1
|
Wang Y, Wu G, Wang Y, Rehman A, Yu L, Zhang H, Jin Q, Suleria HAR, Wang X. Recent developments, challenges, and prospects of dietary omega-3 PUFA-fortified foods: Focusing on their effects on cardiovascular diseases. Food Chem 2025; 470:142498. [PMID: 39736180 DOI: 10.1016/j.foodchem.2024.142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025]
Abstract
Dietary omega-3 polyunsaturated fatty acids (Dω-3 PUFAs) have been extensively studied and have been proven to offer notable benefits for heart health. Scientific meta-analysis strongly endorses them as potent bioactive agents capable of preventing and managing cardiovascular diseases (CVDs). Fortification of foods with Dω-3 PUFAs is a potential strategy for enhancing Dω-3 PUFA intake in an effort to continue strengthening public health outcomes. This review analyzed recent trends in the fortification of foods with Dω-3 PUFAs in relation to technological developments, challenges linked to the method, and future scope. Additionally, recent clinical trials and research on the effect of Dω-3 PUFA-fortified food consumption on cardiovascular health are reviewed. Technological trends in fortification methods, namely microencapsulation- and nanoencapsulation, have made considerable progress to date, along with excellent stability in both processing and storage conditions and favorable bioaccessibility and sensory attributes of fortified foods. There is a tremendous deal of promise for cardiovascular health based on recent clinical trial findings that fortifying food with Dω-3 PUFAs decreased the incidence of heart disease, blood pressure, and lipid profiles. In summary, substantial progress has been made in addressing the challenges of Dω-3 PUFA fortification. However, further multidisciplinary research is needed to inculcate effectiveness toward achieving the maximum possible Dω-3 PUFAs to protect against the harmful effects of CVDs and continue global health progress.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Le Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Naseem Z, Mir SA, Wani SM, Ganai SA, Nazir N, Masood S, Dar SA. Investigating gum arabic and soy protein isolate as wall material for encapsulation of five strains of Lactobacillus. Int J Biol Macromol 2025; 298:140083. [PMID: 39832582 DOI: 10.1016/j.ijbiomac.2025.140083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Encapsulation technology is a suitable tool to protect probiotics in carrier food products and gastrointestinal tract. In the current investigation, the potential of gum arabic, soy protein isolate and their blend as wall material for the encapsulation of five Lactobacillus spp. viz. L. acidophilus, L. bulgaricus, L. casei, L. plantarum and L. rhamnosus by freeze drying was studied. The impact of various encapsulating materials on the encapsulation efficiency, water activity, particle size, thermal properties and morphology of encapsulates was investigated. The results revealed that microparticles have low water activity (0.25-0.37), high encapsulation efficiency (81.94 to 93.03 %) and particle size ranged between 112.34 and 147.79 μm. Scanning electron microscopy indicated a porous morphology and irregular shape of probiotic powder. The absorption bands in the FT-IR spectra between 2854 and 1088 cm-1, 2927-109 cm-1 and 2930-1071 cm-1 confirm the successful encapsulation of probiotics. The encapsulated probiotics showed high lysozyme tolerance (76.00 to 92.16 %) and high cell surface hydrophobicity (58 to 85 %) as compared to free cells. This improves probiotic stability, survivability, and functional properties, making them ideal for developing functional food products. These encapsulated probiotics are well-suited to withstand gastrointestinal conditions and deliver health benefits to consumers.
Collapse
Affiliation(s)
- Zahida Naseem
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190025, India
| | - Sajad Ahmad Mir
- Department of Life Science and Technology (Microbiology & Food Science and Technology), GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190025, India.
| | - Shaiq Ahmad Ganai
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190025, India
| | - Nageena Nazir
- Division of Agricultural Statistics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190025, India
| | - Saima Masood
- Division of Basic Science and Humanity, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190025, India
| | - Sher Ahmad Dar
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190025, India
| |
Collapse
|
3
|
Bazzaz S, Abbasi A, Ghotbabad AG, Pourjafar H, Hosseini H. Novel Encapsulation Approaches in the Functional Food Industry: With a Focus on Probiotic Cells and Bioactive Compounds. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10364-7. [PMID: 39367980 DOI: 10.1007/s12602-024-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Bioactive substances can enhance host health by modulating biological reactions, but their absorption and utilization by the body are crucial for positive effects. Encapsulation of probiotics is rapidly advancing in food science, with new approaches such as 3D printing, spray-drying, microfluidics, and cryomilling. Co-encapsulation with bioactives presents a cost-effective and successful approach to delivering probiotic components to specific colon areas, improving viability and bioactivity. However, the exact method by which bioactive chemicals enhance probiotic survivability remains uncertain. Co-crystallization as an emerging encapsulation method improves the physical characteristics of active components. It transforms the structure of sucrose into uneven agglomerated crystals, creating a porous network to protect active ingredients. Likewise, electrohydrodynamic techniques are used to generate fibers with diverse properties, protecting bioactive compounds from harsh circumstances at ambient temperature. Electrohydrodynamic procedures are highly adaptable, uncomplicated, and easily expandable, resulting in enhanced product quality and functionality across various food domains. Furthermore, food byproducts offer nutritional benefits and technical potential, aligning with circular economy principles to minimize environmental impact and promote economic growth. Hence, industrialized nations can capitalize on the growing demand for functional foods by incorporating these developments into their traditional cuisine and partnering with businesses to enhance manufacturing and production processes.
