1
|
Zhao ZY, Wu JW, Xu CG, Nong Y, Huang YF, Lai KD. Molecular identification and studies on genetic diversity and structure-related GC heterogeneity of Spatholobus Suberectus based on ITS2. Sci Rep 2024; 14:23523. [PMID: 39384849 PMCID: PMC11464735 DOI: 10.1038/s41598-024-75763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/08/2024] [Indexed: 10/11/2024] Open
Abstract
To determine the role of internal transcribed spacer 2 (ITS2) in the identification of Spatholobus suberectus and explore the genetic diversity of S. suberectus. A total of 292 ITS2s from S. suberectus and 17 other plant species were analysed. S. suberectus was clustered separately in the phylogenetic tree. The genetic distance between species was greater than that within S. suberectus. Synonymous substitution rate (Ks) analysis revealed that ITS2 diverged the most recently within S. suberectus (Ks = 0.0022). These findings suggested that ITS2 is suitable for the identification of S. suberectus. The ITS2s were divided into 8 haplotypes and 4 evolutionary branches on the basis of secondary structure, indicating that there was variation within S. suberectus. Evolutionary analysis revealed that the GC content of paired regions (pGC) was greater than that of unpaired regions (upGC), and the pGC showed a decreasing trend, whereas the upGC remained unchanged. Single-base mutation was the main cause of base pair substitution. In both the initial state and the equilibrium state, the substitution rate of GC was higher than that of AU. The increase in the GC content was partly attributed to GC-biased gene conversion (gBGC). High GC content reflected the high recombination and mutation rates of ITS2, which is the basis for species identification and genetic diversity. We characterized the sequence and structural characteristics of S. suberectus ITS2 in detail, providing a reference and basis for the identification of S. suberectus and its products, as well as the protection and utilization of wild resources.
Collapse
Affiliation(s)
- Zi-Yi Zhao
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Jia-Wen Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150000, China
| | - Chuan-Gui Xu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - You Nong
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Yun-Feng Huang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China.
| | - Ke-Dao Lai
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China.
| |
Collapse
|
2
|
Chen X, Liu S, Song H, Yuan C, Li J. Evaluation of biological activity and prebiotic properties of proanthocyanidins with different degrees of polymerization through simulated digestion and in vitro fermentation by human fecal microbiota. Food Chem 2024; 447:139015. [PMID: 38513492 DOI: 10.1016/j.foodchem.2024.139015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
The bioactive activity of proanthocyanidins (PAs) is closely associated with their degree of polymerization (DP), however, the effects of PAs with different DP on digestion and gut microbiota have remained unclear. To investigate this, we conducted in vitro simulated digestion and colonic fermentation studies on samples of PAs with different DP. The results showed that PAs was influenced by both protein precipitation and enzymolysis, resulting in a decrease in functional activity. PAs with a high DP were more sensitive to the gastrointestinal environment. The significant clustering trend in colonic fermentation verified the reliability of multivariate statistical techniques for screening samples with distinct functional differences. The gut microbiota analysis showed that oligomeric PAs had a stronger promoting effect on beneficial bacteria, while high polymeric PAs had a greater inhibitory effect on harmful bacteria. This study offers new insights into the biological activity and microbiological mechanisms of PAs with different DP.
Collapse
Affiliation(s)
- Xiaoyi Chen
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Shuai Liu
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Hong Song
- College of Enology, Northwest A&F University, Shaanxi 712100, China
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China.
| | - Junjun Li
- College of Enology, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
3
|
Chen X, Song H, Zhou S, Yuan C, Li J. Exploring separation patterns and mechanisms of proanthocyanidins in grape seeds and pomace with diverse molecular weights, compositions, and structures. Food Chem X 2023; 20:101008. [PMID: 38144768 PMCID: PMC10740050 DOI: 10.1016/j.fochx.2023.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
The function of proanthocyanidins (PAs) relies on their structure and requires high-purity PAs. Though Sephadex LH-20 gel permeation chromatography (GPC) is expected to separate PAs based on structure, its usage rules and mechanisms remain unclear. This study delves into the PAs separation patterns on Sephadex LH-20, first confirming the purification mechanisms of PAs with various mean degrees of polymerization (DP) using the adsorption kinetic model. The study found that an increase in the molecular weight or mean DP of PAs results in decreased polarity, reduced hydrogen bonding actions, and intensified hydrophobic effect, causing delayed extraction of PAs on Sephadex LH-20, with galloylated PA as an exception, which was extracted first despite its high DP. Additionally, the principles for separating specific composition, such as monomers, dimers, etc., were evaluated. The study sheds light on enhancing the purification efficiency of PAs, thus advancing the precise separation technology of diverse proanthocyanidins.
