1
|
Melk MM, El-Sayed AF. Phytochemical profiling, antiviral activities, molecular docking, and dynamic simulations of selected Ruellia species extracts. Sci Rep 2024; 14:15381. [PMID: 38965294 PMCID: PMC11224336 DOI: 10.1038/s41598-024-65387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The antiviral properties of the flowering aerial extracts of Ruellia tuberosa and Ruellia patula were investigated through phytochemical profiling via LC-MS/MS and HPLC techniques. Qualitative LC-MS/MS analyses identified seventy-seven metabolites from both Ruellia species. R. tuberosa had the highest phenolic content (49.3%), whereas R. patula had the highest flavonoid content (57.8%). Additionally, quantitative HPLC investigations of the compounds identified by LC-MS/MS were performed using the available standard compounds. The main constituents in the R. tuberosa extract was found to be catechin (5321.63 µg/g), gallic acid (2878.71 µg/g), and ellagic acid (2530.79 µg/g), whereas the major compounds in the R. patula extract was found to be rutin (11,074.19 µg/g) and chlorogenic acid (3157.35 µg/g). Furthermore, the antiviral activities of both Ruellia species against HAdV-40, herpes simplex type 2 and H1N1 were evaluated. These findings demonstrated that R. tuberosa was more active than R. patula against all tested viruses, except for the HSV-2 virus, against which R. patula showed greater activity than R. tuberosa, with IC50 values of 20, 65, 22.59, and 13.13 µg/ml for R. tuberosa flowering aerial parts and 32.26, 11.66, and 23.03 µg/ml for R. patula flowering aerial parts, respectively for HAdV-40, herpes simplex type 2, and H1N1. Additionally, computational docking and molecular dynamics simulations were used to assess the molecular interactions between the bioactive compounds and specific viral targets. The combined findings from the in-vitro and in-silico experiments comprehensively evaluated the antiviral activities of both Ruellia species extracts.
Collapse
Affiliation(s)
- Mina Michael Melk
- Pharmacognosy Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| |
Collapse
|
2
|
Faleva AV, Ulyanovskii NV, Budaev NA, Falev DI, Onuchina AA, Belesov AV, Kosyakov DS. Polycommunin A, a dihydrocinnamoyl bibenzyl isolated from the moss Polýtrichum commúne, and its antioxidant activity. Nat Prod Res 2024:1-7. [PMID: 38907648 DOI: 10.1080/14786419.2024.2364365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/01/2024] [Indexed: 06/24/2024]
Abstract
A novel polyphenolic compound named Polycommunin A (1) was discovered in the aerial part of the common haircap moss (Polýtrichum commune) widely spread in boreal and temperate climate zones. Aqueous ethanol and extraction of the plant material with further isolation of polyphenolic fraction and preparative HPLC separation allowed obtaining individual compound and identifying it as dimeric dihydrocinnamoyl bibenzyl by NMR spectroscopy and high-resolution tandem mass spectrometry. Polycommunin A demonstrated high in vitro antioxidant activity determined by FRAP and PCL assays and comparable to that of Trolox and Quercetin.
Collapse
Affiliation(s)
- Anna V Faleva
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Nikolay V Ulyanovskii
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Nikolay A Budaev
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Danil I Falev
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Aleksandra A Onuchina
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Artem V Belesov
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Dmitry S Kosyakov
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| |
Collapse
|
3
|
Hasnat H, Shompa SA, Islam MM, Alam S, Richi FT, Emon NU, Ashrafi S, Ahmed NU, Chowdhury MNR, Fatema N, Hossain MS, Ghosh A, Ahmed F. Flavonoids: A treasure house of prospective pharmacological potentials. Heliyon 2024; 10:e27533. [PMID: 38496846 PMCID: PMC10944245 DOI: 10.1016/j.heliyon.2024.e27533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Flavonoids are organic compounds characterized by a range of phenolic structures, which are abundantly present in various natural sources such as fruits, vegetables, cereals, bark, roots, stems, flowers, tea, and wine. The health advantages of these natural substances are renowned, and initiatives are being taken to extract the flavonoids. Apigenin, galangin, hesperetin, kaempferol, myricetin, naringenin, and quercetin are the seven most common compounds belonging to this class. A thorough analysis of bibliographic records from reliable sources including Google Scholar, Web of Science, PubMed, ScienceDirect, MEDLINE, and others was done to learn more about the biological activities of these flavonoids. These flavonoids appear to have promising anti-diabetic, anti-inflammatory, antibacterial, antioxidant, antiviral, cytotoxic, and lipid-lowering activities, according to evidence from in vitro, in vivo, and clinical research. The review contains recent trends, therapeutical interventions, and futuristic aspects of flavonoids to treat several diseases like diabetes, inflammation, bacterial and viral infections, cancers, and cardiovascular diseases. However, this manuscript should be handy in future drug discovery. Despite these encouraging findings, a notable gap exists in clinical research, hindering a comprehensive understanding of the effects of flavonoids at both high and low concentrations on human health. Future investigations should prioritize exploring bioavailability, given the potential for high inter-individual variation. As a starting point for further study on these flavonoids, this review paper may promote identifying and creating innovative therapeutic uses.
