1
|
Ghazaee H, Raouf Sheibani A, Mahdian H, Gholami S, Askari VR, Baradaran Rahimi V. Ellagic acid as potential therapeutic compound for diabetes and its complications: a systematic review from bench to bed. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9345-9366. [PMID: 38980410 DOI: 10.1007/s00210-024-03280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Diabetes mellitus (DM) is a worldwide-concerning disease with a rising prevalence. There are many ongoing studies aimed at finding new and effective treatments. Ellagic acid (EA) is a natural polyphenolic compound abundant in certain fruits and vegetables. It is the objective of this investigation to assess the effectiveness and preventive mechanisms of EA on DM and associated complications. This systematic review used PubMed, Scopus, and Google Scholar as search databases using a predetermined protocol from inception to June 2024. We assessed all related English studies, including in vitro, in vivo, and clinical trials. EA counteracted DM and its complications by diminishing inflammation, oxidative stress, hyperglycemia, apoptosis, insulin resistance, obesity, lipid profile, and histopathological alterations. Several mechanisms contributed to the anti-diabetic effect of EA, the most significant being the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor gamma (PPAR-γ), protein kinase B, and downregulation of nuclear factor-kappa-B (NF-κB) gene expression. EA also revealed protective effects against diabetes complications, such as diabetic-induced hepatic damage, testicular damage, endothelial dysfunction, muscle dysfunction, retinopathy, nephropathy, cardiomyopathy, neuropathy, and behavioral deficit. Administration of EA could have various protective effects in preventing, treating, and alleviating DM and its complications. Although it could be considered a cost-effective, safe, and accessible treatment, to fully establish the effectiveness of EA as a medication for DM, it is crucial to conduct further well-designed studies.
Collapse
Affiliation(s)
- Hossein Ghazaee
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Raouf Sheibani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haniyeh Mahdian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Gholami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
| |
Collapse
|
2
|
Garg P, Awasthi S, Horne D, Salgia R, Singhal SS. The innate effects of plant secondary metabolites in preclusion of gynecologic cancers: Inflammatory response and therapeutic action. Biochim Biophys Acta Rev Cancer 2023; 1878:188929. [PMID: 37286146 DOI: 10.1016/j.bbcan.2023.188929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Gynecologic cancers can make up the bulk of cancers in both humans and animals. The stage of diagnosis and the type of tumor, its origin, and its spread are a few of the factors that influence how effectively a treatment modality works. Currently, radiotherapy, chemotherapy, and surgery are the major treatment options recommended for the eradication of malignancies. The use of several anti-carcinogenic drugs increases the chance of harmful side effects, and patients might not react to the treatments as expected. The significance of the relationship between inflammation and cancer has been underscored by recent research. As a result, it has been shown that a variety of phytochemicals with beneficial bioactive effects on inflammatory pathways have the potential to act as anti-carcinogenic medications for the treatment of gynecologic cancer. The current paper reviews the significance of inflammatory pathways in gynecologic malignancies and discusses the role of plants-derived secondary metabolites that are useful in the treatment of cancer.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital in Cayman Islands, George Town, Grand Cayman, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Díaz-de-Cerio E, Girón F, Pérez-Garrido A, Pereira ASP, Gabaldón-Hernández JA, Verardo V, Segura Carretero A, Pérez-Sánchez H. Fishing the Targets of Bioactive Compounds from Psidium guajava L. Leaves in the Context of Diabetes. Int J Mol Sci 2023; 24:ijms24065761. [PMID: 36982836 PMCID: PMC10057723 DOI: 10.3390/ijms24065761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Psidium guajava L. (guava) leaves have demonstrated their in vitro and in vivo effect against diabetes mellitus (DM). However, there is a lack of literature concerning the effect of the individual phenolic compounds present in the leaves in DM disease. The aim of the present work was to identify the individual compounds in Spanish guava leaves and their potential contribution to the observed anti-diabetic effect. Seventy-three phenolic compounds were identified from an 80% ethanol extract of guava leaves by high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry. The potential anti-diabetic activity of each compound was evaluated with the DIA-DB web server that uses a docking and molecular shape similarity approach. The DIA-DB web server revealed that aldose reductase was the target protein with heterogeneous affinity for compounds naringenin, avicularin, guaijaverin, quercetin, ellagic acid, morin, catechin and guavinoside C. Naringenin exhibited the highest number of interactions with target proteins dipeptidyl peptidase-4, hydroxysteroid 11-beta dehydrogenase 1, aldose reductase and peroxisome proliferator-activated receptor. Compounds catechin, quercetin and naringenin displayed similarities with the known antidiabetic drug tolrestat. In conclusion, the computational workflow showed that guava leaves contain several compounds acting in the DM mechanism by interacting with specific DM protein targets.
