gravimetric, spectrophotometric, and chromatographic methods. Echinacea roots were characterized by a low lipid (0.8%) content. In contrast, carbohydrates (45%) and proteins (20%) occupied a large part of the dry matter. Amongst the extracts, the highest yield was obtained using water as a solvent (53%). Water extract was rich in protein and carbohydrates as fructans (inulin) were the most abundant carbohydrate constituent. The most exhaustive recovery of the phenolic components was conducted by extraction with 40% ethanol and 60% glycerol. It was found that water is the most suitable extractant for obtaining a polysaccharide-containing complex (PSC) (8.87%). PSC was composed mainly of fructans (inulin) and proteins with different molecular weight distributions. The yield of PSC decreased with an increasing ethanol concentration (40% > 50% > 60%) but the lowest yield was obtained from 60% glycerol extract. The obtained results showed that Echinacea roots contained a large amount of biologically active substances-phenolic components and polysaccharides and that glycerol was equally efficient to ethanol in extracting caffeic acid derivatives from purple coneflower roots. The data can be used for the preparation of extracts having different compositions and thus easily be incorporated into commercial products.
Collapse
Affiliation(s)
- Ani Petrova
- Laboratory of Biologically Active Substances-Plovdiv, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| | - Manol Ognyanov
- Laboratory of Biologically Active Substances-Plovdiv, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria;
| | - Petko Denev
- Laboratory of Biologically Active Substances-Plovdiv, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
4
|
Kısa D, Ceylan Y, İmamoğlu R. Accumulation of phenolic compounds and expression of phenylpropanoid biosynthesis-related genes in leaves of basil transformed with A. rhizogenes strains. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:629-640. [PMID: 37363423 PMCID: PMC10284738 DOI: 10.1007/s12298-023-01320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Biotic factors affect the content of secondary metabolites by interfering with molecular and biochemical pathways. In the current study, A. rhizogenes strains were inoculated into basil (Ocimum basilicum) to examine the effect of plant-microbe interaction on the accumulation of monomeric phenolic metabolites and the transcript levels of selected genes involved in the biochemical synthesis of secondary compounds. Initially, the integration of the rolB gene was validated by performing PCR analysis on genomic DNA samples from the basil plant inoculated with A. rhizogenes strains. We have detected that the accumulation of mRNA transcripts linked to the biosynthesis pathway of phenolic compounds has higher transcript expression levels in the leaves of transformed basil in proportion to uninoculated plants. Basil plants inoculated with A. rhizogenes 39207 strain had higher transcript levels of CAD, C4H, TAT, FLS, EGS, HPPR, PAL, and RAS genes than other experimental groups. We have identified eleven phenolic components, and the level of rosmarinic acid, eugenol, chicoric acid, and rutin increased in the inoculated basil leaves. However, the inoculation of A. rhizogenes did not cause a change in the compounds of chlorogenic acid, methyl chavicol, cinnamic acid, quercetin, vanillic acid, and caffeic acid. In conclusion, the increase in basic secondary metabolites could be achieved by the A. rhizogenes-mediated transformation of basil plants, and especially ATCC 43057 strain may be one of the A. rhizogenes strains. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01320-w.
Collapse
Affiliation(s)
- Dursun Kısa
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Yusuf Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Rizvan İmamoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| |
Collapse
|
5
|
Comparing the yield, secondary metabolites and profitability of selected Ocimum varieties. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Tsurunaga Y, Kanou M, Ikeura H, Makino M, Oowatari Y, Tsuchiya I. Effect of different tea manufacturing methods on the antioxidant activity, functional components, and aroma compounds of Ocimum gratissimum. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yao J, Ma Z, Wang Y, Wang Y, Sun L, Liu X. Effects of dandelion addition on antioxidant property, sensory characteristics and inhibitory activity against xanthine oxidase of beer. Curr Res Food Sci 2022; 5:927-939. [PMID: 35677651 PMCID: PMC9168054 DOI: 10.1016/j.crfs.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
The effects of dandelion addition (DA) on the physiochemical properties, antioxidant activity, inhibitory activity against xanthine oxidase (XOD) and flavor of craft beer were investigated. It was found that DA changed the pH value, total acid content, thiobarbituric-acid-value, sugar content and color of beer, and increased the contents of total polyphenols and flavonoids and thus the antioxidant activity of beer. HPLC analysis showed that DA provided beer with chlorogenic, caffeic, ferulic, and chicoric acid, contributing to the inhibition activity against XOD that is a key enzyme in uric acid production. GC-MS analysis showed that 3-methyl-1-butanol, isopentyl acetate and ethyl caprylate were main aroma components of all samples. Although DA introduced the special aroma component of azulene, it did not significantly affect the appearance, bubble, aroma and taste evaluation of beer. Conclusively, DA potentially improved the beer properties of antioxidant and inhibition of uric acid production without changing its sensory characteristics. Dandelion addition changed the physicochemical properties of craft beer. Dandelion addition improved the contents of total polyphenol and flavonoids of craft beer. Dandelion craft beer had stronger antioxidant activity than commercial beer. Dandelion craft beer had the inhibitory activity against xanthine oxidase.