Collapse
Affiliation(s)
- Hasin Hasnat
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1207, Bangladesh
| | - Suriya Akter Shompa
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1207, Bangladesh
| | - Md. Mirazul Islam
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1207, Bangladesh
| | - Safaet Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
- Drugs and Toxins Research Division, BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi, 6206, Bangladesh
| | - Fahmida Tasnim Richi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Sania Ashrafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazim Uddin Ahmed
- Drugs and Toxins Research Division, BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi, 6206, Bangladesh
| | | | - Nour Fatema
- Department of Microbiology, Stamford University Bangladesh, Dhaka, 1217, Bangladesh
| | - Md. Sakhawat Hossain
- Pharmaceutical Sciences Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Avoy Ghosh
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Firoj Ahmed
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
4
|
Hossain MM, Hwang HS, Pang M, Choi MK, Kim IH. Effect of dietary Achyranthes japonica extract on growth performance of growing pigs and absorption rate of quercetin in blood. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:103-114. [PMID: 38618039 PMCID: PMC11007468 DOI: 10.5187/jast.2023.e23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 04/16/2024]
Abstract
This study was done to investigate the effects of the incorporation of Achyranthes japonica extracts (AJE) in diet on the production parameters of growing pigs. Exp 1: Total, 105 crossbred pigs (average body weight: 24.47 ± 2.46 kg) were used in a 6-week feeding trial. Pigs (seven replicates, five pigs per pen) were allotted randomly to three treatments. Dietary treatments: CON (basal diet); basal diet with 0.025% AJE, and basal diet + 0.050% AJE). Growth performance, nutrient digestibility, fecal microbial count, and fecal noxious gas were assessed in this study. Average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) were not affected by the addition of up to 0.05% AJE. In the case of apparent total tract digestibility (ATTD), dry matter (DM), nitrogen (N), and digestible energy (DE) were not changed in 3rd and 6th weeks of the feeding trial through the addition of AJE up to 0.05% in the growing pig diet. In microbial count, Lactobacillus and Escherichia coli count at 3rd and 6th week was similar in all the treatment diets. The inclusion of AJE at levels up to 0.05% in growing pig diet had no effect on the production of NH3, H2S, acetic acid, and CO2 in the feces. After ending the Exp 1, a total of nine pigs were divided into three treatment groups. Treatment diets were included, TRT1, basal diet + powder quercetin 30 g; TRT2, basal diet + powder quercetin 150 g; TRT3, basal diet + powder quercetin 300g. Rate of absorption in blood was increased with the higher dose of quercetin. The results suggested incorporation of AJE up to 0.05% has no significant effect on ADG, ADFI, and G:F, as well as DM, N, and DE digestibility, fecal microbial count, and fecal noxious gas emission in growing pigs, even though no negative effect was found.
Collapse
Affiliation(s)
- Md Mortuza Hossain
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Hyung Suk Hwang
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Minyeong Pang
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Min-Koo Choi
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
5
|
Zhang H, Song T, Kang R, Ren F, Liu J, Wang J. Plant bioactive compounds alleviate photoinduced retinal damage and asthenopia: Mechanisms, synergies, and bioavailability. Nutr Res 2023; 120:115-134. [PMID: 37980835 DOI: 10.1016/j.nutres.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The retina, an important tissue of the eye, is essential in visual transmission and sustaining adequate eyesight. However, oxidative stress and inflammatory reactions can harm retinal structure and function. Recent studies have demonstrated that exposure to light can induce oxidative stress and inflammatory reactions in retinal cells, thereby facilitating the progression of retinal damage-related diseases and asthenopia. Plant bioactive compounds such as anthocyanin, curcumin, resveratrol, lutein, zeaxanthin, epigallocatechin gallate, and quercetin are effective in alleviating retinal damage and asthenopia. Their strong oxidation resistance and unique chemical structure can prevent the retina from producing reactive oxygen species and regulating eye muscle relaxation, thus alleviating retinal damage and asthenopia. Additionally, the combination of these active ingredients produces a stronger antioxidant effect. Consequently, understanding the mechanism of retinal damage caused by light and the regulation mechanism of bioactive compounds can better protect the retina and reduce asthenopia.
