1
|
Miri S, Hassan H, Esmail GA, Njoku EN, Chiba M, Yousuf B, Ahmed TAE, Hincke M, Mottawea W, Hammami R. A Two Bacteriocinogenic Ligilactobacillus Strain Association Inhibits Growth, Adhesion, and Invasion of Salmonella in a Simulated Chicken Gut Environment. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10148-5. [PMID: 37646968 DOI: 10.1007/s12602-023-10148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
In this study, we aimed to develop a protective probiotic coculture to inhibit the growth of Salmonella enterica serovar Typhimurium in the simulated chicken gut environment. Bacterial strains were isolated from the digestive mucosa of broilers and screened in vitro against Salmonella Typhimurium ATCC 14028. A biocompatibility coculture test was performed, which identified two biocompatible strains, Ligilactobacillus salivarius UO.C109 and Ligilactobacillus saerimneri UO.C121 with high inhibitory activity against Salmonella. The cell-free supernatant (CFS) of the selected isolates exhibited dose-dependent effects, and the inhibitory agents were confirmed to be proteinaceous by enzymatic and thermal treatments. Proteome and genome analyses revealed the presence of known bacteriocins in the CFS of L. salivarius UO.C109, but unknown for L. saerimneri UO.C121. The addition of these selected probiotic candidates altered the bacterial community structure, increased the diversity of the chicken gut microbiota challenged with Salmonella, and significantly reduced the abundances of Enterobacteriaceae, Parasutterlla, Phascolarctobacterium, Enterococcus, and Megamonas. It also modulated microbiome production of short-chain fatty acids (SCFAs) with increased levels of acetic and propionic acids after 12 and 24 h of incubation compared to the microbiome challenged with S. Typhimurium. Furthermore, the selected probiotic candidates reduced the adhesion and invasion of Salmonella to Caco-2 cells by 37-39% and 51%, respectively, after 3 h of incubation, compared to the control. These results suggest that the developed coculture probiotic strains has protective activity and could be an effective strategy to control Salmonella infections in poultry.
Collapse
Affiliation(s)
- Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Galal Ali Esmail
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Emmanuel N Njoku
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Mariem Chiba
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Tamer A E Ahmed
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, K1H8M5, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, K1H8M5, Ottawa, ON, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, K1N 6N5, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Martin AJ, Serebrinsky-Duek K, Riquelme E, Saa PA, Garrido D. Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium. MICROBIOME RESEARCH REPORTS 2023; 2:17. [PMID: 38046822 PMCID: PMC10688804 DOI: 10.20517/mrr.2023.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 12/05/2023]
Abstract
The human gut is home to trillions of microorganisms that influence several aspects of our health. This dense microbial community targets almost all dietary polysaccharides and releases multiple metabolites, some of which have physiological effects on the host. A healthy equilibrium between members of the gut microbiota, its microbial diversity, and their metabolites is required for intestinal health, promoting regulatory or anti-inflammatory immune responses. In contrast, the loss of this equilibrium due to antibiotics, low fiber intake, or other conditions results in alterations in gut microbiota composition, a term known as gut dysbiosis. This dysbiosis can be characterized by a reduction in health-associated microorganisms, such as butyrate-producing bacteria, enrichment of a small number of opportunistic pathogens, or a reduction in microbial diversity. Bifidobacterium species are key species in the gut microbiome, serving as primary degraders and contributing to a balanced gut environment in various ways. Colonization resistance is a fundamental property of gut microbiota for the prevention and control of infections. This community competes strongly with foreign microorganisms, such as gastrointestinal pathogens, antibiotic-resistant bacteria, or even probiotics. Resistance to colonization is based on microbial interactions such as metabolic cross-feeding, competition for nutrients, or antimicrobial-based inhibition. These interactions are mediated by metabolites and metabolic pathways, representing the inner workings of the gut microbiota, and play a protective role through colonization resistance. This review presents a rationale for how microbial interactions provide resistance to colonization and gut dysbiosis, highlighting the protective role of Bifidobacterium species.