Collapse
|
8
|
Braglia R, Costa P, Di Marco G, D'Agostino A, Redi EL, Scuderi F, Gismondi A, Canini A. Phytochemicals and quality level of food plants grown in an aquaponics system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:844-850. [PMID: 34231921 DOI: 10.1002/jsfa.11420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Beyond nutrition, fruits and vegetables can be considered as natural sources of bioactive molecules, for which beneficial effects on human health are widely recognised. To improve food quality, soilless growing systems could represent a good strategy for promoting a sustainable food production chain, although the nutritional and nutraceutical properties of their products should be investigated in depth. The main quality traits and the volatile and non-volatile secondary metabolites of Solanum lycopersicum L., Petroselinum crispum (Mill.) Fuss and Ocimun basilicum L. grown in an aquaponics system and in organic farming were quantified and compared. RESULTS On a fresh basis, soil-grown P. crispum and O. basilicum showed significantly higher total phenolics and antioxidant activity compared to aquaponic crops, whereas, on a dry basis, both plants showed opposite results. Soil-grown S. lycopersicum was significantly richer in total phenolics, whereas the aquaponic type showed a higher antioxidant activity. Aquaponics induced the accumulation of resveratrol in P. crispum, rosmarinic acid and myricetin in O. basilicum, and lycopene in S. lycopersicum. Among the volatile compounds, in O. basilicum, linalool was the main constituent in both treatments, whereas τ-cadinol represented the second constituent in aquaponic crops. The volatile profiles of P. crispum did not differ significantly between the two cultivation methods. CONCLUSION The overall quality of organic and aquaponics cultures appeared to be comparable. The results showed that aquaponic farming method can be an innovative, rapid and sustainable way of producing quality food. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Gabriele Di Marco
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | | | - Enrico L Redi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesco Scuderi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Antonella Canini
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
9
|
Özkan Karabacak A, Özoğlu Ö, Durgut S, Bağatırlar SR, Kaçar O, Tamer CE, Korukluoğlu M. Development of purple basil (Ocimum basilicum L.) sherbet fortified with propolis extract using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01064-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Antonescu (Mintas) AI, Miere (Groza) F, Fritea L, Ganea M, Zdrinca M, Dobjanschi L, Antonescu A, Vicas SI, Bodog F, Sindhu RK, Cavalu S. Perspectives on the Combined Effects of Ocimum basilicum and Trifolium pratense Extracts in Terms of Phytochemical Profile and Pharmacological Effects. PLANTS 2021; 10:plants10071390. [PMID: 34371593 PMCID: PMC8309466 DOI: 10.3390/plants10071390] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022]
Abstract
Nowadays, the tendency in pharmaceutical and food industries is to replace synthetic antioxidants with the natural ones. For this reason, there is a growing interest in analyzing natural, healthy and non-toxic additives as potential antioxidants. Some plants, which contain high levels of phenolic compounds, present an increasing interest for medicine due to their ability to scavenge free radicals, along with other pharmacological activities, such as antibacterial activity, wound healing and anti-inflammatory effect, to mention only a few. The aim of this review is to explore the therapeutic potential of Ocimum basilicum and Trifolium pratense in relation with their phytochemical profile and to highlight the pharmacological activity of aqueous or ethanol extracts. Special attention was devoted to the dermal pathology and wound healing effects, in the context of multiple skin conditions such as acne, eczema boils, psoriasis and rashes. Additionally, both extracts (Trifolium sp. and Ocimum sp.) are characterized by high content of antioxidant compounds, which are responsible for the radiance and resistance of the skin and slowing down of the aging process by maintaining estrogen levels. Moreover, the potential combined effect of the mixed extract is pointed out in terms of future applications for wound healing, based on some preliminary results obtained from a “scratch tests” assay performed with respect to human dermal fibroblasts.
Collapse
Affiliation(s)
- Andreea-Ina Antonescu (Mintas)
- Faculty of Medicine and Pharmacy, Doctoral School of Biomedical Science, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania;
| | - Florina Miere (Groza)
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| | - Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
- Correspondence: (L.F.); (A.A.)
| | - Mariana Ganea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| | - Mihaela Zdrinca
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| | - Angela Antonescu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
- Correspondence: (L.F.); (A.A.)
| | - Simona Ioana Vicas
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania;
| | - Florin Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| |
Collapse
|
11
|
Godlewska-Żyłkiewicz B, Świsłocka R, Kalinowska M, Golonko A, Świderski G, Arciszewska Ż, Nalewajko-Sieliwoniuk E, Naumowicz M, Lewandowski W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4454. [PMID: 33049979 PMCID: PMC7579235 DOI: 10.3390/ma13194454] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Natural carboxylic acids are plant-derived compounds that are known to possess biological activity. The aim of this review was to compare the effect of structural differences of the selected carboxylic acids (benzoic acid (BA), cinnamic acid (CinA), p-coumaric acid (p-CA), caffeic acid (CFA), rosmarinic acid (RA), and chicoric acid (ChA)) on the antioxidant, antimicrobial, and cytotoxic activity. The studied compounds were arranged in a logic sequence of increasing number of hydroxyl groups and conjugated bonds in order to investigate the correlations between the structure and bioactivity. A review of the literature revealed that RA exhibited the highest antioxidant activity and this property decreased in the following order: RA > CFA ~ ChA > p-CA > CinA > BA. In the case of antimicrobial properties, structure-activity relationships were not easy to observe as they depended on the microbial strain and the experimental conditions. The highest antimicrobial activity was found for CFA and CinA, while the lowest for RA. Taking into account anti-cancer properties of studied NCA, it seems that the presence of hydroxyl groups had an influence on intermolecular interactions and the cytotoxic potential of the molecules, whereas the carboxyl group participated in the chelation of endogenous transition metal ions.