Collapse
Affiliation(s)
- Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Tiancong Song
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Rui Kang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Feiyue Ren
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
6
|
Fotschki J, Ogrodowczyk AM, Wróblewska B, Juśkiewicz J. Side Streams of Vegetable Processing and Its Bioactive Compounds Support Microbiota, Intestine Milieu, and Immune System. Molecules 2023; 28:molecules28114340. [PMID: 37298819 DOI: 10.3390/molecules28114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The industry of vegetable processing generates large amounts of by-products, which often emerge seasonally and are susceptible to microbial degradation. Inadequate management of this biomass results in the loss of valuable compounds that are found in vegetable by-products that can be recovered. Considering the possibility of using waste, scientists are trying to reuse discarded biomass and residues to create a product of higher value than those processed. The by-products from the vegetable industry can provide an added source of fibre, essential oils, proteins, lipids, carbohydrates, and bioactive compounds, such as phenolics. Many of these compounds have bioactive properties, such as antioxidative, antimicrobial, and anti-inflammatory activity, which could be used, especially in the prevention or treatment of lifestyle diseases connected with the intestinal milieu, including dysbiosis and immune-mediated diseases resulting in inflammation. This review summarises the key aspects of the health-promoting value of by-products and their bioactive compounds derived from fresh or processed biomass and extracts. In this paper, the relevance of side streams as a source of beneficial compounds with the potential for promoting health is considered, particularly their impact on the microbiota, immune system, and gut milieu because all of these fields interact closely to affect host nutrition, prevent chronic inflammation, and provide resistance to some pathogens.
Collapse
Affiliation(s)
- Joanna Fotschki
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Anna M Ogrodowczyk
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Department of Biological Functions of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
7
|
Mahana A, Hammoda HM, Khalifa AA, Elblehi SS, Harraz FM, Shawky E. Integrated serum pharmacochemistry and network pharmacology analyses reveal the bioactive metabolites and potential functional mechanism of ground cherry (Physalis pruinosa L.) in treatment of type 2 diabetes mellitus in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115750. [PMID: 36162547 DOI: 10.1016/j.jep.2022.115750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Different Physalis plants have been widely employed in traditional medicine for management of diabetes mellitus. Previous studies with respect to the in vivo antidiabetic activity of Physalis plants illustrated that they improved glucose and lipid metabolism in streptozotocin (STZ) -induced diabetic rats yet the mechanism of action of bioactive constituents of the different organs of Physalis plants on diabetes remains obscure. AIM OF STUDY Our objective is to study the effects of the different organs of ground cherry (P. pruinosa) on diabetes in rat models and elucidate their mechanism of actions through serum pharmacochemistry combined to network pharmacology analyses and in-vivo testing. MATERIALS AND METHODS Characterization of the constituents in the drug-dosed serum samples relative to the blank serum after treatment with different extracts was performed by UPLC -MS/MS technique. The absorbed metabolites where then subjected to network pharmacology analysis to construct an interaction network linking "compound-target-pathway". In vivo verification was implemented to determine a hypothesized mechanism of action on a STZ and high fat diet induced type II diabetes mellitus (T2DM) model based on functional and enrichment analyses of the Kyoto Encyclopedia of Genes and Genome and Gene Ontology. RESULTS Identification of a total of 73 compounds (22 prototypes and 51 metabolites) derived from P. pruinosa extracts was achieved through comparison of the serum samples collected from diabetic control group and extracts treated groups. The identified compounds were found to belong to different classes according to their structural type including withanolides, physalins and flavonoids. The absorbed compounds in the analyzed serum samples were considered as the potential bioactive components. The component-target network was found to have 23 nodes with 17 target genes including MAPK8, CYP1A1 and CYP1B1. Quercetin and withaferin A were found to possess the highest combined score in the C-T network. Integrated serum pharmacochemistry and network pharmacology analyses revealed the enrichment of leaves extract with the active constituents, which can be utilized in T2DM treatment. In the top KEGG pathways, lipid and atherosclerosis metabolic pathways in addition to T2DM pathways were found to be highly prioritized. The diabetic rats, which received leaves extract exhibited a substantial increment in GLUT2, INSR, IRS-1, PI3K-p85 and AKT-ser473 proteins by 105%, 142%, 109%, 81% and 73%, respectively relative to the untreated diabetic group. The immunoblotting performed for MAPK and ERK1/2 part of the inflammatory pathway studied in STZ induced diabetic rats revealed that leaves, calyces and stems extracts resulted in a substantial diminish in p38-MAPK, ERK 1/2, NF-κB, and TNF-α. Histopathological examination revealed that the hepatic histoarchitecture was substantially improved in the leaves, stems, and clayces-treated rats in comparison with untreated diabetic rats. Further, pancreatic injuries, which induced by STZ were dramatically altered by the treatment with P. pruinosa leaves, calyces and stems extracts. β-cells in diabetic rats received leaves extract disclosed moderate insulin immunostaining with a notable increase in the mean insulin area%. CONCLUSIONS The study in hand offers a comprehensive study to clarify the bioactive metabolites of the different organs of P. pruinosa. The basic pharmacological effects and underlying mechanism of actions in the management of STZ and high fat diet induced T2DM were specifically covered in this paper.