Collapse
Affiliation(s)
- Elixabet Díaz-de-Cerio
- Department of Nutrition and Food Science, University of Granada, Campus of Melilla, 52005 Melilla, Spain
| | - Francisco Girón
- Department of Human Nutrition and Food Technology, Universidad Católica de Murcia UCAM, Campus de los Jerónimos, 30107 Guadalupe, Spain
| | - Alfonso Pérez-Garrido
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Andreia S P Pereira
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0083, South Africa
| | | | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda del Conocimiento Sn., 18100 Armilla, Spain
| | - Antonio Segura Carretero
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Spain
| |
Collapse
|
4
|
Pineda A, Arenas A, Balmaceda J, Zúñiga GE. Extracts of Fruits and Plants Cultivated In Vitro of Aristotelia chilensis (Mol.) Stuntz Show Inhibitory Activity of Aldose Reductase and Pancreatic Alpha-Amylase Enzymes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2772. [PMID: 36297800 PMCID: PMC9610771 DOI: 10.3390/plants11202772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Aristotelia chilensis is a plant whose fruit is considered a powerful natural antioxidant. During the last years, some investigations of the fruit have been carried out, finding antioxidant properties in the juice or the phenolic fraction. The antioxidant properties of the plant are useful in the inhibition of enzymes related to diabetes such as pancreatic aldose reductase and alpha-amylase. Because many synthetic drugs used today have limitations and potentially harmful side effects, the use of naturally occurring compounds, such as flavonoids, is clinically attractive. In this study, the characterization of aqueous extracts of fruits and in vitro plants of A. chilensis was carried out based on their content of anthocyanins and total phenols, the antioxidant capacity by the antiradical activity 2,2-diphenyl-1-picrilhydrazil (DPPH), and the profile of anthocyanins and other phenolic compounds by liquid chromatography coupled to mass spectrometry (LC-MS/MS). Subsequently, the effect of these extracts on the inhibition of bovine aldose reductase and pancreatic alpha-amylase enzymes was determined. According to our results, extracts of fruits and in vitro plants of A. chilensis achieved inhibition of the bovine aldose reductase enzyme of 85.54 ± 1.86% and 75.67 ± 1.21%, respectively. Likewise, the percentage of inhibition of the pancreatic alpha-amylase enzyme for fruit extracts was 29.64 ± 0.63%, while for in vitro plant extracts it was 47.66 ± 0.66%. The antioxidant and enzymatic inhibition activity of the extracts were related to the content of anthocyanins, such as delphinidin and cyanidin glycosides as well as the phenols derived from quercetin, myricetin, and kaempferol. The results obtained allow us to suggest that the in vitro culture of plants of A. chilensis represents a viable biotechnological alternative to obtain phenolic compounds for the inhibition of aldose reductase and pancreatic alpha-amylase enzymes.
Collapse
Affiliation(s)
- Adriana Pineda
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 917021, Chile
| | - Andrea Arenas
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 917021, Chile
| | - Juan Balmaceda
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 917021, Chile
| | - Gustavo E. Zúñiga
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 917021, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 917021, Chile
| |
Collapse
|
5
|
Comakli V, Adem S, Oztekin A, Demirdag R. Screening inhibitory effects of selected flavonoids on human recombinant aldose reductase enzyme: in vitro and in silico study. Arch Physiol Biochem 2022; 128:1368-1374. [PMID: 32463711 DOI: 10.1080/13813455.2020.1771377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aldose reductase (AR) is the first enzyme of the polyol pathway that has physiological importance under hyperglycaemic conditions. The article has been focussed on AR enzyme inhibition by selected compounds. For this purpose, the in vitro inhibitory effects of various compounds on commercially available recombinant human AR (rAR) enzyme activity were investigated. The IC50 values of compounds on rAR inhibition effect were found for 6-hydroxy flavone, syringic acid, diosmetin, 6-fluoroflavone, 7-hydroxy-4'-nitroisoflavone, myricetin as 2.05, 2.97, 15.75, 16.1, 49.5, and 63 µM, respectively. 6-Hydroxy flavone and syringic acid competitively inhibited rAR with respect to the NADPH with Ki values 0.509 ± 0.036 and 0.842 ± 0.012 µM. In addition, docking studies were performed to evaluate the potential enzyme binding positions of the compounds. Our in vitro and in silico results indicated that the 6-hydroxy flavone may be a good lead compound in the development of AR inhibitors to prevent diabetic complications.
Collapse
Affiliation(s)
- Veysel Comakli
- Nutrition and Dietetics Department, High School of Health, Agri Ibrahim Cecen University, Agri, Turkey
| | - Sevki Adem
- Department of Chemistry, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Aykut Oztekin
- Medical Services and Techniques Department, Vocational School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ramazan Demirdag
- Nutrition and Dietetics Department, High School of Health, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
6
|
Yahya S, Haider K, Pathak A, Choudhary A, Hooda P, Shafeeq M, Shahar Yar M. Strategies in synthetic design and structure-activity relationship studies of novel heterocyclic scaffolds as aldose reductase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200167. [PMID: 36125217 DOI: 10.1002/ardp.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Heterocyclic scaffolds of natural as well as synthetic origin provide almost all categories of drugs exhibiting a wide range of pharmacological activities, such as antibiotics, antidiabetic and anticancer agents, and so on. Under normal homeostasis, aldose reductase 2 (ALR2) regulates vital metabolic functions; however, in pathological conditions like diabetes, ALR2 is unable to function and leads to secondary diabetic complications. ALR2 inhibitors are a novel target for the treatment of retinopathy (cataract) influenced by diabetes. Epalrestat (stat), an ALR2 inhibitor, is the only drug candidate that was approved in the last four decades; the other drugs from the stat class were retracted after clinical trial studies due to untoward iatrogenic effects. The present study summarizes the recent development (2014 and onwards) of this pharmacologically active ALR2 heterocyclic scaffold and illustrates the rationale behind the design, structure-activity relationships, and biological studies performed on these molecules. The aim of the current review is to pave a straight path for medicinal chemists and chemical biologists, and, in general, to the drug discovery scientists to facilitate the synthesis and development of novel ALR2 inhibitors that may serve as lead molecules for the treatment of diseases related to the ALR2 enzyme.