Collapse
Affiliation(s)
- Beata Godlewska-Żyłkiewicz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Aleksandra Golonko
- Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02–532 Warsaw, Poland;
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| | - Żaneta Arciszewska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Edyta Nalewajko-Sieliwoniuk
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland; (Ż.A.); (E.N.-S.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15–245 Białystok, Poland;
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15–351 Białystok, Poland; (R.Ś.); (M.K.); (G.Ś.)
| |
Collapse
|
12
|
Profiling of Chlorogenic Acids from Bidens pilosa and Differentiation of Closely Related Positional Isomers with the Aid of UHPLC-QTOF-MS/MS-Based In-Source Collision-Induced Dissociation. Metabolites 2020; 10:metabo10050178. [PMID: 32365739 PMCID: PMC7281500 DOI: 10.3390/metabo10050178] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Bidens pilosa is an edible herb from the Asteraceae family which is traditionally consumed as a leafy vegetable. B. pilosa has many bioactivities owing to its diverse phytochemicals, which include aliphatics, terpenoids, tannins, alkaloids, hydroxycinnamic acid (HCA) derivatives and other phenylpropanoids. The later include compounds such as chlorogenic acids (CGAs), which are produced as either regio- or geometrical isomers. To profile the CGA composition of B. pilosa, methanol extracts from tissues, callus and cell suspensions were utilized for liquid chromatography coupled to mass spectrometric detection (UHPLC-QTOF-MS/MS). An optimized in-source collision-induced dissociation (ISCID) method capable of discriminating between closely related HCA derivatives of quinic acids, based on MS-based fragmentation patterns, was applied. Careful control of collision energies resulted in fragment patterns similar to MS2 and MS3 fragmentation, obtainable by a typical ion trap MSn approach. For the first time, an ISCID approach was shown to efficiently discriminate between positional isomers of chlorogenic acids containing two different cinnamoyl moieties, such as a mixed di-ester of feruloyl-caffeoylquinic acid (m/z 529) and coumaroyl-caffeoylquinic acid (m/z 499). The results indicate that tissues and cell cultures of B. pilosa contained a combined total of 30 mono-, di-, and tri-substituted chlorogenic acids with positional isomers dominating the composition thereof. In addition, the tartaric acid esters, caftaric- and chicoric acids were also identified. Profiling revealed that these HCA derivatives were differentially distributed across tissues types and cell culture lines derived from leaf and stem explants.
Collapse
|
13
|
Erigeron annuus (L.) Pers. Extract Inhibits Reactive Oxygen Species (ROS) Production and Fat Accumulation in 3T3-L1 Cells by Activating an AMP-Dependent Kinase Signaling Pathway. Antioxidants (Basel) 2019; 8:antiox8050139. [PMID: 31137508 PMCID: PMC6562390 DOI: 10.3390/antiox8050139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the major public health problems in the world because it is implicated in metabolic syndromes, such as type 2 diabetes, hypertension, and cardiovascular diseases. The objective of this study was to investigate whether Erigeron annuus (L.) Pers. (EAP) extract suppresses reactive oxygen species (ROS) production and fat accumulation in 3T3-L1 cells by activating an AMP-dependent kinase (AMPK) signaling pathway. Our results showed that EAP water extract significantly inhibits ROS production, adipogenesis, and lipogenesis during differentiation of 3T3-L1 preadipocytes. In addition, EAP decreased mRNA and protein levels of proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα). Moreover, EAP suppressed mRNA expressions of fatty acid synthase (FAS), lipoprotein lipase (LPL), adipocyte protein 2 (aP2) in a dose-dependent manner. Whereas, EAP upregulated adiponectin expression, phosphorylation levels of AMPK and carnitine palmitoyltransferase 1 (CPT-1) protein level during differentiation of 3T3-L1 preadipocytes. These results suggest that EAP water extract can exert ROS-linked anti-obesity effect through the mechanism that might involve inhibition of ROS production, adipogenesis and lipogenesis via an activating AMPK signaling pathway.
Collapse
|
14
|
Kaya M, Merdivan M, Tashakkori P, Erdem P, Anderson JL. Analysis of Echinacea flower volatile constituents by HS-SPME-GC/MS using laboratory-prepared and commercial SPME fibers. JOURNAL OF ESSENTIAL OIL RESEARCH 2018. [DOI: 10.1080/10412905.2018.1545707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Meltem Kaya
- Graduate School of Natural and Applied Science, Tınaztepe Campus, Dokuz Eylul University, Izmir, Turkey
| | - Melek Merdivan
- Dokuz Eylul University, Chemistry Department, Tınaztepe Campus, Izmir, Turkey
| | - Paniz Tashakkori
- Graduate School of Natural and Applied Science, Tınaztepe Campus, Dokuz Eylul University, Izmir, Turkey
| | - Pelin Erdem
- Dokuz Eylul University, Chemistry Department, Tınaztepe Campus, Izmir, Turkey
| | | |
Collapse
|
15
|
Bruni R, Brighenti V, Caesar LK, Bertelli D, Cech NB, Pellati F. Analytical methods for the study of bioactive compounds from medicinally used Echinacea species. J Pharm Biomed Anal 2018; 160:443-477. [DOI: 10.1016/j.jpba.2018.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 12/19/2022]
|
16
|
Abd-Nikfarjam B, Nassiri-Asl M, Hajiaghayi M, Naserpour Farivar T. Role of Chicoric Acid and 13-Cis Retinoic Acid in Mycobacterium tuberculosis Infection Control by Human U937 Macrophage. Arch Immunol Ther Exp (Warsz) 2018; 66:399-406. [DOI: 10.1007/s00005-018-0511-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/22/2018] [Indexed: 11/24/2022]
|
17
|
Tzima K, Brunton NP, Rai DK. Qualitative and Quantitative Analysis of Polyphenols in Lamiaceae Plants-A Review. PLANTS 2018; 7:plants7020025. [PMID: 29587434 PMCID: PMC6027318 DOI: 10.3390/plants7020025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Lamiaceae species are promising potential sources of natural antioxidants, owing to their high polyphenol content. In addition, increasing scientific and epidemiological evidence have associated consumption of foods rich in polyphenols with health benefits such as decreased risk of cardiovascular diseases mediated through anti-inflammatory effects. The complex and diverse nature of polyphenols and the huge variation in their levels in commonly consumed herbs make their analysis challenging. Innovative robust analytical tools are constantly developing to meet these challenges. In this review, we present advances in the state of the art for the identification and quantification of polyphenols in Lamiaceae species. Novel chromatographic techniques that have been employed in the past decades are discussed, ranging from ultra-high-pressure liquid chromatography to hyphenated spectroscopic methods, whereas performance characteristics such as selectivity and specificity are also summarized.