Collapse
Affiliation(s)
- Xiaoyi Chen
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Hong Song
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Shubo Zhou
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling 712100, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
4
|
Pan Y, Luo X, Gong P. Spatholobi caulis: A systematic review of its traditional uses, chemical constituents, biological activities and clinical applications. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116854. [PMID: 37393029 DOI: 10.1016/j.jep.2023.116854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spatholobi caulis (SC), the dried vine stem of Spatholobus suberectus Dunn, is known as Ji Xue Teng in China, and has long been used as traditional Chinese medicine (TCM) to treat anaemia, menstrual abnormalities, rheumatoid arthritis, purpura, etc. AIM OF THE REVIEW: The aim of this review is to provide a systematic and updated summary of the traditional uses, chemical constituents, biological activities and clinical applications of SC. In addition, several suggestions for future research on SC are also proposed. MATERIALS AND METHODS Extensive information and data on SC were obtained from electronic databases (ScienceDirect, Web of Science, PubMed, CNKI, Baidu Scholar, Google Scholar, ResearchGate, SpringerLink and Wiley Online). Additional information was collected from Ph.D. and MSc dissertations, published books, and classic material medica. RESULTS To date, phytochemical studies have revealed that approximately 243 chemical ingredients have been isolated from SC and identified, including flavonoids, glycosides, phenolic acids, phenylpropanoids, volatile oils, sesquiterpenoids and other compounds. Many studies have indicated that extracts and pure constituents from SC possess a wide spectrum of in vitro and in vivo pharmacological effects, such as anti-tumour, haematopoietic, anti-inflammatory, antidiabetic, antioxidant, antiviral and antibacterial effects, as well as other activities. SC could be applied to the treatment of leukopenia, aplastic anemic, endometriosis, etc. according to the clinical reports. The traditional efficacies of SC is due to the biological functions of its chemical compounds, especially flavonoids. However, research investigating the toxicological effects of SC is relatively limited. CONCLUSIONS SC is widely used in TCM formulae and its some traditional efficacies has been confirmed by extensive recent pharmacological and clinical studies. Most the biological activities of the SC may be attributed to flavonoids. However, in-depth studies on the molecular mechanisms of the effective ingredients and extracts of SC are limited. Further systematic studies focusing on pharmacokinetics, toxicology and quality control are needed to ensure the effective and safe application of SC.
Collapse
Affiliation(s)
- Yehua Pan
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| | - Xiaomin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Salido S, Alejo-Armijo A, Altarejos J. Synthesis and hLDH Inhibitory Activity of Analogues to Natural Products with 2,8-Dioxabicyclo[3.3.1]nonane Scaffold. Int J Mol Sci 2023; 24:9925. [PMID: 37373073 DOI: 10.3390/ijms24129925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Human lactate dehydrogenase (hLDH) is a tetrameric enzyme present in almost all tissues. Among its five different isoforms, hLDHA and hLDHB are the predominant ones. In the last few years, hLDHA has emerged as a therapeutic target for the treatment of several kinds of disorders, including cancer and primary hyperoxaluria. hLDHA inhibition has been clinically validated as a safe therapeutic method and clinical trials using biotechnological approaches are currently being evaluated. Despite the well-known advantages of pharmacological treatments based on small-molecule drugs, few compounds are currently in preclinical stage. We have recently reported the detection of some 2,8-dioxabicyclo[3.3.1]nonane core derivatives as new hLDHA inhibitors. Here, we extended our work synthesizing a large number of derivatives (42-70) by reaction between flavylium salts (27-35) and several nucleophiles (36-41). Nine 2,8-dioxabicyclo[3.3.1]nonane derivatives showed IC50 values lower than 10 µM against hLDHA and better activity than our previously reported compound 2. In order to know the selectivity of the synthesized compounds against hLDHA, their hLDHB inhibitory activities were also measured. In particular, compounds 58, 62a, 65b, and 68a have shown the lowest IC50 values against hLDHA (3.6-12.0 µM) and the highest selectivity rate (>25). Structure-activity relationships have been deduced. Kinetic studies using a Lineweaver-Burk double-reciprocal plot have indicated that both enantiomers of 68a and 68b behave as noncompetitive inhibitors on hLDHA enzyme.