Collapse
Affiliation(s)
- Shaikh Yahya
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Akram Choudhary
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Hooda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Shafeeq
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
Bayrak C. Synthesis and aldose reductase inhibition effects of celecoxib derivatives containing pyrazole linked-sulfonamide moiety. Bioorg Chem 2022; 128:106086. [PMID: 35973306 DOI: 10.1016/j.bioorg.2022.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
In this article, we report the synthesis of Celecoxib derivatives containing the pyrazole-linked sulfonamide moiety. The enzyme inhibition effects of these derivatives on aldose reductase (AR) were also investigated. The IC50 values of the pyrazole sulfonamide derivatives were determined to be in the range of 40.76-8.25 µM. Among the synthesized derivatives, the compound 16 showed the strongest inhibition effect against the AR enzyme, with an IC50 value of 8.25 µM. Molecular docking studies were carried out to determine the interactions of the synthesized compounds with the AR enzyme, and ADMET studies were performed to assess the pharmacokinetic and drug-likeness properties.
Collapse
Affiliation(s)
- Cetin Bayrak
- Dogubayazit Ahmed-i Hani Vocational School, Agri Ibrahim Cecen University, Agri 04400, Turkey; Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey.
| |
Collapse
|
8
|
Kumar CU, Suryavanshi U, Sontake V, Reddy PY, Sankhala RS, Swamy MJ, Reddy GB. Effect of Sorbitol on Alpha-Crystallin Structure and Function. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:131-140. [PMID: 35508910 DOI: 10.1134/s0006297922020055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Loss of eye lens transparency due to cataract is the leading cause of blindness all over the world. While aggregation of lens crystallins is the most common endpoint in various types of cataracts, chaperone-like activity (CLA) of α-crystallin preventing protein aggregation is considered to be important for maintaining the eye lens transparency. Osmotic stress due to increased accumulation of sorbitol under hyperglycemic conditions is believed to be one of the mechanisms for diabetic cataract. In addition, compromised CLA of α-crystallin in diabetic cataract has been reported. However, the effect of sorbitol on the structure and function of α-crystallin has not been elucidated yet. Hence, in the present exploratory study, we described the effect of varying concentrations of sorbitol on the structure and function of α-crystallin. Alpha-crystallin purified from the rat lens was incubated with varying concentrations of sorbitol in the dark under sterile conditions for up to 5 days. At the end of incubation, structural properties and CLA were evaluated by spectroscopic methods. Interestingly, different concentrations of sorbitol showed contrasting results: at lower concentrations (5 and 50 mM) there was a decrease in CLA and subtle alterations in secondary and tertiary structure but not at higher concentrations (500 mM). Though, these results shed a light on the effect of sorbitol on α-crystallin structure-function, further studies are required to understand the mechanism of the observed effects and their implication to cataractogenesis.
Collapse
Affiliation(s)
- Ch Uday Kumar
- Biochemistry Division, National Institute of Nutrition, Hyderabad, 500007, India.
| | | | - Vishwaraj Sontake
- Biochemistry Division, National Institute of Nutrition, Hyderabad, 500007, India.
| | - P Yadagiri Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, 500007, India.
| | | | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India.
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, 500007, India.
| |
Collapse
|
9
|
Grewal AS, Thapa K, Kanojia N, Sharma N, Singh S. Natural Compounds as Source of Aldose Reductase (AR) Inhibitors for the Treatment of Diabetic Complications: A Mini Review. Curr Drug Metab 2021; 21:1091-1116. [PMID: 33069193 DOI: 10.2174/1389200221666201016124125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/07/2020] [Accepted: 07/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aldol reductase (AR) is the polyol pathway's main enzyme that portrays a crucial part in developing 'complications of diabetes' involving cataract, retinopathy, nephropathy, and neuropathy. These diabetic abnormalities are triggered tremendously via aggregation of sorbitol formation (catalyzed by AR) in the polyol pathway. Consequently, it represents an admirable therapeutic target and vast research was done for the discovery of novel molecules as potential AR inhibitors for diabetic complications. OBJECTIVE This review article has been planned to discuss an outline of diabetic complications, AR and its role in diabetic complications, natural compounds reported as AR inhibitors, and benefits of natural/plant derived AR inhibitors for the management of diabetic abnormalities. RESULTS The goal of AR inhibition remedy is to stabilize the increased flux of blood glucose and sorbitol via the 'polyol pathway' in the affected tissues. A variety of synthetic inhibitors of AR have been established such as tolrestat and sorbinil, but both of these face limitations including low permeability and health problems. Pharmaceutical industries and other scientists were also undertaking work to develop newer, active, and 'safe' AR inhibitors from natural sources. Therefore, several naturally found molecules were documented to possess a potent inhibitory action on AR activity. CONCLUSION Natural inhibitors of AR appeared as harmless pharmacological agents for controlling diabetic complications. The detailed literature throughout this article shows the significance of herbal extracts and phytochemicals as prospective useful AR inhibitors in treating diabetic complications.