Collapse
Affiliation(s)
- Sara Bazzaz
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghafouri Ghotbabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Jiang M, Hu Z, Huang Y, Chen XD, Wu P. Impact of wall materials and DHA sources on the release, digestion and absorption of DHA microcapsules: Advancements, challenges and future directions. Food Res Int 2024; 191:114646. [PMID: 39059932 DOI: 10.1016/j.foodres.2024.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, offers significant health benefits but faces challenges such as distinct odor, oxidation susceptibility, and limited intestinal permeability, hindering its broad application. Microencapsulation, widely employed, enhances DHA performance by facilitating controlled release, digestion, and absorption in the gastrointestinal tract. Despite extensive studies on DHA microcapsules and related delivery systems, understanding the mechanisms governing encapsulated DHA release, digestion, and absorption, particularly regarding the influence of wall materials and DHA sources, remains limited. This review starts with an overview of current techniques commonly applied for DHA microencapsulation. It then proceeds to outline up-to-date advances in the release, digestion and absorption of DHA microcapsules, highlighting the roles of wall materials and DHA sources. Importantly, it proposes strategies for overcoming challenges and exploiting opportunities to enhance the bioavailability of DHA microcapsules. Notably, spray drying dominates DHA microencapsulation (over 90 % usage), while complex coacervation shows promise for future applications. The combination of proteins and carbohydrates or phospholipids as wall material exhibits potential in controlling release and digestion of DHA microcapsules. The source of DHA, particularly algal oil, demonstrates higher lipid digestibility and absorptivity of free fatty acids (FFAs) than fish oil. Future advancements in DHA microcapsule development include formulation redesign (e.g., using plant proteins as wall material and algal oil as DHA source), technique optimization (such as co-microencapsulation and pre-digestion), and creation of advanced in vitro systems for assessing DHA digestion and absorption kinetics.
Collapse
Affiliation(s)
- Maoshuai Jiang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zejun Hu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Suzhou, Jiangsu 215152, China.
| | - Yixiao Huang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
5
|
Shakeri M, Ghobadi R, Sohrabvandi S, Khanniri E, Mollakhalili-Meybodi N. Co-encapsulation of omega-3 and vitamin D 3 in beeswax solid lipid nanoparticles to evaluate physicochemical and in vitro release properties. Front Nutr 2024; 11:1323067. [PMID: 38633604 PMCID: PMC11021770 DOI: 10.3389/fnut.2024.1323067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
In recent years, lipophilic bioactive compounds have gained much attention due to their wide range of health-benefiting effects. However, their low solubility and susceptibility to harsh conditions such as high temperatures and oxidation stress have limited their potential application for the development of functional foods and nutraceutical products in the food industry. Nanoencapsulation can help to improve the stability of hydrophobic bioactive compounds and protect these sensitive compounds during food processing conditions, thus overcoming the limitation of their pure use in food products. The objective of this work was to co-entrap vitamin D3 (VD3) and omega 3 (ω3) as hydrophobic bioactive compounds providing significant health benefits in beeswax solid lipid nanoparticles (BW. SLNs) for the first time and to investigate the effect of different concentrations of VD3 (5 and 10 mg/mL) and ω3 (8 and 10 mg) on encapsulation efficiency (EE). Our findings revealed that the highest EE was obtained for VD3 and ω3 at concentrations of 5 mg/mL and 10 mg, respectively. VD3/ω3 loaded BW. SLNs (VD3/ω3-BW. SLNs) were prepared with zeta potential and size of-32 mV and 63.5 nm, respectively. Results obtained by in-vitro release study indicated that VD3 release was lower compared to ω3 in the buffer solution. VD3 and ω3 incorporated in BW. SLNs demonstrated excellent stability under alkaline and acidic conditions. At highly oxidizing conditions, 96.2 and 90.4% of entrapped VD3 and ω3 remained stable in nanoparticles. Moreover, nanoparticles were stable during 1 month of storage, and no aggregation was observed. In conclusion, co-loaded VD3 and ω3 in BW. SLNs have the great potential to be used as bioactive compounds in food fortification and production of functional foods.