Collapse
Affiliation(s)
- Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Alfonso Alejo-Armijo
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Joaquín Altarejos
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| |
Collapse
|
6
|
Anti-cancer effect of Rumex obtusifolius in combination with arginase/nitric oxide synthase inhibitors via downregulation of oxidative stress, inflammation, and polyamine synthesis. Int J Biochem Cell Biol 2023; 158:106396. [PMID: 36918141 DOI: 10.1016/j.biocel.2023.106396] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Cancer continues to be a leading cause of death worldwide, making the development of new treatment methods crucial in the fight against it. With cancer incidence rates increasing worldwide, ongoing research must focus on identifying new and effective ways to prevent and treat the disease. The combination of herbal extracts with chemotherapeutic agents has gained much interest as a novel strategy to combat cancer. Rumex obtusifolius L. is a wild plant known for its medicinal properties and is widely distributed worldwide. Our preclinical evaluations suggested that R. obtusifolius seed extracts possessed cancer-inhibiting properties and we also evaluated the beneficial effects of the arginase inhibitor NG-hydroxy-nor-L-arginine and nitric oxide inhibitor NG-nitro-L-arginine methyl ester in the treatment of breast cancer. The current study aimed to combine these observations and evaluate the antioxidant and antitumor properties of R. obtusifolius extracts alone and in combination with the arginase and nitric oxide synthase inhibitors. Metabolic characterization of the plant extract using a liquid chromatography/high-resolution mass spectrometry advanced system revealed the presence of 240 phenolic compounds many of which possess anticancer properties, according to the literature. In vitro studies revealed a significant cytotoxic effect of the R. obtusifolius extracts on the human colon (HT29) and breast cancer (MCF-7) cell lines. Thus, a new treatment approach of combining R. obtusifolius bioactive phytochemicals with the arginase and nitric oxide synthase inhibitors NG-nitro-L-arginine methyl ester and/or NG-hydroxy-nor-L-arginine, respectively, was proposed and could potentially be an effective way to treat breast cancer. Indeed, these combinations showed immunostimulatory, antiproliferative, antioxidant, anti-inflammatory, and antiangiogenic properties in a rat breast cancer model.
Collapse
|
7
|
Nguyen-Ngoc H, Vu-Van T, Pham-Ha-Thanh T, Le-Dang Q, Nguyen-Huu T. Ethnopharmacology, Phytochemistry, and Pharmacological Activities of Spatholobus suberectus Vine Stem. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Spatholobus suberectus vine stem is an important medicinal material in Chinese, Vietnamese, and Korean traditional medicines. Its decoction has long been used to treat blood disorders, such as anemia and menstrual irregularity, as well as rheumatoid diseases. Previous phytochemical investigations characterized 88 compounds from S suberectus, which mainly belonged to the phenolic class, especially of the flavonoid type. Pharmacological studies showed the beneficial effects of extracts of the plant on the cardiovascular tract, which is ethnopharmacologically relevant to the plant's use in traditional medicine. Besides that, the extracts and isolated compounds also exhibited antimicrobial, anticancer, antiinflammatory, and antioxidant activities. The past study results support the use of S suberectus vine stem in traditional medicine and also revealed new directions of pharmacological effects of this medicinal plant.
Collapse
Affiliation(s)
| | - Tuan Vu-Van
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| | | | - Quang Le-Dang
- Graduate University of Sciences and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | |
Collapse
|
8
|
Maffei ME, Salata C, Gribaudo G. Tackling the Future Pandemics: Broad-Spectrum Antiviral Agents (BSAAs) Based on A-Type Proanthocyanidins. Molecules 2022; 27:8353. [PMID: 36500445 PMCID: PMC9736452 DOI: 10.3390/molecules27238353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.
Collapse
Affiliation(s)
- Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
9
|
Zhang F, Ganesan K, Liu Q, Chen J. A Review of the Pharmacological Potential of Spatholobus suberectus Dunn on Cancer. Cells 2022; 11:cells11182885. [PMID: 36139460 PMCID: PMC9497142 DOI: 10.3390/cells11182885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Spatholobus suberectus Dunn (SSD) has been extensively employed in Traditional Chinese Medicine to treat several ailments. SSD and its active compounds are effective therapeutic agents for treating a variety of diseases with negligible side effects. Therefore, we aimed to investigate its phytochemistry, pharmacology, and potential therapeutic effects exclusively in cancer prevention and treatment. Phytochemical and pharmacological information was collected and arranged in a rational order. SSD has been frequently attributed to having antioxidant, anti-diabetic, anti-inflammatory, hematopoietic, neuroprotective, antimicrobial, and anticancer properties. Evidence has indicated that the bioactive constituents in SSD have attracted increasing scientific attention due to their preventive role in cancers. Further, the present review provides the current information on the health implications of SSD, thus allowing for future clinical trials to explore its restorative benefits. All data of in vitro and animal investigations of SSD, as well as its effect on human health, were obtained from an electronic search and library database. The diverse pharmacological potential of SSD provides an opportunity for preclinical drug discovery, and this comprehensive review strongly indicates that SSD is an excellent anti-tumorigenic agent that modulates or prevents breast cancer.