Collapse
Affiliation(s)
- Ajmer Singh Grewal
- Chitkara School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Komal Thapa
- Chitkara School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
10
|
Thakur S, Gupta SK, Ali V, Singh P, Verma M. Aldose Reductase: a cause and a potential target for the treatment of diabetic complications. Arch Pharm Res 2021; 44:655-667. [PMID: 34279787 DOI: 10.1007/s12272-021-01343-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus, a disorder of metabolism, results in the elevation of glucose level in the blood. In this hyperglycaemic condition, aldose reductase overexpresses and leads to further complications of diabetes through the polyol pathway. Glucose metabolism-related disorders are the accumulation of sorbitol, overproduction of NADH and fructose, reduction in NAD+, and excessive NADPH usage, leading to diabetic pathogenesis and its complications such as retinopathy, neuropathy, and nephropathy. Accumulation of sorbitol results in the alteration of osmotic pressure and leads to osmotic stress. The overproduction of NADH causes an increase in reactive oxygen species production which leads to oxidative stress. The overproduction of fructose causes cell death and non-alcoholic fatty liver disease. Apart from these disorders, many other complications have also been discussed in the literature. Therefore, the article overviews the aldose reductase as the causative agent and a potential target for the treatment of diabetic complications. So, aldose reductase inhibitors have gained much importance worldwide right now. Several inhibitors, like derivatives of carboxylic acid, spirohydantoin, phenolic derivatives, etc. could prevent diabetic complications are discussed in this article.
Collapse
Affiliation(s)
- Sapna Thakur
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sonu Kumar Gupta
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Villayat Ali
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Priyanka Singh
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Malkhey Verma
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
11
|
Wang Z, Wu Z, Zuo G, Lim SS, Yan H. Defatted Seeds of Oenothera biennis as a Potential Functional Food Ingredient for Diabetes. Foods 2021; 10:foods10030538. [PMID: 33807644 PMCID: PMC8002154 DOI: 10.3390/foods10030538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
The defatted seeds of Oenothera biennis (DSOB) are a by-product of evening primrose oil production that are currently not effectively used. In this study, α-glucosidase inhibition, aldose reductase inhibition, antioxidant capacity, polyphenol composition, and nutritional value (carbohydrates, proteins, minerals, fat, organic acid, and tocopherols) of DSOB were evaluated using the seeds of Oenothera biennis (SOB) as a reference. DSOB was an excellent inhibitor of α-glucosidase (IC50 = 3.31 μg/mL) and aldose reductase (IC50 = 2.56 μg/mL). DSOB also showed considerable antioxidant capacities (scavenging of 2,2-diphenyl-1-picrylhydrazyl, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, nitric oxide, peroxynitrite, and hydroxyl radicals). DSOB was a reservoir of polyphenols, and 25 compounds in DSOB were temporarily identified by liquid chromatography coupled with electrospray ionization–quadrupole time of flight–mass spectrometry analysis. Moreover, the carbohydrate, protein, and mineral content of DSOB were increased compared to that of SOB. DSOB contained large amounts of fiber and low levels of sugars, and was rich in calcium and iron. These results imply that DSOB may be a potential functional food ingredient for diabetes, providing excellent economic and environmental benefits.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence: (Z.W.); (H.Y.); Tel.: +86-312-5079010 (Z.W.); +86-312-5078507 (H.Y.)
| | - Zhaoyang Wu
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (S.S.L.)
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (S.S.L.)
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence: (Z.W.); (H.Y.); Tel.: +86-312-5079010 (Z.W.); +86-312-5078507 (H.Y.)
| |
Collapse
|
12
|
Li Y, Zhang Y, Dai W, Zhang Q. Enhanced oral absorption and anti-inflammatory activity of ellagic acid via a novel type of case in nanosheets constructed by simple coacervation. Int J Pharm 2021; 594:120131. [PMID: 33271309 DOI: 10.1016/j.ijpharm.2020.120131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
As a nature component, ellagic acid (EA) shows a broad array of pharmacological activities but is lost in clinical translation partly due to poor aqueous solubility. In an effort to enhance its oral absorption, novel EA-loaded casein nanosheets (EA@CAS-NSs) was constructed by simple coacervation and investigated for in vitro characterization and in vivo evaluation. The influences of factors including pH, EA concentration, and mass ratio of CAS and EA on properties of EA@CAS-NSs were also studied. The low pH value and high matrix and drug ratio were harmful to small particle size of EA@CAS-NSs. Meanwhile, the low and high concentration of EA went against the 8 h short-term stability of EA@CAS-NSs. Interestingly, EA@CAS-NSs showed a typical disk-like structure with a diameter of 100-400 nm and good long-term storage stability for 24 months. The molecular structure of EA in NSs remained unchanged, but the EA in NSs had lower crystallinity and better thermal stability than in raw state. No chemical interaction occurred between CAS and EA, although the intermolecular distance of them was less than 10 nm. In simulated intestinal fluid, the solubility of EA in NSs was nearly three times that of raw EA, and the dissolution of EA@CAS-NSs was 12 folds of raw EA at 120 min. With oral administration, EA@CAS-NSs demonstrated an improved oral absorption in rats, as evidenced by an AUC0-24 value 2.34 times higher than raw EA. Also, the EA@CAS-NSs showed a better anti-inflammatory activity than EA. Generally, EA@CAS-NSs could be a potential strategy for the further clinic use of EA.