Collapse
Affiliation(s)
- Asmaa Mahana
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Asmaa A Khalifa
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Behera, Egypt
| | - Fathallah M Harraz
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
8
|
Alizadeh SR, Ebrahimzadeh MA. O-substituted quercetin derivatives: Structural classification, drug design, development, and biological activities, a review. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Alizadeh SR, Ebrahimzadeh MA. Quercetin derivatives: Drug design, development, and biological activities, a review. Eur J Med Chem 2021; 229:114068. [PMID: 34971873 DOI: 10.1016/j.ejmech.2021.114068] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
More studies are needed to develop new drugs for problems associated with drug resistance and unfavorable side effects. The natural flavonoid of quercetin revealed a wide range of biological activities by the modulation of various targets and signaling pathways. However, quercetin's low solubility and poor bioavailability have restricted its applicability; as a result, researchers have attempted to design and synthesize numerous novel quercetin derivatives using various methodologies in order to modify quercetin's constraints; the physico-chemical properties of quercetin's molecular scaffold make it appealing for drug development; low molecular mass and chemical groups are two of these characteristics. Therefore, the biological activities of quercetin derivatives, as well as the relationship between activity and chemical structure and their mechanism of action, were investigated. These quercetin-based molecules could be valuable in the creation and discovery of medications for a number of diseases.
Collapse
Affiliation(s)
- Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
10
|
Olive oil and wine as source of multi-target agents in the prevention of Alzheimer disease. Nutr Res Rev 2021; 36:140-154. [PMID: 34895363 DOI: 10.1017/s095442242100041x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Olive oil and wine are consumed daily worldwide and they constitute the fundamental pillars of the healthy Mediterranean diet. Polyphenolic compounds, naturally present in both olive oil and wine, are responsible for their beneficial properties. Current studies have shown the neuroprotective effects of polyphenols independently of their well-known antioxidant action. In this work, we have focused on reviewing the protective effect of polyphenols from extra virgin olive oil and wine in Alzheimer´s disease (AD), to emphasize that both food could be a possible therapeutic tool. Beneficial effects have been described in β-aggregation, neurofibrillary tangles, autophagy and mitochondrial function, as well as in cerebral insulin resistance. Furthermore, to date a harmful dose has not been described. Both preclinical and clinical works demonstrate that polyphenols act on neuropathological and cognitive disorders of AD, preventing or stopping the onset of this devastating disease. However, there are certain limitations in these studies, since it is very difficult to research diseases that lead to cognitive impairment. Although all the findings obtained are very encouraging, more studies should be carried out to use the polyphenols from olive oil and wine as therapeutic agents in the progression of AD. Therefore, more longitudinal studies in humans with a homogeneous cohort of patients are necessary to corroborate the efficacy of these nutraceuticals, as well as analyze which is the most appropriate dose for this purpose.
Collapse
|
11
|
Zieliński H, Wiczkowski W, Honke J, Piskuła MK. In Vitro Expanded Bioaccessibility of Quercetin-3-Rutinoside and Quercetin Aglycone from Buckwheat Biscuits Formulated from Flours Fermented by Lactic Acid Bacteria. Antioxidants (Basel) 2021; 10:antiox10040571. [PMID: 33917795 PMCID: PMC8068175 DOI: 10.3390/antiox10040571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
The expanded bioaccessibility of rutin (Ru) and quercetin (Q) from buckwheat biscuits (BBs) formulated from liquid-state fermented flours by selected lactic acid bacteria (LAB) were determined after gastrointestinal digestion. Fermentation of buckwheat flours caused a LAB-dependent variation in Ru and Q content. BBs baked at 220 °C for 30 min showed lower content of Ru and Q, and no correlation was found between the content of these compounds in fermented flours and BBs. The expanded bioaccessibility of Ru from BBs was low when its content in the soluble and insoluble fractions remaining after digestion in vitro was taken into account. Contrary results were found for Q bioaccessibility which had an index greater than 1, indicating the high Q bioaccessibility from BBs. Since very low Q content was noted in the insoluble fraction remaining after BBs digestion, the high Q bioaccessibility was determined to be due to its concentration in the soluble fraction.