Collapse
Affiliation(s)
- Feng Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingqing Liu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
- Correspondence: ; Tel.: +852-3917-6479
| |
Collapse
|
10
|
Alejo-Armijo A, Cuadrado C, Altarejos J, Fernandes MX, Salido E, Diaz-Gavilan M, Salido S. Lactate dehydrogenase A inhibitors with a 2,8-dioxabicyclo[3.3.1]nonane scaffold: A contribution to molecular therapies for primary hyperoxalurias. Bioorg Chem 2022; 129:106127. [PMID: 36113265 DOI: 10.1016/j.bioorg.2022.106127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022]
Abstract
Human lactate dehydrogenase A (hLDHA) is one of the main enzymes involved in the pathway of oxalate synthesis in human liver and seems to contribute to the pathogenesis of disorders with endogenous oxalate overproduction, such as primary hyperoxaluria (PH), a rare life-threatening genetic disease. Recent published results on the knockdown of LDHA gene expression as a safe strategy to ameliorate oxalate build-up in PH patients are encouraging for an approach of hLDHA inhibition by small molecules as a potential pharmacological treatment. Thus, we now report on the synthesis and hLDHA inhibitory activity of a new family of compounds with 2,8-dioxabicyclo[3.3.1]nonane core (23-42), a series of twenty analogues to A-type proanthocyanidin natural products. Nine of them (25-27, 29-34) have shown IC50 values in the range of 8.7-26.7 µM, based on a UV spectrophotometric assay, where the hLDHA inhibition is measured according to the decrease in absorbance of the cofactor β-NADH (340 nm). Compounds 25, 29, and 31 were the most active hLDHA inhibitors. In addition, the inhibitory activities of those nine compounds against the hLDHB isoform were also evaluated, finding that all of them were more selective inhibitors of hLDHA versus hLDHB. Among them, compounds 32 and 34 showed the highest selectivity. Moreover, the most active hLDHA inhibitors (25, 29, 31) were evaluated for their ability to decrease the oxalate production by hyperoxaluric mouse hepatocytes (PH1, PH2 and PH3) in vitro, and the relative oxalate output at 24 h was 16% and 19 % for compounds 25 and 31, respectively, in Hoga1-/- mouse primary hepatocyte cells (a model for PH3). These values improve those of the reference compound used (stiripentol). Compounds 25 and 31 have in common the presence of two hydroxyl groups at rings B and D and an electron-withdrawing group (NO2 or Br) at ring A, pointing to the structural features to be taken into account in future structural optimization.
Collapse
Affiliation(s)
- Alfonso Alejo-Armijo
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Cristina Cuadrado
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Joaquin Altarejos
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Miguel X Fernandes
- Instituto Universitario de Bioorgánica, Universidad de La Laguna, 38206 La Laguna, Spain
| | - Eduardo Salido
- Hospital Universitario de Canarias & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain.
| | - Monica Diaz-Gavilan
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Sofia Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain.
| |
Collapse
|
11
|
Liu Q, Kwan KY, Cao T, Yan B, Ganesan K, Jia L, Zhang F, Lim C, Wu Y, Feng Y, Chen Z, Liu L, Chen J. Broad-spectrum antiviral activity of Spatholobus suberectus Dunn against SARS-CoV-2, SARS-CoV-1, H5N1, and other enveloped viruses. Phytother Res 2022; 36:3232-3247. [PMID: 35943221 PMCID: PMC9537938 DOI: 10.1002/ptr.7452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
The current COVID-19 pandemic caused by SARS-Cov-2 is responsible for more than 6 million deaths globally. The development of broad-spectrum and cost-effective antivirals is urgently needed. Medicinal plants are renowned as a complementary approach in which antiviral natural products have been established as safe and effective drugs. Here, we report that the percolation extract of Spatholobus suberectus Dunn (SSP) is a broad-spectrum viral entry inhibitor against SARS-CoV-1/2 and other enveloped viruses. The viral inhibitory activities of the SSP were evaluated by using pseudotyped SARS-CoV-1 and 2, HIV-1ADA and HXB2 , and H5N1. SSP effectively inhibited viral entry and with EC50 values ranging from 3.6 to 5.1 μg/ml. Pre-treatment of pseudovirus or target cells with SSP showed consistent inhibitory activities with the respective EC50 value of 2.3 or 2.1 μg/ml. SSP blocked both SARS-CoV-2 spike glycoprotein and the host ACE2 receptor. In vivo studies indicated that there was no abnormal toxicity and behavior in long-term SSP treatment. Based on these findings, we concluded that SSP has the potential to be developed as a drug candidate for preventing and treating COVID-19 and other emerging enveloped viruses.