Collapse
Affiliation(s)
- Katerina Tzima
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin D04V1W8, Ireland.
| | - Nigel P Brunton
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin D04V1W8, Ireland.
| | - Dilip K Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
| |
Collapse
|
18
|
Masike K, Madala N. Synchronized Survey Scan Approach Allows for Efficient Discrimination of Isomeric and Isobaric Compounds during LC-MS/MS Analyses. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:2046709. [PMID: 29805830 PMCID: PMC5901820 DOI: 10.1155/2018/2046709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/28/2018] [Indexed: 05/10/2023]
Abstract
Liquid chromatography-mass spectrometry- (LC-MS-) based multiple reaction monitoring (MRM) methods have been used to detect and quantify metabolites for years. These approaches rely on the monitoring of various fragmentation pathways of multiple precursors and the subsequent corresponding product ions. However, MRM methods are incapable of confidently discriminating between isomeric and isobaric molecules and, as such, the development of methods capable of overcoming this challenge has become imperative. Due to increasing scanning rates of recent MS instruments, it is now possible to operate MS instruments both in the static and dynamic modes. One such method is known as synchronized survey scan (SSS), which is capable of acquiring a product ion scan (PIS) during MRM analysis. The current study shows, for the first time, the use of SSS-based PIS approach as a feasible identification feature of MRM. To achieve the above, five positional isomers of dicaffeoylquinic acids (diCQAs) were studied with the aid of SSS-based PIS method. Here, the MRM transitions were automatically optimized using a 3,5-diCQA isomer by monitoring fragmentation transitions common to all five isomers. Using the mixture of these isomers, fragmentation spectra of the five isomers achieved with SSS-based PIS were used to identify each isomer based on previously published hierarchical fragmentation keys. The optimized method was also used to detect and distinguish between diCQA components found in Bidens pilosa and their isobaric counterparts found in Moringa oleifera plants. Thus, the method was shown to distinguish (by differences in fragmentation patterns) between diCQA and their isobars, caffeoylquinic acid (CQA) glycosides. In conclusion, SSS allowed the detection and discrimination of isomeric and isobaric compounds in a single chromatographic run by producing a PIS spectrum, triggered in the automatic MS/MS synchronized survey scan mode.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| |
Collapse
|
19
|
Złotek U, Szychowski KA, Świeca M. Potential in vitro antioxidant, anti-inflammatory, antidiabetic, and anticancer effect of arachidonic acid-elicited basil leaves. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
20
|
Masike K, Tugizimana F, Ndlovu N, Smit E, du Preez L, Dubery I, Madala E. Deciphering the influence of column chemistry and mass spectrometry settings for the analyses of geometrical isomers of L-chicoric acid. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1052:73-81. [PMID: 28364699 DOI: 10.1016/j.jchromb.2017.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 02/01/2023]
Abstract
Resolving the chemo-diversity of plant extract samples is an essential step for in-depth analyses of natural products which often exhibit promising biological activities. One of the challenges in this endeavor has been the confident differentiation of geometrical isomers. In this study, we investigated these aspects in chromatography (column chemistry and mobile phase composition) and mass spectrometry settings with regards to better differentiation of geometrical isomers. A standard of a hydroxycinnamic acid (HCA) derivative, L-chicoric acid (L-CA) - a di-acylated caffeoyltartaric acid ester found in a number of plant families - was used. Geometrical isomers of L-CA were formed by exposing the compound to ultraviolet (UV) radiation, to mimic the natural environment. The high performance liquid chromatography photo-diode array (HPLC-PDA) and ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS) platforms were used to analyze the trans and cis geometrical isomers of L-CA. The HPLC-PDA results confirmed the generation of two cis geometrical isomers following UV exposure of the authentic trans-L-CA standard. Furthermore, the HPLC-PDA analyses demonstrated that the changes in both column chemistry (reverse-phase: C18, biphenyl, phenyl-hexyl and pentafluorophenyl propyl) and mobile phase composition (aqueous acetonitrile and aqueous methanol) affect the chromatographic elution profiles of the L-CA isomers. The MS results, on the other hand, revealed undisputed fragmentation differences between the geometrical isomers of L-CA. Thus, this study demonstrates that the identification of the L-CA isomers can be achieved more efficiently and confidently with good chromatography coupled to well-optimized mass spectrometry conditions, a requirement which has been proven impossible with other types of HCA derivatives. Moreover, differences in the binding modes of L-CA geometrical isomers to the HIV type 1 integrase enzyme were observed, suggesting a synergistic anti-HIV-1 activity of these isomers.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Nombuso Ndlovu
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Elize Smit
- Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Louis du Preez
- Department of Microbiology, Biochemistry and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Ian Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Edwin Madala
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa.