Collapse
|
12
|
Therapeutic potential of quercetin on human breast cancer in different dimensions. Inflammopharmacology 2019; 28:39-62. [DOI: 10.1007/s10787-019-00660-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
|
13
|
Ștefănescu BE, Szabo K, Mocan A, Crişan G. Phenolic Compounds from Five Ericaceae Species Leaves and Their Related Bioavailability and Health Benefits. Molecules 2019; 24:E2046. [PMID: 31146359 PMCID: PMC6600139 DOI: 10.3390/molecules24112046] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023] Open
Abstract
Some species of the Ericaceae family have been intensively studied because of the beneficial health impact, known since ancient times, of their chemical components. Since most studies focus on the effects of fruit consumption, this review aims to highlight the phenolic components present in the leaves. For this purpose, five species from Ericaceae family (bilberry-Vaccinium myrtillus L., lingonberry-V. vitis-idaea L., bog bilberry-V. uliginosum L., blueberry-V. corymbosum L. and bearberry-Arctostapylos uva-ursi L.) were considered, four of which can be found in spontaneous flora. The chemical composition of the leaves revealed three major phenolic compounds: chlorogenic acid, quercetin and arbutin. The health promoting functions of these compounds, such as antioxidant and anti-inflammatory properties that could have preventive effects for cardiovascular disease, neurodegenerative disorders, cancer, and obesity, have been exemplified by both in vitro and in vivo studies in this review. Furthermore, the importance of bioaccessibility and bioavailability of the phenolic compounds have been summarized. The findings highlight the fact that leaves of some Ericaceae species deserve increased attention and should be studied more profoundly for their biological activities, especially those from spontaneous flora.
Collapse
Affiliation(s)
- Bianca Eugenia Ștefănescu
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 23, Ghe. Marinescu Street, 400337 Cluj-Napoca, Romania.
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, CaleaMănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, CaleaMănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 23, Ghe. Marinescu Street, 400337 Cluj-Napoca, Romania.
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Gianina Crişan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 23, Ghe. Marinescu Street, 400337 Cluj-Napoca, Romania.
| |
Collapse
|
14
|
Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer's disease. Life Sci 2019; 224:109-119. [PMID: 30914316 DOI: 10.1016/j.lfs.2019.03.055] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Quercetin belongs to the flavonoids family, which is present in most of the plants including fruits, vegetables, green tea and even in red wine having antioxidant activities. It is available as a food supplement in the market and has physiological health effects. Quercetin has anti-inflammatory, anticancer and anti-prostate activities along with its beneficial effects on high cholesterol, kidney transplantation, asthma, diabetes, viral infections, pulmonary, schizophrenia and cardiovascular diseases. Quercetin possesses scavenging potential of hydroxyl radical (OH-), hydrogen peroxide (H2O2), and superoxide anion (O2-). These reactive oxygen species (ROS) hampers lipid, protein, amino acids and deoxyribonucleic acid (DNA) processing leading to epigenetic alterations. Quercetin has the ability to combat these harmful effects. ROS plays a vital role in the progression of Alzheimer's disease (AD), and we propose that quercetin would be the best choice to overcome cellular and molecular signals in regulating normal physiological functions. However, data are not well documented regarding exact cellular mechanisms of quercetin. The neuroprotective effects of quercetin are mainly due to potential up- and/or down-regulation of cytokines via nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Paraoxonase-2, c-Jun N-terminal kinase (JNK), Protein kinase C, Mitogen-activated protein kinase (MAPK) signalling cascades, and PI3K/Akt pathways. Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against AD.
Collapse
|
15
|
Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, Orčić D, Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.047] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
16
|
Wu Q, Needs PW, Lu Y, Kroon PA, Ren D, Yang X. Different antitumor effects of quercetin, quercetin-3′-sulfate and quercetin-3-glucuronide in human breast cancer MCF-7 cells. Food Funct 2018; 9:1736-1746. [DOI: 10.1039/c7fo01964e] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study was designed to investigate the tumor-inhibitory effects of quercetin (Que) and its water-soluble metabolites, quercetin-3′-sulfate (Q3′S) and quercetin-3-glucuronide (Q3G), as well as to make the molecular mechanism and structure-antitumor relationship clear.