Collapse
Affiliation(s)
- Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Ka-Yi Kwan
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianyu Cao
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Immunology and Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bingpeng Yan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Jia
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Feng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Chunyu Lim
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Liu
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| |
Collapse
|
12
|
Liu Y, Xiang Q, Liang Q, Shi J, He J. Genus Spatholobus: a comprehensive review on ethnopharmacology, phytochemistry, pharmacology, and toxicology. Food Funct 2022; 13:7448-7472. [PMID: 35766524 DOI: 10.1039/d2fo00895e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Edible medicinal plants are important sources for the development of health beneficial products and drugs. Several species of the genus Spatholobus are considered as medicinal and food homologous plants in various Asian countries for the treatment of menstrual pain, anemia, paralysis, arthralgia, etc. Regarding this genus, mounting investigations on different aspects have been conducted; however, a comprehensive review about these findings is yet to be compiled. Herein, we reviewed the up-to-date information on the botanical description, distribution, ethnopharmacology, phytochemistry, pharmacology, and toxicology of the Spatholobus species for the first time to support their development potential. Thus far, 175 phytochemicals have been isolated, and flavonoids are the predominant constituents. Furthermore, 141 compounds show the ideal characteristic behavior of a drug-like molecule. Besides, the compounds and crude extracts of this genus have been demonstrated to exert a wide range of in vitro and in vivo bioactivities, such as antitumor activity, antioxidant activity, antiinflammatory activity, antiischemic activity, antimicrobial activity, and neuroprotective activity. Toxicity studies have revealed that Spatholobus species seem to have no apparent toxic effects. Even so, the need for in-depth studies to reveal the scientific connotation of the widely documented traditional actions, the structure-activity relationship of the bioactive compounds, and the systematic toxic reactions are warranted, and also to provide essential evidence for the beneficial use of Spatholobus plants and developing novel health care products and therapeutic drug from this genus.
Collapse
Affiliation(s)
- Yunlu Liu
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610212, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Qian Xiang
- Healthcare-associated Infection Control Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Jun He
- Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
13
|
Lin X, Yuen M, Yuen T, Yuen H, Wang M, Peng Q. Regulatory Effect of Sea-Buckthorn Procyanidins on Oxidative Injury HUVECs. Front Nutr 2022; 9:850076. [PMID: 35656158 PMCID: PMC9152354 DOI: 10.3389/fnut.2022.850076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
As society develops and aging populations increase, the incidence of arteriosclerosis, a seriously harmful cardiovascular disease (CVD) which mostly results from endothelial cellular oxidative damage, has continuously risen. Procyanidins from sea-buckthorn is a powerful antioxidant, although its protective effect on the cardiovascular system is not yet clearly understand. In this study, oxidative damaged HUVECs induced by palmitate acid (PA) were used as a model and the regulatory effect of procyanidins from sea-buckthorn (SBP) on HUVECs were investigated. The results showed SBP can be used for 12 h by HUVECs and had no detective cytotoxicity to them under 400 μg/L. Also, different concentrations of SBP can increase mitochondrial membrane potential and NO level and decrease LDH leakage in a dose-effect relationship, indicating SBP can improve oxidative damage. In addition, western blots and qPCR results showed SBP regulation on oxidative injured HUVECs is probably through p38MAPK/NF-κB signal pathway. This study revealed the molecular mechanism of procyanidins in decreasing endothelial oxidative damage, providing a theoretical foundation for further research on natural bioactive compounds to exert antioxidant activity in the body and prevent and improve cardiovascular diseases.