| |
Collapse
|
21
|
Tenore GC, Campiglia P, Ciampaglia R, Izzo L, Novellino E. Antioxidant and antimicrobial properties of traditional green and purple "Napoletano" basil cultivars (Ocimum basilicum L.) from Campania region (Italy). Nat Prod Res 2016; 31:2067-2071. [PMID: 28025898 DOI: 10.1080/14786419.2016.1269103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study is the first effort to a comprehensive evaluation of the antioxidant and antimicrobial activities of 'Napoletano' green and purple basil (Ocimum basilicum L.) varieties. The results obtained revealed that the basil sample extracts were characterised by a generally higher polyphenolic concentration than those reported elsewhere for other more conventional and geographically different basil varieties. Napoletano purple basil revealed higher radical-scavenging and ferric-reducing capacities than the green one probably due to its relevant anthocyanin content. As regards the antimicrobial properties, both basil varieties exhibited activity against a broad spectrum of food-borne and human pathogenic micro-organisms, revealing not only a moderate to high natural preserving capacity, but also potentially beneficial influence on human health. Results indicated Napoletano green and purple basils as a good source of antioxidants of potential nutraceutical interest.
Collapse
Affiliation(s)
- Gian Carlo Tenore
- a Department of Pharmacy , University of Naples "Federico II" , Naples , Italy
| | - Pietro Campiglia
- b Department of Pharmaceutical and Biomedical Sciences , University of Salerno , Salerno , Italy
| | - Roberto Ciampaglia
- a Department of Pharmacy , University of Naples "Federico II" , Naples , Italy
| | - Luana Izzo
- a Department of Pharmacy , University of Naples "Federico II" , Naples , Italy
| | - Ettore Novellino
- a Department of Pharmacy , University of Naples "Federico II" , Naples , Italy
| |
Collapse
|
22
|
Singh V, Kahol A, Singh IP, Saraf I, Shri R. Evaluation of anti-amnesic effect of extracts of selected Ocimum species using in-vitro and in-vivo models. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:490-499. [PMID: 27725240 DOI: 10.1016/j.jep.2016.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/22/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ocimum species are traditionally used for the treatment of anxiety, nerve pain, convulsions and a variety of neurodegenerative disorders. The present study was undertaken to evaluate the anti-amnesic effect of O. basilicum L., O. sanctum L. and O. gratissimum L. extracts using in-vitro and in-vivo models. MATERIALS AND METHODS In-vitro acetylcholinesterase (AChE) inhibitory and antioxidant activities of hydro-methanol extracts of plants were evaluated using Ellman and DPPH and FRAP assays, respectively. The most active extract i.e. O. basilicum extract (OBE) was further explored for the possible anti-amnesic activity in mouse model of scopolamine induced amnesia using behavioral models (elevated plus maze and passive shock avoidance task). Brain AChE activity, oxidative profile and histopathological studies were assessed to outline the anti-amnesic mechanism of the extract. RESULTS Significant antioxidant and AChE inhibition activity was observed with all prepared extracts and however, OBE showed most marked free radical scavenging, reducing power and AChE inhibition (IC50 0.65±0.15mg/ml) activity. Basil leaves were standardized with respect to content of 7 phenolic acids using a HPLC-PDA method. A TLC densitometric method was employed to determine the quercetin content in the leaves. The in-vivo studies showed that OBE pre-treatment (200 and 400mg/kg, p.o.) reversed the memory deficit induced by scopolamine in mice, evident by significant (p<0.05) decrease in the transfer latency time and increase in step down latency in elevated plus maze and passive shock avoidance task, respectively. Moreover, OBE significantly reduced the brain AChE activity and oxidative stress. Further, histopathological examination of brain tissues displayed decrease in vacuolated cytoplasm and increase in pyramidal cells in hippocampal and cortical regions with OBE pre-treatment. CONCLUSION OBE possesses antioxidant and AChE inhibitory activity. These biochemical changes are responsible for the anti-amnesic and neuroprotective activities of O. basilicum which may be attributed to the presence of phenolic and flavonoid compounds. This can be developed as an effective anti-amnesic drug.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Aditi Kahol
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Inder Pal Singh
- Natural Products Research Laboratory, Department of Natural products, NIPER, Mohali, Punjab, India
| | - Isha Saraf
- Natural Products Research Laboratory, Department of Natural products, NIPER, Mohali, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
23
|
Gbashi S, Njobeh P, Steenkamp P, Tutu H, Madala N. The effect of temperature and methanol-water mixture on pressurized hot water extraction (PHWE) of anti-HIV analogoues from Bidens pilosa. Chem Cent J 2016; 10:37. [PMID: 30328564 PMCID: PMC5396525 DOI: 10.1186/s13065-016-0182-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023] Open
Abstract