Collapse
Affiliation(s)
- Yong Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenbing Dai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
13
|
Evtyugin DD, Magina S, Evtuguin DV. Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives. A Review. Molecules 2020; 25:molecules25122745. [PMID: 32545813 PMCID: PMC7355634 DOI: 10.3390/molecules25122745] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/16/2023] Open
Abstract
Ellagitannins (ETs), characterized by their diversity and chemical complexity, belong to the class of hydrolysable tannins that, via hydrolysis under acidic or alkaline conditions, can yield ellagic acid (EA). They are mostly found as a part of extractives in angiosperms. As known antioxidants and chelators, EA and EA derivatives are drawing an increasing interest towards extensive technical and biomedical applications. The latter ones include possible antibacterial, antifungal, antiviral, anti-inflammatory, hepato- and cardioprotective, chemopreventive, neuroprotective, anti-diabetic, gastroprotective, antihyperlipidemic, and antidepressant-like activities, among others. EA’s synthesis and production challenges prompt further research on new methods and alternative sources. Conventional and prospective methods and raw materials for the production of EA and its derivatives are reviewed. Among the potential sources of EA, the residues and industrial streams of the pulp industry have been highlighted and considered as an alluring alternative in terms of commercial exploitation.
Collapse
|
14
|
Joksić G, Tričković JF, Joksić I. Potential of Gentiana lutea for the Treatment of Obesity-associated Diseases. Curr Pharm Des 2019; 25:2071-2076. [PMID: 31538881 DOI: 10.2174/1381612825666190708215743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obesity, diabetes, and associated diseases are increasing all over the world, and pose a great burden on public health. According to the latest reports, 440 million people are suffering from diabetes. Diabetes is caused by impaired ability to produce or respond to the hormone insulin consequently resulting in hyperglycemia. METHODS Data used for this review was obtained by using PUBMED/MEDLINE (1987-2018). The main data search terms were: Gentiana lutea, Gentiana lutea extract, Gentiana lutea constituents, obesity, diabetes mellitus, diabetic complications. RESULTS In the present review, we describe the potential of root powder of yellow gentian (Gentiana lutea) for the prevention of obesity and diabetes including complications related to this disease. CONCLUSION Reasonably effective, low-cost alternatives could fulfill an important role for a large part of the human population and could be of great value for the food market. Even a modest reduction of morbidity and mortality with respect to this disease translates into millions of lives saved.
Collapse
Affiliation(s)
- Gordana Joksić
- Vinca Institute of Nuclear Science, University of Belgrade, M.Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Jelena Filipović Tričković
- Vinca Institute of Nuclear Science, University of Belgrade, M.Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Ivana Joksić
- Vinca Institute of Nuclear Science, University of Belgrade, M.Petrovica Alasa 12-14, 11000 Belgrade, Serbia.,Clinic for Gynecology and Obstetrics Narodni Front, Kraljice Natalije 62, 11000, Belgrade, Serbia
| |
Collapse
|
15
|
Hwang SH, Kim HY, Quispe YNG, Wang Z, Zuo G, Lim SS. Aldose Reductase, Protein Glycation Inhibitory and Antioxidant of Peruvian Medicinal Plants: the Case of Tanacetum parthenium L. and Its Constituents. Molecules 2019; 24:E2010. [PMID: 31130646 PMCID: PMC6571560 DOI: 10.3390/molecules24102010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/26/2022] Open
Abstract
Diabetes complications, including peripheral neuropathy, cataracts, impaired wound healing, vascular damage, arterial wall stiffening and retinopathy diseases, are among the most predominant health problems facing the world's population today. The 22 Peruvian plant extracts were screened for their potential inhibitory activity against rat lens aldose reductase (RLAR) and DPPH radical scavenging. Among them, we have found that Tanacetum parthenium L. (TP) has the RLAR, AGEs and DPPH radical scavenging activities. We used for screening of active components in TP against RLAR and DPPH for the first time by ultrafiltration (UF) and DPPH. Compounds in TP were isolated by Sephadex column chromatography and their structures were established by MS and NMR spectroscopic analyses. Among the isolated compounds, ferulic acid, apigenin, luteolin-7-O-glucoside, luteolin, chrysosplenol, and kaempferol showed potent inhibition with IC50 values of 1.11-3.20 and 6.44-16.23 μM for RLAR and DPPH radical scavenging. Furthermore, these compounds suppressed sorbitol accumulation in rat lenses and ferulic acid, luteolin-7-O-glucoside, and luteolin have AGEs inhibitory activities with IC50 values of 3.43-6.73 μM. In summary, our study provides interesting plants for further study with respect to the treatment and prevention of diabetic complication of Peruvian plant and can provide the scientific base of the traditional uses.
Collapse
Affiliation(s)
- Seung Hwan Hwang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, 24252 Chuncheon, Korea.
| | - Hyun-Yong Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, 24252 Chuncheon, Korea.
| | - Yanymee N Guillen Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 151742 Seoul, Korea.
| | - Zhiqiang Wang
- College of Public Health, Hebei University, Baoding 071002, China.
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, 24252 Chuncheon, Korea.
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, 24252 Chuncheon, Korea.
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, 24252 Chuncheon, Korea.