Collapse
Affiliation(s)
- Ximeng Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | | | | | | | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Liu D, Lin R, Wu H, Ji J, Wang D, Xue Z, Feng S, Chen X. Green synthesis, characterization of procyanidin-mediated gold nanoparticles and its application in fluorescence detection of prazosin. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Valencia-Hernandez LJ, Wong-Paz JE, Ascacio-Valdés JA, Chávez-González ML, Contreras-Esquivel JC, Aguilar CN. Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods 2021; 10:3152. [PMID: 34945704 PMCID: PMC8701411 DOI: 10.3390/foods10123152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Procyanidins are an important group of bioactive molecules known for their benefits to human health. These compounds are promising in the treatment of chronic metabolic diseases such as cancer, diabetes, and cardiovascular disease, as they prevent cell damage related to oxidative stress. It is necessary to study effective extraction methods for the recovery of these components. In this review, advances in the recovery of procyanidins from agro-industrial wastes are presented, which are obtained through ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, pressurized fluid extraction and subcritical water extraction. Current trends focus on the extraction of procyanidins from seeds, peels, pomaces, leaves and bark in agro-industrial wastes, which are extracted by ultrasound. Some techniques have been coupled with environmentally friendly techniques. There are few studies focused on the extraction and evaluation of biological activities of procyanidins. The identification and quantification of these compounds are the result of the study of the polyphenolic profile of plant sources. Antioxidant, antibiotic, and anti-inflammatory activity are presented as the biological properties of greatest interest. Agro-industrial wastes can be an economical and easily accessible source for the extraction of procyanidins.
Collapse
Affiliation(s)
- Leidy Johana Valencia-Hernandez
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Jorge E. Wong-Paz
- Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles C.P. 79010, SL, Mexico;
| | - Juan Alberto Ascacio-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Juan Carlos Contreras-Esquivel
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo C.P. 25280, CH, Mexico; (L.J.V.-H.); (J.A.A.-V.); (M.L.C.-G.); (J.C.C.-E.)
| |
Collapse
|
16
|
Liu X, Zhang L, Yang X, Zhang Y, Xu W, Zhang P, Zhao W, Peng K, Gong Y, Liu N. Simultaneous detection and quantification of 57 compounds in Spatholobi Caulis applying ultra‐fast liquid chromatography with tandem mass spectrometry. J Sep Sci 2020; 43:4247-4262. [DOI: 10.1002/jssc.202000496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Xiao‐Yan Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center Peking University Beijing P. R. China
| | - Lei Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center Peking University Beijing P. R. China
| | - Xiu‐Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center Peking University Beijing P. R. China
| | - You‐Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center Peking University Beijing P. R. China
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center Peking University Beijing P. R. China
| | - Peng Zhang
- Zhuzhou Qianjin Pharmaceutical Co., Ltd. Zhuzhou P. R. China
| | - Wei Zhao
- Zhuzhou Qianjin Pharmaceutical Co., Ltd. Zhuzhou P. R. China
| | - Kai‐Feng Peng
- Zhuzhou Qianjin Pharmaceutical Co., Ltd. Zhuzhou P. R. China
| | - Yun Gong
- Zhuzhou Qianjin Pharmaceutical Co., Ltd. Zhuzhou P. R. China
| | - Ni‐Fu Liu
- Zhuzhou Qianjin Pharmaceutical Co., Ltd. Zhuzhou P. R. China
| |
Collapse
|
17
|
A Comprehensive Assessment of Bioactive Metabolites, Antioxidant and Antiproliferative Activities of Cyclocarya paliurus (Batal.) Iljinskaja Leaves. FORESTS 2019. [DOI: 10.3390/f10080625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja is an indigenous and multifunction tree species in China, but it is mainly used in pharmaceutical and nutraceutical ingredients. To make a comprehensive evaluation on its bioactive metabolites, antioxidant and antitumor potentials of C. paliurus leaves, the leaf samples were collected from 15 geographic locations (natural populations) throughout its distribution areas. High-performance liquid chromatography (HPLC) and colorimetric methods were used to detect the contents of bioactive metabolites. The antioxidant activity was evaluated by 2,2′-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and reducing power assays. The antiproliferative activity on different cancer cell types was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Contents of bioactive metabolites, and antioxidant and antiproliferative activities in the extracts were significantly affected by solvent and population. In most cases, the contents of flavonoids and triterpenoids, and the antioxidant and antiproliferative activities in the ethanol extracts were higher than the water extracts. The best scavenging capacity of DPPH (IC50 = 0.34 mg/mL) and ABTS (IC50 = 0.50 mg/mL) radical occurred in the ethanol extracts of S15 and S7 population respectively, while the strongest reducing power (EC50 = 0.71 mg/mL) was achieved in the ethanol extracts of S14 population. The antiproliferation effects of C. paliurus extracts on cancer cells varied with different cell types. The HeLa cell was the most sensitive to C. paliurus extracts, and their IC50 values of the ethanol extracts varied from 0.13 to 0.42 mg/mL among C. paliurus populations. Redundancy analysis showed that total polyphenol had the greatest contribution to the antioxidant activity, but total flavonoid was mostly responsible for the antiproliferation effects. These results would provide important scientific evidences not only for developing C. paliurus as a potent antioxidant and antitumor reagent, but also for obtaining the higher yield of bioactive compounds in the C. paliurus plantation.