Background Pressurized hot water extraction (PHWE) technique has recently gain much attention for the extraction of biologically active compounds from plant tissues for analytical purposes, due to the limited use of organic solvents, its cost-effectiveness, ease-of-use and efficiency. An increase in temperature results in higher yields, however, issues with degradation of some metabolites (e.g. tartrate esters) when PHWE is conditioned at elevated temperatures has greatly limited its use. In this study, we considered possibilities of optimizing PHWE of some specific functional metabolites from Bidens pilosa using solvent compositions of 0, 20, 40 and 60 % methanol and a temperature profile of 50, 100 and 150 °C. Results The extracts obtained were analyzed using UPLC-qTOF-MS/MS and the results showed that both temperature and solvent composition were critical for efficient recovery of target metabolites, i.e., dicaffeoylquinic acid (diCQA) and chicoric acid (CA), which are known to possess anti-HIV properties. It was also possible to extract different isomers (possibly cis-geometrical isomers) of these molecules. Significantly differential (p ≤ 0.05) recovery patterns corresponding to the extraction conditions were observed as recovery increased with increase in methanol composition as well as temperature. The major compounds recovered in descending order were 3,5-diCQA with relative peak intensity of 204.23 ± 3.16 extracted at 50 °C and 60 % methanol; chicoric acid (141.00 ± 3.55) at 50 °C and 60 % methanol; 4,5-diCQA (108.05 ± 4.76) at 150 °C and 0 % methanol; 3,4-diCQA (53.04 ± 13.49) at 150 °C and 0 % methanol; chicoric acid isomer (40.01 ± 1.14) at 150 °C and 20 % methanol; and cis-3,5-diCQA (12.07 ± 5.54) at 100 °C and 60 % methanol. Fitting the central composite design response surface model to our data generated models that fit the data well with R2 values ranging from 0.57 to 0.87. Accordingly, it was possible to observe on the response surface plots the effects of temperature and solvent composition on the recovery patterns of these metabolites as well as to establish the optimum extraction conditions. Furthermore, the pareto charts revealed that methanol composition had a stronger effect on extraction yield than temperature. Conclusion Using methanol as a co-solvent resulted in significantly higher (p ≤ 0.05) even at temperatures as low as 50 °C, thus undermining the limitation of thermal degradation at higher temperatures during PHWE.
Collapse
Affiliation(s)
- Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, Gauteng, 2028, South Africa
| | - Patrick Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, Gauteng, 2028, South Africa
| | - Paul Steenkamp
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa.,Council for Scientific and Industrial Research (CSIR), Biosciences, Natural Products and Agroprocessing Group, Pretoria, 0001, South Africa
| | - Hlanganani Tutu
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, WITS, Private Bag 3, Johannesburg, 2050, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa.
| |
Collapse
|
24
|
Kuban-Jankowska A, Sahu KK, Gorska M, Tuszynski JA, Wozniak M. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor. Oncotarget 2016; 7:2229-38. [PMID: 26735581 PMCID: PMC4823031 DOI: 10.18632/oncotarget.6812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/26/2015] [Indexed: 11/25/2022] Open
Abstract
Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding.
Collapse
Affiliation(s)
| | - Kamlesh K. Sahu
- Department of Physics, University of Alberta, Edmonton, Canada
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, Canada
- Division of Experimental Oncology, Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
25
|
Enhanced oral bioavailability and prophylactic effects on oxidative stress and hepatic damage of an oil solution containing a rosmarinic acid–phospholipid complex. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Złotek U, Szymanowska U, Karaś M, Świeca M. Antioxidative and anti-inflammatory potential of phenolics from purple basil (Ocimum basilicum
L.) leaves induced by jasmonic, arachidonic and β-aminobutyric acid elicitation. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12970] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Urszula Złotek
- Department of Biochemistry and Food Chemistry; University of Life Sciences; ul. Skromna 8 Lublin 20-704 Poland
| | - Urszula Szymanowska
- Department of Biochemistry and Food Chemistry; University of Life Sciences; ul. Skromna 8 Lublin 20-704 Poland
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry; University of Life Sciences; ul. Skromna 8 Lublin 20-704 Poland
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry; University of Life Sciences; ul. Skromna 8 Lublin 20-704 Poland
| |
Collapse
|
27
|
The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi J Biol Sci 2015; 23:628-33. [PMID: 27579013 PMCID: PMC4992113 DOI: 10.1016/j.sjbs.2015.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 11/21/2022] Open
Abstract
The objectives of this study were to determine best conditions for the extraction of phenolic compounds from fresh, frozen and lyophilized basil leaves. The acetone mixtures with the highest addition of acetic acid extracted most of the phenolic compounds when fresh and freeze-dried material have been used. The three times procedure was more effective than once shaking procedure in most of the extracts obtained from fresh basil leaves – unlike the extracts derived from frozen material. Surprisingly, there were not any significant differences in the content of phenolics between the two used procedures in the case of lyophilized basil leaves used for extraction. Additionally, the positive correlation between the phenolic compounds content and antioxidant activity of the studied extracts has been noted. It is concluded that the acetone mixtures were more effective than the methanol ones for polyphenol extraction. The number of extraction steps in most of the cases was also a statistically significant factor affecting the yield of phenolic extraction as well as antioxidant potential of basil leaf extracts.