Collapse
Affiliation(s)
- Alberto J.M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8580702, Chile
| | - Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| | - Erick Riquelme
- Department of Respiratory Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| |
Collapse
|
3
|
Peng B, Cui Q, Ma C, Yi H, Gong P, Lin K, Liu T, Zhang L. Lactiplantibacillus plantarum YZX28 alleviated intestinal barrier dysfunction induced by enterotoxigenic Escherichia coli via inhibiting its virulence factor production. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Hoter A, Naim HY. The Functions and Therapeutic Potential of Heat Shock Proteins in Inflammatory Bowel Disease-An Update. Int J Mol Sci 2019; 20:ijms20215331. [PMID: 31717769 PMCID: PMC6862201 DOI: 10.3390/ijms20215331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial human intestinal disease that arises from numerous, yet incompletely defined, factors. Two main forms, Crohn's disease (CD) and ulcerative colitis (UC), lead to a chronic pathological form. Heat shock proteins (HSPs) are stress-responsive molecules involved in various pathophysiological processes. Several lines of evidence link the expression of HSPs to the development and prognosis of IBD. HSP90, HSP70 and HSP60 have been reported to contribute to IBD in different aspects. Moreover, induction and/or targeted inhibition of specific HSPs have been suggested to ameliorate the disease consequences. In the present review, we shed the light on the role of HSPs in IBD and their targeting to prevent further disease progression.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt or
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Correspondence: ; Tel.: +49-511-953-8780; Fax: +49-511-953-8585
| |
Collapse
|
5
|
Regulation of Antimicrobial Pathways by Endogenous Heat Shock Proteins in Gastrointestinal Disorders. GASTROINTESTINAL DISORDERS 2018. [DOI: 10.3390/gidisord1010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heat shock proteins (HSPs) are essential mediators of cellular homeostasis by maintaining protein functionality and stability, and activating appropriate immune cells. HSP activity is influenced by a variety of factors including diet, microbial stimuli, environment and host immunity. The overexpression and down-regulation of HSPs is associated with various disease phenotypes, including the inflammatory bowel diseases (IBD) such as Crohn’s disease (CD). While the precise etiology of CD remains unclear, many of the putative triggers also influence HSP activity. The development of different CD phenotypes therefore may be a result of the disease-modifying behavior of the environmentally-regulated HSPs. Understanding the role of bacterial and endogenous HSPs in host homeostasis and disease will help elucidate the complex interplay of factors. Furthermore, discerning the function of HSPs in CD may lead to therapeutic developments that better reflect and respond to the gut environment.
Collapse
|
6
|
McEvoy K, Hayes J, Kealey C, Brady D. Influence of sweet whey protein concentrate and its hydrolysates on host-pathogen interactions in the emerging foodborne pathogen Cronobacter sakazakii. J Appl Microbiol 2016; 121:873-82. [PMID: 27337492 DOI: 10.1111/jam.13212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 11/30/2022]
Abstract
AIMS Antimicrobial resistance poses a significant global healthcare predicament. An attractive approach to the dilemma of drug-resistant bacteria is the development and use of agents that interfere with the ability of pathogens to adhere to human tissue. The influence of sweet whey protein concentrate (SWPC), and selected hydrolysates of this material, on host-pathogen interactions of Cronobacter sakazakii (ATCC 29544) was investigated. METHODS AND RESULTS CaCo-2 cell line was selected as a suitable model for the human intestinal epithelium. Cronobacter sakazakiiATCC 29544 was identified as the strain with the highest adhesion efficiency. SWPC reduced its association by 80% (P < 0·01), invasion 35% (P < 0·01), and translocation >95% (P < 0·001). SWPC enzymatically modified with lipase, trypsin and pepsin had variable effects on these behaviours with the most significant effect exhibited with the lipase treatment. SWPC produced an almost total inhibition of translocation of C. sakazakii across a CaCo-2 cell monolayer. Lipase and pepsin treated SWPC also reduced translocation by 75% and 90% respectively. However, trypsin treatment nullified the effect SWPC had on translocation. The presence of viable bacterial cells and SWPC both increased expression of IL-8 following Cronobacter invasion into CaCo-2 cells. CONCLUSIONS Factors governing adherence, invasion and translocation of Cronobacter spp. to human intestinal cells are multi-factorial and digested milk products exhibit varying effects dependant on their enzyme modification and protein lipid content. SIGNIFICANCE AND IMPACT OF THE STUDY These findings contribute to our, as yet, incomplete understanding of Cronobacter pathogenesis, and suggest that SWPC in whole and enzymatically hydrolysed forms, may provide a cost-effective source of bioactive materials with inhibitory effects on bacterial virulence.