Collapse
|
18
|
Interaction between carboxymethyl pachyman and lotus seedpod oligomeric procyanidins with superior synergistic antibacterial activity. Carbohydr Polym 2019; 212:11-20. [PMID: 30832837 DOI: 10.1016/j.carbpol.2019.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 12/19/2022]
Abstract
The inhibitory effect of carboxymethyl pachyman (CMP) mixed with lotus seedpod oligomeric procyanidins (LSPC) in certain ratios against E. coli 10899 was determined. Added low concentration of LSPC could improve the antibacterial activity of CMP, and a significant synergistic effect could be observed between them, especially when the concentration of CMP was below its critical concentration (1.35 mg/mL). Then, the interaction between CMP and LSPC was characterized after mixing; the changes in spectral characteristics, thermal properties, crystallinity pattern, molecular weight, chain morphology and microrheological behaviour explained the influence of interaction on the structure of CMP and LSPC. The smaller molecular size, electrostatic interaction and stronger hydrophobic interaction might play important roles in improving the antibacterial activity of mixture. The dissociation constant (Kd) was determined to be 0.102±0.0008 mg/mL using MicroScale Thermophoresis (MST), and the micromorphology was observed by SEM. Therefore, this mixture might be an effective natural bacteriostat.
Collapse
|
19
|
Wang Z, Cai T, He X. Characterization, sulfated modification and bioactivity of a novel polysaccharide from Millettia dielsiana. Int J Biol Macromol 2018; 117:108-115. [DOI: 10.1016/j.ijbiomac.2018.05.147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 12/12/2022]
|
20
|
Liu RX, Xu YL, Ma LF, Ying YM, Zhan ZJ. A New Flavanone from Spatholobus Suberectus Dunn. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15386515371813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new flavanone, namely 2-(S)-6,7,3’,5′-tetrahydroxyflavanone, was separated from the ethanol extracts of the dried vine stems of Spatholobus suberectus dunn, together with three known ones, 2-(S)-7,3’,5′-trihydroxyflavanone, liquiritigenin and butin. The structure of the new flavanone was identified by detailed analyses of the spectroscopic data, especially 1D and 2D NMR, and HR-ESI-MS.
Collapse
Affiliation(s)
- Ruo-Xi Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yi-Lian Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
21
|
Synergistic effect of B-type oligomeric procyanidins from lotus seedpod in combination with water-soluble Poria cocos polysaccharides against E. coli and mechanism. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Baldivia DDS, Leite DF, Castro DTHD, Campos JF, Santos UPD, Paredes-Gamero EJ, Carollo CA, Silva DB, de Picoli Souza K, Dos Santos EL. Evaluation of In Vitro Antioxidant and Anticancer Properties of the Aqueous Extract from the Stem Bark of Stryphnodendron adstringens. Int J Mol Sci 2018; 19:ijms19082432. [PMID: 30126115 PMCID: PMC6121951 DOI: 10.3390/ijms19082432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Stryphnodendron adstringens (Mart.) Coville (Fabaceae) is a tree species native to the Brazilian Cerrado commonly known as barbatimão. In traditional medicine, decoctions or infusions of the stem bark of this plant are used in the treatment of several diseases. The objective of this study was to analyze the chemical composition of Stryphnodendron adstringens aqueous extracts (SAAE) prepared from the stem bark to assess their antioxidant activity and anticancer effects as well as characterize cell death mechanisms against murine B16F10Nex-2 melanoma cells. From the SAAE, gallic acid, gallocatechin, epigallocatechin, dimeric and trimeric proanthocyanidins mainly composed of prodelphinidin units and the isomeric chromones C-hexosyl- and O-pentosyl-5,7-dihydroxychromone were identified. The SAAE showed antioxidant activity through direct free-radical scavenging as well as through oxidative hemolysis and lipid peroxidation inhibition in human erythrocytes. Furthermore, SAAE promoted apoptosis-induced cell death in melanoma cells by increasing intracellular reactive oxygen species (ROS) levels, inducing mitochondrial membrane potential dysfunction and activating caspase-3. Together, these data show the antioxidant and anticancer effects of Stryphnodendron adstringens. These results open new perspectives for studies against other tumor cell lines and in vivo models as well as for the identification and isolation of the chemical constituents responsible for these effects.
Collapse
Affiliation(s)
- Débora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, CEP: 79.804-970 Dourados, MS, Brazil.
| | - Daniel Ferreira Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, CEP: 79.804-970 Dourados, MS, Brazil.
| | - David Tsuyoshi Hiramatsu de Castro
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, CEP: 79.804-970 Dourados, MS, Brazil.