- Institute of Natural Medicine, Hallym University, 1 Hallymdeahak-gil, 24252 Chuncheon, Korea.
| |
Collapse
|
16
|
Laddha AP, Kulkarni YA. Tannins and vascular complications of Diabetes: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:229-245. [PMID: 30668344 DOI: 10.1016/j.phymed.2018.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disorder associated with persistent increased level of glucose in the blood. According to a report by World Health Organisation (WHO), prevalence of diabetes among adults over 18 years of age had reached to 8.5% in year 2014 which was 4.7% in 1980s. The Prolong increased level of glucose in blood leads to development of microvascular (blindness, nephropathy and neuropathy) and macrovascular (cardiovascular and stroke) degenerative complications because of uncontrolled level of glucose in blood. This also leads to the progression of oxidative stress and affecting metabolic, genetic and haemodynamic system by activation of polyol pathway, protein kinase C pathway, hexosamine pathway and increases advanced glycation end products (AGEs) formation. Diabetes mellitus and its associated complications are one of the major leading causes of mortality worldwide. Various natural products like alkaloids, glycosides, flavonoids, terpenoids and polyphenols are reported for their activity in management of diabetes and its associated diabetic complications. Tannins are systematically studied by many researchers in past few decades for their effect in diabetes and its complications. AIM The present review was designed to compile the data of tannins and their beneficial effects in the management of diabetic complications. METHOD Literature search was performed using various dataset like pubmed, EBSCO, proQuest Scopus and selected websites including the National Institutes of Health (NIH) and the World Health Organization (WHO). RESULTS Globally, more than 400 natural products have been investigated in diabetes and its complications. Tannins are the polyphenolic compounds present in many medicinal plants and various dietary sources like fruits, nuts, grains, spices and beverages. Various reports have shown that compounds like gallic acid, ellagic acid, catechin, epicatechin and procynidins from medicinal plants play major role in controlling progression of diabetes and its related complications by acting on molecular pathways and key targets involved in progression. Many chemists used above mentioned phyto-constituents as a pharmacophore for the developing new chemical entities having higher therapeutic benefits in management of diabetic complications. CONCLUSION This review focuses on the role of various tannins in prevention and management of diabetic complications like diabetic nephropathy, diabetic neuropathy, diabetic retinopathy and diabetic cardiomyopathy. It will help researchers to find some leads for the development of new cost effective therapy using dietary source for the management of diabetic complications.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, India.
| |
Collapse
|
17
|
Sepúlveda L, Wong-Paz JE, Buenrostro-Figueroa J, Ascacio-Valdés JA, Aguilera-Carbó A, Aguilar CN. Solid state fermentation of pomegranate husk: Recovery of ellagic acid by SEC and identification of ellagitannins by HPLC/ESI/MS. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Alim Z, Kilinç N, Şengül B, Beydemir Ş. Inhibition behaviours of some phenolic acids on rat kidney aldose reductase enzyme: an in vitro study. J Enzyme Inhib Med Chem 2017; 32:277-284. [PMID: 28111996 PMCID: PMC6009866 DOI: 10.1080/14756366.2016.1250752] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022] Open
Abstract
Aldose reductase (AR) inhibitors have vital importance in the treatment and prevention of diabetic complications. In this study, rat kidney AR was purified 19.34-fold with a yield of 3.49% and a specific activity of 0.88 U/mg using DE-52 Cellulose anion exchange chromatography, gel filtration chromatography and 2'5' ADP Sepharose-4B affinity chromatography, respectively. After purification, the in vitro inhibition effects of some phenolic acids (tannic acid, chlorogenic acid, sinapic acid, protocatechuic acid, 4-hydroxybenzoic acid, p-coumaric acid, ferulic acid, vanillic acid, syringic acid, α-resorcylic acid, 3-hydroxybenzoic acid and gallic acid) were investigated on purified enzyme. We determined IC50, Ki values and inhibition types of these phenolic acids. As a result, tannic and chlorogenic acid had a strong inhibition effect. On the other hand, gallic acid had a weak inhibition effect. In this study, all phenolic acids except for chlorogenic acid and p-coumaric acid showed non-competitive inhibition effects on rat kidney AR.
Collapse
Affiliation(s)
- Zuhal Alim
- Department of Chemistry, Faculty of Science and Arts, Ahi Evran University, Kirşehir, Turkey
| | - Namik Kilinç
- Department of Medical Services and Techniques, Vocational School of Health Service, Iğdir University, Iğdir, Turkey
| | - Bülent Şengül
- Deparment of Health Care Service, Vocational School of Health Service, Bayburt University, Bayburt, Turkey
| | - Şükrü Beydemir
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
19
|
Khalil H. Diabetes microvascular complications-A clinical update. Diabetes Metab Syndr 2017; 11 Suppl 1:S133-S139. [PMID: 27993541 DOI: 10.1016/j.dsx.2016.12.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/12/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND The purpose of this study is to summarise the empirical evidence addressing diabetes microvascular complications and management. The effects of diabetes mellitus include long-term damage, dysfunction and failure of various organs. Microvascular disease tends to occur predominantly in tissues where glucose uptake is independent of insulin activity because these tissues are exposed to glucose levels that correlate very closely with blood glucose levels. These metabolic injuries cause altered blood flow and changes in endothelial permeability, extravascular protein deposition and coagulation resulting in organ dysfunction which in turn lead to microvascular complications. METHOD A systematic search of the literature from 2000 to 2016 was conducted using four databases (Medline, Pubmed, Cochrane central and Google scholar) using search terms such as diabetic microvascular complications', pathogenesis, screening, risk factors, pharmacological and non-pharmacological interventions and management. RESULTS The current evidence supports a direct relationship between blood pressure (BP) and glycaemic control and progression of nephropathy and retinopathy. These are now considered as independent risk factors for microvascular disease progression. New fields of research addressing new drugs as potential therapeutic targets of the future will be presented. CONCLUSION The prevention of microvascular disease involves paying attention to aggravating risk factors and implementing screening programmes to improve early detection.