Collapse
Affiliation(s)
- K McEvoy
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland.,Department of Life and Physical Sciences, Faculty of Science and Health, Athlone Institute of Technology, Athlone, Ireland
| | - J Hayes
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - C Kealey
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland.,Department of Life and Physical Sciences, Faculty of Science and Health, Athlone Institute of Technology, Athlone, Ireland
| | - D Brady
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland.,Department of Life and Physical Sciences, Faculty of Science and Health, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
7
|
Zavala L, Golowczyc MA, van Hoorde K, Medrano M, Huys G, Vandamme P, Abraham AG. Selected Lactobacillus strains isolated from sugary and milk kefir reduce Salmonella infection of epithelial cells in vitro. Benef Microbes 2016; 7:585-95. [PMID: 27291404 DOI: 10.3920/bm2015.0196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The isolation of potentially probiotic strains and the subsequent study of their properties are very important steps to gain insight in the health benefits ascribed to sugary and milk kefir. The aim of the present study was to characterise fifteen Lactobacillus strains isolated from these beverages by determining some surface properties and their ability to antagonise enterocyte cell damage after Salmonella infection in vitro. Lactobacillus surface properties were determined by hydrophobicity, autoaggregation, and coaggregation assays with Salmonella. In addition, lactobacilli adhesion to Caco-2/TC-7 cells and the effect on Salmonella invasion were evaluated. Finally, the disassembly of F-actin cytoskeleton on intestinal epithelial cells was assayed in vitro when Salmonella infection was performed in the presence of selected Lactobacillus strains. Ten out of the 15 strains showed a high adhesion capacity to Caco-2/TC-7 cells. Most of the strains were hydrophilic and non-autoaggregating. Strains isolated from sugary kefir were non-coaggregating with Salmonella, while strains Lactobacillus paracasei CIDCA 83120, 83121, 83123, 83124, 8339, 83102 isolated from milk kefir were able to coaggregate after 1 h. L. paracasei CIDCA 8339 and Lactobacillus kefiri CIDCA 83102 were able to diminish Salmonella invasion to the enterocytes. An antagonistic effect on cytoskeleton disruption elicited by the pathogen was also demonstrated. Our results suggest that both strains isolated from milk kefir could be considered as appropriate probiotic candidates.
Collapse
Affiliation(s)
- L Zavala
- 1 Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET, UNLP), 47 and 116, 1900 La Plata, Argentina
| | - M A Golowczyc
- 1 Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET, UNLP), 47 and 116, 1900 La Plata, Argentina
| | - K van Hoorde
- 2 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.,3 Laboratory of Biochemistry and Brewing, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - M Medrano
- 1 Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET, UNLP), 47 and 116, 1900 La Plata, Argentina
| | - G Huys
- 2 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.,4 BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - P Vandamme
- 2 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - A G Abraham
- 1 Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET, UNLP), 47 and 116, 1900 La Plata, Argentina.,5 Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, 47 and 116, 1900 La Plata, Argentina
| |
Collapse
|
8
|
Arnal ME, Lallès JP. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota. Nutr Rev 2016; 74:181-97. [PMID: 26883882 DOI: 10.1093/nutrit/nuv104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components.
Collapse
Affiliation(s)
- Marie-Edith Arnal
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| | - Jean-Paul Lallès
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France.
| |
Collapse
|
9
|
Li L, Jiang YJ, Yang XY, Liu Y, Wang JY, Man CX. Immunoregulatory effects on Caco-2 cells and mice of exopolysaccharides isolated from Lactobacillus acidophilus NCFM. Food Funct 2015; 5:3261-8. [PMID: 25340590 DOI: 10.1039/c4fo00565a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
On the basis of our previous results on potential immunoregulation of Lactobacillus acidophilus NCFM, the immunoregulatory effects of exopolysaccharides (EPS) isolated from L. acidophilus NCFM and their regulating mechanisms are further investigated in the current research. Stimulated by EPS preparations, four immune-related genes in the human colorectal adenocarcinoma cell line Caco-2 cells, namely, interleukin-1α (IL-1α), chemokine C-C motif 2 (CCL2), tumor necrosis factor α (TNF-α), and pentraxin 3 (PTX3), first showed an increase at 2-4 h, peaked at 4 h, and then decreased at 4-12 h. Similar trends were observed in vivo: four genes showed transient expression (highest on the 4th day) in the cecum and colon of mice. Meanwhile, the organ coefficient, clearance index and phagocytic index all significantly increased with time extension and dose increase of EPS stimulation. EPS triggered NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways in Caco-2 cells, and the activated pathways initiated the genes expression. EPS compounds from L. acidophilus NCFM may play an important role in host immunoregulation and might be applied as a new type of immunoregulatory agent in functional foods.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | |
Collapse
|
10
|
Inhibitory effect of Lactobacillus paracasei subsp. paracasei NTU 101 on rat dental caries. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Wei M, Wang Z, Liu H, Jiang H, Wang M, Liang S, Shi K, Feng J. ProbioticBifidobacterium animalissubsp.lactis Bi-07 alleviates bacterial translocation and ameliorates microinflammation in experimental uraemia. Nephrology (Carlton) 2014; 19:500-6. [PMID: 24787732 DOI: 10.1111/nep.12272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Meng Wei
- Dialysis Department of Nephrology Hospital; First Affiliated Hospital of Medicine School; Xi'an Jiaotong University; Xi'an China
| | - Zhigang Wang
- Dialysis Department of Nephrology Hospital; First Affiliated Hospital of Medicine School; Xi'an Jiaotong University; Xi'an China
| | - Hua Liu
- Dialysis Department of Nephrology Hospital; First Affiliated Hospital of Medicine School; Xi'an Jiaotong University; Xi'an China
| | - Hongli Jiang
- Dialysis Department of Nephrology Hospital; First Affiliated Hospital of Medicine School; Xi'an Jiaotong University; Xi'an China
| | - Meng Wang
- Dialysis Department of Nephrology Hospital; First Affiliated Hospital of Medicine School; Xi'an Jiaotong University; Xi'an China
| | - Shanshan Liang
- Dialysis Department of Nephrology Hospital; First Affiliated Hospital of Medicine School; Xi'an Jiaotong University; Xi'an China
| | - Kehui Shi
- Dialysis Department of Nephrology Hospital; First Affiliated Hospital of Medicine School; Xi'an Jiaotong University; Xi'an China
| | - Jie Feng
- Dialysis Department of Nephrology Hospital; First Affiliated Hospital of Medicine School; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
12
|
Ashraf R, Vasiljevic T, Day S, Smith S, Donkor O. Lactic acid bacteria and probiotic organisms induce different cytokine profile and regulatory T cells mechanisms. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
13
|
Effect of bacteria used in food industry on the proliferation and cytokine production of epithelial intestinal cellular lines. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Taverniti V, Scabiosi C, Arioli S, Mora D, Guglielmetti S. Short-term daily intake of 6 billion live probiotic cells can be insufficient in healthy adults to modulate the intestinal bifidobacteria and lactobacilli. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
15
|
Messaoudi S, Manai M, Kergourlay G, Prévost H, Connil N, Chobert JM, Dousset X. Lactobacillus salivarius: Bacteriocin and probiotic activity. Food Microbiol 2013; 36:296-304. [DOI: 10.1016/j.fm.2013.05.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/18/2023]
|
16
|
Juarez GE, Villena J, Salva S, de Valdez GF, Rodriguez AV. Lactobacillus reuteri CRL1101 beneficially modulate lipopolysaccharide-mediated inflammatory response in a mouse model of endotoxic shock. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
17
|
Chen YP, Hsiao PJ, Hong WS, Dai TY, Chen MJ. Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J Dairy Sci 2012; 95:63-74. [PMID: 22192184 DOI: 10.3168/jds.2011-4696] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/25/2011] [Indexed: 12/13/2022]
Abstract
Lactobacillus kefiranofaciens M1, isolated from and identified in Taiwanese milk kefir grain, has demonstrated immune-modulating activity. In the present study, we further investigated the effects of Lb. kefiranofaciens M1 on intestinal epithelial cells in vitro and on dextran sodium sulfate (DSS)-induced colitis in vivo. The possible mechanisms regarding the cytokine products and intestinal epithelial barrier restoration as well as the putative receptor for the protective effects of Lb. kefiranofaciens M1 were investigated. In vitro results indicated that Lb. kefiranofaciens M1 could strengthen the epithelial barrier function in vitro by increasing the transepithelial electrical resistance (TEER) and significantly upregulated the level of the chemokine CCL-20 at both the apical and basolateral sites. The in vivo effects of Lb. kefiranofaciens M1 on the regulation of intestinal physiology indicate that this strain could ameliorate DSS-induced colitis with a significant attenuation of the bleeding score and colon length shortening. Production of proinflammatory cytokines was decreased and that of the antiinflammatory cytokine IL-10 was increased in the DSS-treated mice given Lb. kefiranofaciens M1. The putative receptor for the protective effects of Lb. kefiranofaciens M1 was toll-like receptor 2 (TLR2), which was involved in probiotic-induced cytokine production in vitro and in attenuation of the bleeding score and colon length shortening in vivo. In this study, the kefir lactobacillus Lb. kefiranofaciens M1 clearly demonstrated an anticolitis effect. Based on these results, Lb. kefiranofaciens M1 has the potential to be applied in fermented dairy products as an alternative therapy for intestinal disorders.
Collapse
Affiliation(s)
- Y P Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
18
|
Xie N, Zhou T, Li B. Kefir yeasts enhance probiotic potentials of Lactobacillus paracasei H9: The positive effects of coaggregation between the two strains. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.10.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Remus DM, Kleerebezem M, Bron PA. An intimate tête-à-tête — How probiotic lactobacilli communicate with the host. Eur J Pharmacol 2011; 668 Suppl 1:S33-42. [DOI: 10.1016/j.ejphar.2011.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 12/28/2022]
|