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, CEP: 79.804-970 Dourados, MS, Brazil.
| | - Uilson Pereira Dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, CEP: 79.804-970 Dourados, MS, Brazil.
| | | | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, University City, s/n, 79070-900 Campo Grande, MS, Brazil.
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, University City, s/n, 79070-900 Campo Grande, MS, Brazil.
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, CEP: 79.804-970 Dourados, MS, Brazil.
| | - Edson Lucas Dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, CEP: 79.804-970 Dourados, MS, Brazil.
| |
Collapse
|
23
|
Rue EA, Rush MD, van Breemen RB. Procyanidins: a comprehensive review encompassing structure elucidation via mass spectrometry. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:1-16. [PMID: 29651231 PMCID: PMC5891158 DOI: 10.1007/s11101-017-9507-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/19/2017] [Indexed: 05/04/2023]
Abstract
Procyanidins are polyphenols abundant in dietary fruits, vegetables, nuts, legumes, and grains with a variety of chemopreventive biological effects. Rapid structure determination of these compounds is needed, notably for the more complex polymeric procyanidins. We review the recent developments in the structure elucidation of procyanidins with a focus on mass spectrometric approaches, especially liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser desorption ionization (MALDI) MS/MS.
Collapse
Affiliation(s)
- Emily A Rue
- University of Illinois College of Pharmacy, 833 S Wood St, Chicago, Il, 60612, USA
| | - Michael D Rush
- University of Illinois College of Pharmacy, 833 S Wood St, Chicago, Il, 60612, USA
| | | |
Collapse
|
24
|
Tang C, Xie B, Sun Z. Antibacterial activity and mechanism of B-type oligomeric procyanidins from lotus seedpod on enterotoxigenic Escherichia coli. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
25
|
Cyboran-Mikołajczyk S, Żyłka R, Jurkiewicz P, Pruchnik H, Oszmiański J, Hof M, Kleszczyńska H. Interaction of procyanidin B 3 with membrane lipids – Fluorescence, DSC and FTIR studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1362-1371. [DOI: 10.1016/j.bbamem.2017.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 04/05/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
|
26
|
Domínguez-Rodríguez G, Marina ML, Plaza M. Strategies for the extraction and analysis of non-extractable polyphenols from plants. J Chromatogr A 2017; 1514:1-15. [PMID: 28778531 DOI: 10.1016/j.chroma.2017.07.066] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
The majority of studies based on phenolic compounds from plants are focused on the extractable fraction derived from an aqueous or aqueous-organic extraction. However, an important fraction of polyphenols is ignored due to the fact that they remain retained in the residue of extraction. They are the so-called non-extractable polyphenols (NEPs) which are high molecular weight polymeric polyphenols or individual low molecular weight phenolics associated to macromolecules. The scarce information available about NEPs shows that these compounds possess interesting biological activities. That is why the interest about the study of these compounds has been increasing in the last years. Furthermore, the extraction and characterization of NEPs are considered a challenge because the developed analytical methodologies present some limitations. Thus, the present literature review summarizes current knowledge of NEPs and the different methodologies for the extraction of these compounds, with a particular focus on hydrolysis treatments. Besides, this review provides information on the most recent developments in the purification, separation, identification and quantification of NEPs from plants.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain
| | - Merichel Plaza
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
27
|
de Camargo AC, Regitano-d’Arce MAB, Shahidi F. Phenolic Profile of Peanut By-products: Antioxidant Potential and Inhibition of Alpha-Glucosidase and Lipase Activities. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-2996-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Zhang S, Li L, Cui Y, Luo L, Li Y, Zhou P, Sun B. Preparative high-speed counter-current chromatography separation of grape seed proanthocyanidins according to degree of polymerization. Food Chem 2017; 219:399-407. [DOI: 10.1016/j.foodchem.2016.09.170] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
|
29
|
Liu B, Li Z. Black Currant (Ribes nigrum L.) Extract Induces Apoptosis of MKN-45 and TE-1 Cells Through MAPK- and PI3K/Akt-Mediated Mitochondrial Pathways. J Med Food 2016; 19:365-73. [PMID: 27007806 DOI: 10.1089/jmf.2015.3521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Bingshuo Liu
- The Affiliated Tumor Hospital of Harbin Medical University , Harbin, China
| | - Zhiwei Li
- The Affiliated Tumor Hospital of Harbin Medical University , Harbin, China
| |
Collapse
|
30
|
Han KH, Kitano-Okada T, Seo JM, Kim SJ, Sasaki K, Shimada KI, Fukushima M. Characterisation of anthocyanins and proanthocyanidins of adzuki bean extracts and their antioxidant activity. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|