Collapse
Affiliation(s)
- H Khalil
- Monash University, Monash Rural Health, Moe, Victoria, 3825, Australia.
| |
Collapse
|
20
|
Wang ST, Chou CT, Su NW. A food-grade self-nanoemulsifying delivery system for enhancing oral bioavailability of ellagic acid. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
21
|
Raghu G, Akileshwari C, Reddy VS, Reddy GB. Attenuation of diabetic retinopathy in rats by ellagic acid through inhibition of AGE formation. Journal of Food Science and Technology 2017; 54:2411-2421. [PMID: 28740299 DOI: 10.1007/s13197-017-2683-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is a major concern for blindness all over the world. Diabetic retinopathy is associated with thickening of basement membrane, retinal thinning, retinal detachment, and pericyte death. Advanced glycation end products (AGEs) mediate the progression of DR by stimulating the expression of RAGE and VEGF which subsequently damages the blood-retinal barrier. Employing a set of in vitro protein glycation systems, earlier we demonstrated antiglycating potential of ellagic acid (EA). In this study, we evaluated the efficacy of EA to prevent in vivo accumulation of AGE and to ameliorate retinal changes in diabetic rats. Streptozotocin-induced diabetic rats were fed either with 0.2 or 2% EA in the diet for 12 weeks. Effect of EA on retinal function was assessed with electroretinogram (ERG). At the end of the experiment, rats were scarified and retina was collected. Histology was carried out with H&E staining and immunohistochemistry. Formation of AGE product (CML) and activation of RAGE was analyzed by immunoblotting and immunohistochemistry. Expression of GFAP, VEGF, Bax and HIF-1α was assessed by qRT-PCR and immunoblotting. Dietary supplementation of EA to diabetic rats resulted in: (1) inhibition of accumulation of CML and activation of RAGE in retina, (2) attenuation of expression of GFAP, VEGF, and HIF-1α in retina, (3) attenuation of cell death by reducing proapoptic mediator Bax and (4) amelioration of retinal thickness and function. In conclusion, EA attenuated the retinal abnormalities including angiogenesis, hypoxia and cell death by inhibiting AGE-RAGE mediated cellular events.
Collapse
Affiliation(s)
- G Raghu
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500 007 India
| | - C Akileshwari
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500 007 India
| | - V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500 007 India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500 007 India
| |
Collapse
|
22
|
Alim Z, Kilinc N, Sengul B, Beydemir S. Mechanism of capsaicin inhibition of aldose reductase activity. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21898] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Zuhal Alim
- Department of Chemistry, Faculty of Science and Arts; Ahi Evran University; 40000 Kırşehir Turkey
| | - Namık Kilinc
- Department of Medical Services and Techniques, Vocational School of Health Service; Iğdır University; 76000 Iğdır Turkey
| | - Bulent Sengul
- Department of Health Care Service, Vocational School of Health Service; Bayburt University; 69000 Bayburt Turkey
| | - Sukru Beydemir
- Department of Chemistry, Faculty of Sciences; Atatürk University; 25240 Erzurum Turkey
- Department of Biochemistry, Faculty of Pharmacy; Anadolu University; 26470 Eskişehir Turkey
| |
Collapse
|
23
|
Reddy KA, Kumar PU, Srinivasulu M, Triveni B, Sharada K, Ismail A, Reddy GB. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers. Breast 2016; 31:137-143. [PMID: 27855345 DOI: 10.1016/j.breast.2016.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 10/25/2022] Open
Abstract
The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors.
Collapse
Affiliation(s)
| | - P Uday Kumar
- National Institute of Nutrition, Hyderabad, India
| | | | - B Triveni
- MNJ Institute of Oncology, Hyderabad, India
| | - K Sharada
- National Institute of Nutrition, Hyderabad, India
| | | | | |
Collapse
|
24
|
Sampath C, Sang S, Ahmedna M. In vitro and in vivo inhibition of aldose reductase and advanced glycation end products by phloretin, epigallocatechin 3-gallate and [6]-gingerol. Biomed Pharmacother 2016; 84:502-513. [PMID: 27685794 DOI: 10.1016/j.biopha.2016.09.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 10/20/2022] Open
Abstract
Hyperglycemic stress activates polyol pathway and aldose reductase (AR) key enzyme responsible for generating secondary complications during diabetes. In this study the therapeutic potential of phloretin, epigallocatechin 3-gallate (EGCG) and [6]-gingerol were evaluated for anti-glycating and AR inhibitory activity in vitro and in vivo systems. Human retinal pigment epithelial (HRPE) cells were induced with high glucose supplemented with the phloretin, EGCG and [6]-gingerol. Aldose reductase activity, total advanced glycation end products (AGEs) and enzyme inhibitor kinetics were assessed. Male C57BL/6J mice were randomly assigned to one of the different treatments (bioactive compounds at 2 concentrations each) with either a low fat diet or high fat diet (HFD). After sixteen weeks, AGE accumulation and AR activity was determined in heart, eyes and kidney. High glucose induced toxicity decreased cell viability compared to the untreated cells and AR activity increased to 2-5 folds from 24 to 96h. Pre-treatment of cells with phloretin, EGCG and [6]-gingerol improved cell viability and inhibited AR activity. The enzyme inhibition kinetics followed a non-competitive mode of inhibition for phloretin and EGCG whereas [6]-gingerol indicated uncompetitive type of inhibition against AR. Data from the animal studies showed high plasma glucose levels in HFD group over time, compared to the low fat diet. HFD group developed cataract and AR activity increased to 4 folds compared to the group with low fat diet. Administration of EGCG, phloretin and [6]-gingerol significantly reduced blood sugar levels, AGEs accumulation, and AR activity. These findings could provide a basis to consider using the selected dietary components alone or in combination with other therapeutic approaches to prevent diabetes-related complications in humans.