Collapse
Affiliation(s)
- Qiu Wu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Paul W. Needs
- Quadram Institute Bioscience
- Norwich Research Park
- Colney
- Norwich
- UK
| | - Yalong Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Paul A. Kroon
- Quadram Institute Bioscience
- Norwich Research Park
- Colney
- Norwich
- UK
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| |
Collapse
|
17
|
Valentová K, Káňová K, Di Meo F, Pelantová H, Chambers CS, Rydlová L, Petrásková L, Křenková A, Cvačka J, Trouillas P, Křen V. Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites. Int J Mol Sci 2017; 18:ijms18112231. [PMID: 29068411 PMCID: PMC5713201 DOI: 10.3390/ijms18112231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 11/28/2022] Open
Abstract
Sulfated quercetin derivatives are important authentic standards for metabolic studies. Quercetin-3′-O-sulfate, quercetin-4′-O-sulfate, and quercetin-3-O-sulfate as well as quercetin-di-O-sulfate mixture (quercetin-7,3′-di-O-sulfate, quercetin-7,4′-di-O-sulfate, and quercetin-3′,4′-di-O-sulfate) were synthetized by arylsulfotransferase from Desulfitobacterium hafniense. Purified monosulfates and disulfates were fully characterized using MS and NMR and tested for their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging, Folin-Ciocalteau reduction (FCR), ferric reducing antioxidant power (FRAP), and anti-lipoperoxidant activities in rat liver microsomes damaged by tert-butylhydroperoxide. Although, as expected, the sulfated metabolites were usually less active than quercetin, they remained still effective antiradical and reducing agents. Quercetin-3′-O-sulfate was more efficient than quercetin-4′-O-sulfate in DPPH and FCR assays. In contrast, quercetin-4′-O-sulfate was the best ferric reductant and lipoperoxidation inhibitor. The capacity to scavenge ABTS+• and DMPD was comparable for all substances, except for disulfates, which were the most efficient. Quantum calculations and molecular dynamics simulations on membrane models supported rationalization of free radical scavenging and lipid peroxidation inhibition. These results clearly showed that individual metabolites of food bioactives can markedly differ in their biological activity. Therefore, a systematic and thorough investigation of all bioavailable metabolites with respect to native compounds is needed when evaluating food health benefits.
Collapse
Affiliation(s)
- Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Kristýna Káňová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Florent Di Meo
- INSERM U850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, F-87025 Limoges, France.
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | | | - Lenka Rydlová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Alena Křenková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic.
| | - Patrick Trouillas
- INSERM U850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, F-87025 Limoges, France.
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17. listopadu 12, CZ-77146 Olomouc, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| |
Collapse
|
18
|
Cueva C, Gil-Sánchez I, Ayuda-Durán B, González-Manzano S, González-Paramás AM, Santos-Buelga C, Bartolomé B, Moreno-Arribas MV. An Integrated View of the Effects of Wine Polyphenols and Their Relevant Metabolites on Gut and Host Health. Molecules 2017; 22:E99. [PMID: 28067835 PMCID: PMC6155716 DOI: 10.3390/molecules22010099] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, polyphenols, and flavonoids in particular, have attracted the interest of researchers, as they have been associated with the health-promoting effects derived from diets rich in vegetables and fruits, including moderate wine consumption. Recent scientific evidence suggests that wine polyphenols exert their effects through interactions with the gut microbiota, as they seem to modulate microbiota and, at the same time, are metabolized by intestinal bacteria into specific bioavailable metabolites. Microbial metabolites are better absorbed than their precursors and may be responsible for positive health activities in the digestive system (local effects) and, after being absorbed, in tissues and organs (systemic effects). Differences in gut microbiota composition and functionality among individuals can affect polyphenol activity and, therefore, their health effects. The aim of this review is to integrate the understanding of the metabolism and mechanisms of action of wine polyphenols at both local and systemic levels, underlining their impact on the gut microbiome and the inter-individual variability associated with polyphenols' metabolism and further physiological effects. The advent of promising dietary approaches linked to wine polyphenols beyond the gut microbiota community and metabolism are also discussed.
Collapse
Affiliation(s)
- Carolina Cueva
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Irene Gil-Sánchez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Susana González-Manzano
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Ana María González-Paramás
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
19
|
Sun Y, Tsao R, Chen F, Li H, Peng H, Jiang L, Chen Y, Deng Z. The phenolic profiles of Radix Tetrastigma after solid phase extraction (SPE) and their antitumor effects and antioxidant activities in H22 tumor-bearing mice. Food Funct 2017; 8:4014-4027. [DOI: 10.1039/c7fo00769h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photographic illustrations of phenolic profiles, antitumor effects and antioxidant activities of Radix Tetrastigma after solid phase extraction (SPE) in H22 tumor-bearing mice.