Collapse
|
28
|
Shen Y, Prinyawiwatkul W, Lotrakul P, Xu Z. Comparison of phenolic profiles and antioxidant potentials of the leaves and seeds of Thai holy and sweet basils. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yixiao Shen
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803 USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803 USA
| | - Pongtharin Lotrakul
- Department of Botany; Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| | - Zhimin Xu
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803 USA
| |
Collapse
|
29
|
Elansary HO, Mahmoud EA. In vitroantioxidant and antiproliferative activities of six international basil cultivars. Nat Prod Res 2015; 29:2149-54. [DOI: 10.1080/14786419.2014.995653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Liu Q, Wang Y, Xiao C, Wu W, Liu X. Metabolism of chicoric acid by rat liver microsomes and bioactivity comparisons of chicoric acid and its metabolites. Food Funct 2015; 6:1928-35. [DOI: 10.1039/c5fo00073d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chicoric acid has recently become a hot research topic due to its potent bioactivities.
Collapse
Affiliation(s)
- Qian Liu
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Yutang Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - ChunXia Xiao
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Wanqiang Wu
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Xuebo Liu
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
31
|
Elansary HO, Mahmoud EA. Basil cultivar identification using chemotyping still favored over genotyping using core barcodes and possible resources of antioxidants. JOURNAL OF ESSENTIAL OIL RESEARCH 2014. [DOI: 10.1080/10412905.2014.982874] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Srivastava S, Cahill DM, Conlan XA, Adholeya A. A novel in vitro whole plant system for analysis of polyphenolics and their antioxidant potential in cultivars of Ocimum basilicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10064-10075. [PMID: 25275827 DOI: 10.1021/jf502709e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Plants are an important source for medicinal compounds. Chemical screening and selection is critical for identification of compounds of interest. Ocimum basilicum (Basil) is a rich source of polyphenolics and exhibits high diversity, therefore bioprospecting of a suitable cultivar is a necessity. This study reports on the development of a true to type novel "in vitro system" and its comparison with a conventional system for screening and selection of cultivars for high total phenolics, individual polyphenolics, and antioxidant content. We have shown for the first time using online acidic potassium permanganate chemiluminescence that extracts from Ocimum basilicum showed antioxidant potential. The current study identified the cultivar specific composition of polyphenolics and their antioxidant properties. Further, a distinct relationship between plant morphotype and polyphenolic content was also found. Of the 15 cultivars examined, "Holy Green", "Red Rubin", and "Basil Genovese" were identified as high polyphenolic producing cultivars while "Subja" was determined to be a low producer. The "in vitro system" enabled differentiation of the cultivars in their morphology, polyphenolic content, and antioxidant activity and is a cheap and efficient method for bioprospecting studies.
Collapse
Affiliation(s)
- Shivani Srivastava
- TERI-Deakin Nanobiotechnology Centre, Biotechnology and Management of Bioresources Division, The Energy and Resources Institute (TERI) , DS Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | | | | | | |
Collapse
|
33
|
Agatonovic-Kustrin S, Grace P, Morton D. Evaluation of high-performance thin-layer chromatography for the quantification of phenylpropanoids in commercial Echinaceaproducts. JPC-J PLANAR CHROMAT 2014. [DOI: 10.1556/jpc.27.2014.4.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Koca N, Karaman Ş. The effects of plant growth regulators and L-phenylalanine on phenolic compounds of sweet basil. Food Chem 2014; 166:515-521. [PMID: 25053088 DOI: 10.1016/j.foodchem.2014.06.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 11/27/2022]
Abstract
The effects of methyl jasmonate (MeJA), spermine (Spm), epibrassinolide (EBL) and l-phenylalanine on sweet basil (Ocimum basilicum L.) were studied to determine the amount of phenolic compounds and enzymatic activity of phenylalanine ammonia-lyase (PAL). Total phenolic and total flavonoid contents of sweet basils were determined by a spectrophotometer, and individual phenolic compounds and activity of PAL were analysed by HPLC/UV. The highest total phenolic (6.72 mg GAE/g) and total flavonoid contents (0.92 mg QE/g) obtained from 1.0 mM Spm+MeJA application. Rosmarinic acid (RA) and caffeic acid contents significantly enhanced after the applications but no such differences observed in chicoric acid content or PAL activity. RA was the main phenolic acid in all samples and its concentration varied from 1.04 to 2.70 mg/gFW. As a result the combinations of Spm+MeJA and EBL+MeJA can induce secondary metabolites effectively and those interactions play important role in the production of phytochemicals in plants.
Collapse
Affiliation(s)
- Nülüfer Koca
- Department of Medicinal and Aromatic Plants, Turkoglu Vocational High School, Kahramanmaras Sutcu Imam University, 46100 Turkoglu-Kahramanmaras, Turkey.
| | - Şengül Karaman
- Department of Biology, Faculty of Science, Kahramanmaras Sutcu Imam University, 46100 Avsar Campus-Kahramanmaras, Turkey
| |
Collapse
|
35
|
Flanigan PM, Niemeyer ED. Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.). Food Chem 2014; 164:518-26. [PMID: 24996365 DOI: 10.1016/j.foodchem.2014.05.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 11/15/2022]
Abstract
In this study, we determined the effect of cultivar on total and individual anthocyanin concentrations and phenolic acid levels in eight purple basil varieties and examined the relationship between anthocyanin content, phenolic acid composition, and antioxidant properties. Cultivar had a significant influence on total anthocyanin concentrations as well as individual anthocyanin composition. The four major basil anthocyanins (labelled A-D) were quantified and cultivar had a statistically significant effect on anthocyanins B (p<0.01), C (p<0.01), and D (p<0.01), but not on anthocyanin A (p=0.94). Cultivar did not have a significant effect on total phenolic levels, although it did influence the concentration of some individual phenolic acids, including caftaric (p=0.03) and chicoric (p=0.04) acids. Although total phenolic and anthocyanin levels correlated with measured FRAP antioxidant capacities, for some cultivars the individual phenolic acid and anthocyanin composition was also an important factor affecting the antioxidant properties.