Collapse
Affiliation(s)
- Chethan Sampath
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha 2713, Qatar
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, United States
| | - Mohamed Ahmedna
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
25
|
Keshtzar E, Khodayar MJ, Javadipour M, Ghaffari MA, Bolduc DL, Rezaei M. Ellagic acid protects against arsenic toxicity in isolated rat mitochondria possibly through the maintaining of complex II. Hum Exp Toxicol 2016; 35:1060-72. [DOI: 10.1177/0960327115618247] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic arsenic exposure has been linked to many health problems including diabetes and cancer. In the present study, we assessed the protective effect of ellagic acid (EA) against toxicity induced by arsenic in isolated rat liver mitochondria. Reactive oxygen species (ROS) and mitochondrial membrane potential decline were assayed using dichlorofluorescein diacetate and rhodamine 123, respectively, and dehydrogenase activity obtained by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide conversion assay. Arsenic increased ROS levels and mitochondrial dysfunction, which led to a reduction in mitochondrial total dehydrogenase activity. Mitochondria pretreated with EA exposed to arsenic at various concentrations led to a reversal of ROS production and mitochondrial damage. Our results showed that mitochondria were significantly affected when exposed to arsenic, which resulted in excessive ROS production and mitochondrial membrane disruption. Pretreatment with EA, reduced ROS amounts, mitochondrial damage, and restored total dehydrogenase activity specifically associated with mitochondrial complex II. EA protective characteristics may be accomplished particularly throughout the mitochondrial maintenance either directly by its antioxidant property or indirectly through its maintaining of complex II. These findings also suggest a potential role for EA in treating or preventing mitochondria associated disorders.
Collapse
Affiliation(s)
- E Keshtzar
- Diabetes Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - MJ Khodayar
- Department of Pharmacology and Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Javadipour
- Diabetes Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - MA Ghaffari
- Cellular and Molecular Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - DL Bolduc
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - M Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Gondi M, Basha SA, Salimath PV, Rao UJP. Supplementation of Mango (Mangifera indicaL.) Peel in Diet Ameliorates Cataract in Streptozotocin-Induced Diabetic Rats. J Food Biochem 2016. [DOI: 10.1111/jfbc.12300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mahendranath Gondi
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute; Mysore 570020 India
| | - Shaik Akbar Basha
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute; Mysore 570020 India
| | - Paramahans V. Salimath
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute; Mysore 570020 India
| | - Ummiti J.S. Prasada Rao
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute; Mysore 570020 India
| |
Collapse
|
27
|
Jagdale AD, Bavkar LN, More TA, Joglekar MM, Arvindekar AU. Strong inhibition of the polyol pathway diverts glucose flux to protein glycation leading to rapid establishment of secondary complications in diabetes mellitus. J Diabetes Complications 2016; 30:398-405. [PMID: 26896333 DOI: 10.1016/j.jdiacomp.2016.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/31/2015] [Accepted: 01/02/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND Polyol pathway and protein glycation are implicated in establishing secondary complications in diabetes. Their relative contribution to the process needs to be evaluated. It is essential to understand why some aldose reductase inhibitors (ARIs) trials are successful while some have failed and to study their effect on protein glycation. METHODS Aldose reductase (AR) was assayed using xylose as substrate; protein glycation was evaluated using total and specific fluorescence, fructoseamine and protein bound carbonyl content (PCO) measurements. Long term studies were carried out on streptozotocin induced diabetic rats for evaluation of urine parameters, tissue fluorescence. Anti-cataract action was studied by lens culture studies. RESULTS Epalrestat, a commercial ARI was also found to possess potent glycation inhibitory action. Long term experiments revealed strong protein glycation with higher concentration of citronellol (ARI) demonstrating shift in glucose flux. Treatment with epalrestat and limonene revealed improved urine parameters and tissue fluorescence. Lens culture studies revealed cataract formation at higher inhibition of AR while no lens opacity was observed at lower citronellol concentration and with limonene and epalrestat. CONCLUSION Strong inhibition of AR shifts the glucose flux to protein glycation causing damage. ARIs possessing protein glycation inhibition are more useful in amelioration of secondary complications.
Collapse
Affiliation(s)
- Ashwini D Jagdale
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra, India
| | - Laxman N Bavkar
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra, India
| | - Tanaji A More
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra, India
| | - Madhav M Joglekar
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra, India
| | - Akalpita U Arvindekar
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra, India.
| |
Collapse
|
28
|
Phytochemical composition and antioxidant properties of Filipendula vulgaris as a source of healthy functional ingredients. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Li L, Xu J, Mu Y, Han L, Liu R, Cai Y, Huang X. Chemical characterization and anti-hyperglycaemic effects of polyphenol enriched longan (Dimocarpus longan Lour.) pericarp extracts. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Effects of freeze-dried Fragaria x ananassa powder on alloxan-induced diabetic complications in Wistar rats. J Taibah Univ Med Sci 2014. [DOI: 10.1016/j.jtumed.2014.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|