Collapse
Affiliation(s)
- Yong Sun
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
- Guelph Food Research and Development Centre
| | - Rong Tsao
- Guelph Food Research and Development Centre
- Agricultural and Agri-Food Canada
- Guelph
- Canada
| | - Fang Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Han Peng
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330004
- China
| | - Yuhuan Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
- Guelph Food Research and Development Centre
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
20
|
He JY, Zhang YH, Ma N, Zhang XL, Liu MH, Fu WM. Comparative analysis of multiple ingredients in Rosa roxburghii and R . sterilis fruits and their antioxidant activities. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
21
|
Yang P, Xu F, Li HF, Wang Y, Li FC, Shang MY, Liu GX, Wang X, Cai SQ. Detection of 191 Taxifolin Metabolites and Their Distribution in Rats Using HPLC-ESI-IT-TOF-MS(n). Molecules 2016; 21:molecules21091209. [PMID: 27649117 PMCID: PMC6273498 DOI: 10.3390/molecules21091209] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 01/12/2023] Open
Abstract
Taxifolin is a ubiquitous bioactive constituent of foods and herbs. To thoroughly explore its metabolism in vivo, an HPLC-ESI-IT-TOF-MSn method combined with specific metabolite detection strategy was used to detect and identify the metabolites of taxifolin in rats. Of the 191 metabolites tentatively identified, 154 were new metabolites, 69 were new compounds and 32 were dimers. This is the first report of the in vivo biotransformation of a single compound into more than 100 metabolites. Furthermore, acetylamination and pyroglutamic acid conjugation were identified as new metabolic reactions. Seventeen metabolites were found to have various taxifolin-related bioactivities. The potential targets of taxifolin and 63 metabolites were predicted using PharmMapper, with results showing that more than 60 metabolites have the same five targets. Metabolites with the same fragment pattern may have the same pharmacophore. Thus these metabolites may exert the same pharmacological effects as taxifolin through an additive effect on the same drug targets. This observation indicates that taxifolin is bioactive not only in the parent form, but also through its metabolites. These findings enhance understanding of the metabolism and effective forms of taxifolin and may provide further insight of the beneficial effects of taxifolin and its derivatives.
Collapse
Affiliation(s)
- Ping Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Feng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Hong-Fu Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Yi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Feng-Chun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Ming-Ying Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Guang-Xue Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Xuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Shao-Qing Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
22
|
Michalak-Majewska M, Sołowiej B, SłAwińska A. Antioxidant Activity, Technological and Rheological Properties of Baked Rolls Containing Dried Onions (Allium cepaL.). J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monika Michalak-Majewska
- Department of Fruits, Vegetables and Mushrooms Technology; Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin; Skromna 8 20-704 Lublin Poland
| | - Bartosz Sołowiej
- Department of Milk Technology and Hydrocolloids, Faculty of Food Sciences and Biotechnology; University of Life Sciences in Lublin; Skromna 8 20-704 Lublin Poland
| | - Aneta SłAwińska
- Department of Fruits, Vegetables and Mushrooms Technology; Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin; Skromna 8 20-704 Lublin Poland
| |
Collapse
|
23
|
Chen X, Zou L, Liu W, McClements DJ. Potential of Excipient Emulsions for Improving Quercetin Bioaccessibility and Antioxidant Activity: An in Vitro Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3653-3660. [PMID: 27136205 DOI: 10.1021/acs.jafc.6b01056] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The potential for excipient emulsions to enhance the bioaccessibility and antioxidant activity of quercetin was determined in this study. Oil-in-water excipient emulsions containing two levels (4 or 10%) of small lipid droplets (d < 250 nm) were prepared from a long-chain triglyceride (corn oil). The solubilization of quercetin by the excipient emulsions was faster than by bulk corn oil or bulk water, and the solubilization rate was higher at 100 °C than at 30 °C. The bioaccessibility of quercetin samples was determined using an in vitro gastrointestinal model, and the bioactivity of quercetin was determined using a rat feeding study. The excipient emulsions were more effective at enhancing quercetin bioaccessibility and rat plasma antioxidant activity than either bulk oil or bulk water. This effect was attributed to the rapid digestion of the long chain triglycerides when they were in an emulsified form, which led to the rapid production of mixed micelles capable of solubilizing, protecting, and transporting quercetin.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University , No. 235 Nanjing East Road, Nanchang 330047, Jiangxi China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University , No. 235 Nanjing East Road, Nanchang 330047, Jiangxi China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University , No. 235 Nanjing East Road, Nanchang 330047, Jiangxi China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