Collapse
Affiliation(s)
- Patrick M Flanigan
- Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX 78626, United States.
| | - Emily D Niemeyer
- Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX 78626, United States.
| |
Collapse
|
36
|
The determination of the caffeic acid derivatives of Echinacea purpurea aerial parts under various extraction conditions by supercritical fluid extraction (SFE). J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Ben-Ali M, Dhouib K, Damak M, Allouche N. Stabilization of Sunflower Oil During Accelerated Storage: Use of Basil Extract as a Potential Alternative to Synthetic Antioxidants. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2014. [DOI: 10.1080/10942912.2012.723659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Lee J. Establishing a case for improved food phenolic analysis. Food Sci Nutr 2014; 2:1-8. [PMID: 24804059 PMCID: PMC3951544 DOI: 10.1002/fsn3.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/30/2013] [Accepted: 10/06/2013] [Indexed: 12/14/2022] Open
Abstract
Future phenolic research findings using a multidisciplinary approach will ensure profitability and sustainability of specialty crop industries, while also improving the nutritional and economic choices available to increasingly health- and environmentally conscious consumers. Recent examples of phenolics used in commercial and research scenarios, and new phenolic research discoveries are discussed. Despite being a heavily researched topic, there remains a need to identify, develop, and define analyses targeted for specific quality-related plant metabolites.
Collapse
Affiliation(s)
- Jungmin Lee
- Horticultural Crops Research Unit Worksite Agricultural Research Service, United States Department of AgricultureParma, Idaho, 83660, USA
| |
Collapse
|
39
|
Acosta G, Arce S, Martínez LD, Llabot J, Gomez MR. Monitoring of phenolic compounds for the quality control of Melissa officinalis products by capillary electrophoresis. PHYTOCHEMICAL ANALYSIS : PCA 2012; 23:177-83. [PMID: 21898627 DOI: 10.1002/pca.1340] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Official assays for the quality control of Melissa officinalis L. (Lamiaceae) leaves establish the quantification of total hydroxycinnamic derivatives expressed as rosmarinic acid. OBJECTIVE The goal of this work was to develop a simple, fast and reliable method for monitoring the phenolic composition in herbs from the Lamiaceae family and for rapidly detecting M. officinalis adulteration or substitution in commercial medicinal samples in Argentina. METHODOLOGY A capillary zone electrophoresis (CZE) method was performed under the following conditions: the background electrolyte (BGE) consisted of 20 m m sodium tetraborate buffer, pH 9.2; the applied voltage was 25 kV; the capillary and sample temperatures were kept at 25 °C; the hydrodynamic mode was selected for the sample injection (3.45 kPa during 5 s). RESULTS A CZE method that achieved the separation and simultaneous determination of eight related phenolic compounds in less than 11 min was optimised for application to control quality analysis of M. officinalis-based products. The method was validated according to the US Federal Drug Agency requirements and offers advantages in terms of analysis time, cost and operation. CONCLUSIONS The proposed methodology can be applied to the standardisation and quality control of plant material and phytopharmaceutical products derived from the Lamiaceae family, as indicated by the results obtained in the analysis of commercial medicinal products in Argentina.
Collapse
Affiliation(s)
- Gimena Acosta
- Química Analítica, Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, UNSL Chacabuco y Pedernera, San Luis, Argentina
| | | | | | | | | |
Collapse
|
40
|
Bora KS, Arora S, Shri R. Role of Ocimum basilicum L. in prevention of ischemia and reperfusion-induced cerebral damage, and motor dysfunctions in mice brain. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1360-1365. [PMID: 21843615 DOI: 10.1016/j.jep.2011.07.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/22/2011] [Accepted: 07/30/2011] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Ocimum (Lamiaceae) has a long history of use as culinary and medicinal herbs. Many species are used for their antioxidant and neuroprotective activity in various parts of the world. Ocimum basilicum Linn. has been used traditionally for the treatment of anxiety, diabetes, cardiovascular diseases, headaches, nerve pain, as anticonvulsant and anti-inflammatory, and used in a variety of neurodegenerative disorders. AIM OF THE STUDY The present study is designed to investigate the effect of ethyl acetate extract of Ocimum basilicum leaves on ischemia and reperfusion-induced cerebral damage, and motor dysfunctions in mice. MATERIALS AND METHODS Global cerebral ischemia was induced by bilateral carotid artery occlusion for 15 min followed by reperfusion for 24h. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. The concentration of thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) content was determined by colorimetric assay. Short-term memory was evaluated using elevated plus-maze. Inclined beam walking was employed to assess motor coordination. Bilateral carotid artery occlusion followed by reperfusion produced significant increase in cerebral infarct size and lipid peroxidation (TBARS), and reduced GSH content, and impaired short-term memory and motor coordination. RESULTS Pre-treatment with standardized ethyl acetate extract of Ocimum basilicum (100 and 200mg/kg, p.o.) markedly reduced cerebral infarct size and lipid peroxidation, restored GSH content, and attenuated impairment in short-term memory and motor coordination. CONCLUSION The results of the study suggest that Ocimum basilicum could be useful clinically in the prevention of stroke.
Collapse
|
41
|
Kwee EM, Niemeyer ED. Variations in phenolic composition and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.04.011] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
|