- Department of Biochemistry, Faculty of Science, King Abdulaziz University , P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Wu Y, Li Q, Li X, He D, Niu MU, Lu X, Li H. Effect of the Fructus Ligustri Lucidi extract and its monomers quercetin and oleanolic acid on the adhesion and migration of melanocytes and intracellular actin. Biomed Rep 2016; 4:583-588. [PMID: 27123251 DOI: 10.3892/br.2016.638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/23/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of the Fructus Ligustri Lucidi (FLL) extract and its monomers quercetin and oleanolic acid on the adhesion and migration of human epidermal melanocytes (MCs) and intracellular actin. The human epidermal MCs were cultured and identified. The cells were treated with different concentrations of FLL extract, quercetin and oleanolic acid. The adhesion and migration abilities of the cells were determined by the fibronectin-coated culture experiment and Transwell assay, respectively. The structure and distribution of intracellular actin were observed by confocal laser microscopy, with semi-quantitative analysis. Results showed that compared with the control group, 0.0375-0.3 mg/ml of the FLL extract and 40 µM quercetin significantly improved the adhesion rate of MCs (P<0.05). The numbers of MCs permeating the microporous membrane in the 0.15 mg/ml FLL extract and 12 µM oleanolic acid groups were 43.7 and 30.3, respectively, significantly higher compared to the control group (P<0.01). In the control group, the intracellular actin was less, and the stress fiber structure was not clear. In the 0.15 mg/ml FLL extract, 12 µM oleanolic acid and 40 µM quercetin groups, there were numerous bunched stress fibers, indicating the aggregation of filamentous fibrous actin. The mean optical densities of actin expression in the 0.15 mg/ml FLL extract, 12 µM oleanolic acid and 40 µM quercetin groups were significantly higher compared to the control group (P<0.05). The FLL extract has a significant stimulatory effect on the adhesion and migration of human epidermal MCs. The mechanism may be associated with the promotion of intracellular actin cytoskeleton aggregation.
Collapse
Affiliation(s)
- Yanhua Wu
- Department of Dermatology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Qilin Li
- Department of Dermatology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiangjun Li
- Department of Dermatology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Danhua He
- Department of Dermatology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - M U Niu
- Department of Dermatology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiaojuan Lu
- Department of Dermatology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Hui Li
- Department of Dermatology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
25
|
The impact of red cabbage fermentation on bioavailability of anthocyanins and antioxidant capacity of human plasma. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.06.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Kobori M, Takahashi Y, Akimoto Y, Sakurai M, Matsunaga I, Nishimuro H, Ippoushi K, Oike H, Ohnishi-Kameyama M. Chronic high intake of quercetin reduces oxidative stress and induces expression of the antioxidant enzymes in the liver and visceral adipose tissues in mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
27
|
Wiczkowski W, Skipor J, Misztal T, Szawara-Nowak D, Topolska J, Piskula MK. Quercetin and isorhamnetin aglycones are the main metabolites of dietary quercetin in cerebrospinal fluid. Mol Nutr Food Res 2015; 59:1088-94. [PMID: 25727325 DOI: 10.1002/mnfr.201400567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/19/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022]
Abstract
SCOPE Reports on the protective effect of certain foods on brain functions are numerous; however, the permeability of the brain barriers by food components is still hardly recognised. There have been in vitro studies aimed at demonstrating this possibility, but not much is known about this phenomenon in in vivo systems. The objective of the study was to determine the metabolites of dietary quercetin (Q) in urine, blood plasma and cerebrospinal fluid (CSF) after intra-rumen administration of Q rich onion dry skin in an animal model. METHODS AND RESULTS Eleven sheep had permanently implanted cannulas in the third ventricle of the brain as the means for CSF collection. The animals were administered Q at the dose of 10 mg/kg bwt. For 12 h the concentration of Q metabolites was measured in urine, blood plasma, and CSF. It was demonstrated that while in blood plasma Q and isorhamnetin mono-glucuronides or mono-sulphates were the main metabolites (80%), in CSF their aglycones were the dominating ones (88%). CONCLUSION Q and IR aglycones are the main Q metabolites present in CSF after dietary Q intake. Their passive transport through blood-CSF barrier or a de-conjugating mechanism within that barrier may be involved.
Collapse
Affiliation(s)
- Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Janina Skipor
- Department of Local Physiological Regulations, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Misztal
- Department of Endocrinology, Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Dorota Szawara-Nowak
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Topolska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariusz K Piskula
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|