Collapse
Affiliation(s)
- Mohammad Shakeri
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Runak Ghobadi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Mollakhalili-Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Wang A, Zhong Q. Drying of probiotics to enhance the viability during preparation, storage, food application, and digestion: A review. Compr Rev Food Sci Food Saf 2024; 23:e13287. [PMID: 38284583 DOI: 10.1111/1541-4337.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Functional food products containing viable probiotics have become increasingly popular and demand for probiotic ingredients that maintain viability and stability during processing, storage, and gastrointestinal digestions. This has resulted in heightened research and development of powdered probiotic ingredients. The aim of this review is to overview the development of dried probiotics from upstream identification to downstream applications in food. Free probiotic bacteria are susceptible to various environmental stresses during food processing, storage, and after ingestion, necessitating additional materials and processes to preserve their activity for delivery to the colon. Various classic and emerging thermal and nonthermal drying technologies are discussed for their efficiency in preparing dehydrated probiotics, and strategies for enhancing probiotic survival after dehydration are highlighted. Both the formulation and drying technology can influence the microbiological and physical properties of powdered probiotics that are to be characterized comprehensively with various techniques. Furthermore, quality control during probiotic manufacturing and strategies of incorporating powdered probiotics into liquid and solid food products are discussed. As emerging technologies, structure-design principles to encapsulate probiotics in engineered structures and protective materials with improved survivability are highlighted. Overall, this review provides insights into formulations and drying technologies required to supplement viable and stable probiotics into functional foods, ensuring the retention of their health benefits upon consumption.
Collapse
Affiliation(s)
- Anyi Wang
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
- International Flavors and Fragrances, Palo Alto, California, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
7
|
Agriopoulou S, Tarapoulouzi M, Varzakas T, Jafari SM. Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms 2023; 11:2896. [PMID: 38138040 PMCID: PMC10745938 DOI: 10.3390/microorganisms11122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Consumers are increasingly showing a preference for foods whose nutritional and therapeutic value has been enhanced. Probiotics are live microorganisms, and their existence is associated with a number of positive effects in humans, as there are many and well-documented studies related to gut microbiota balance, the regulation of the immune system, and the maintenance of the intestinal mucosal barrier. Hence, probiotics are widely preferred by consumers, causing an increase in the corresponding food sector. As a consequence of this preference, food industries and those involved in food production are strongly interested in the occurrence of probiotics in food, as they have proven beneficial effects on human health when they exist in appropriate quantities. Encapsulation technology is a promising technique that aims to preserve probiotics by integrating them with other materials in order to ensure and improve their effectiveness. Encapsulated probiotics also show increased stability and survival in various stages related to their processing, storage, and gastrointestinal transit. This review focuses on the applications of encapsulation technology in probiotics in sustainable food production, including controlled release mechanisms and encapsulation techniques.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran;
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran 14158-45371, Iran
| |
Collapse
|
8
|
Iesa NB, Chaipoot S, Phongphisutthinant R, Wiriyacharee P, Lim BG, Sringarm K, Burgett M, Chuttong B. Effects of Maltodextrin and Gum Arabic Composition on the Physical and Antioxidant Activities of Dewaxed Stingless Bee Cerumen. Foods 2023; 12:3740. [PMID: 37893633 PMCID: PMC10606187 DOI: 10.3390/foods12203740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Cerumen is a mixture of beeswax and plant resin made by stingless bees. It has antimicrobial and antioxidant properties and is often used in biological and therapeutic treatments. However, its adhesive characteristic makes cerumen challenging to process into powder. METHODS This study investigated the physical characteristics and antioxidant activity of the encapsulated freeze-dried dewaxed cerumen of Tetragonula laevicpes. The combination of coating materials at concentrations of 20%, 30% and 40% and carrier ratios of maltodextrin to gum arabic of 9:1, 5:5 and 3:7 were used to encapsulate dewaxed cerumen when freeze-dried; the control was maltodextrin at a concentration of 31.25%. RESULTS All carrier matrices showed high yields of >80% and similar powder characteristics of low moisture content, low water activity, high glass transition temperature and water dispersibility. Overall, antioxidant activities ranged from 69-80%, while the encapsulation efficiency of total phenolic content ranged from 46-68%. All carrier matrices show higher antioxidant activities than 31.25% maltodextrin, with the lowest antioxidant at 57%. CONCLUSIONS The carrier ratio of 5:5 resulted in better physical properties and retained 68% of polyphenolic activity in powders.
Collapse
Affiliation(s)
- Nuha Binte Iesa
- Chemical Engineering and Food Technology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore; (N.B.I.); (B.G.L.)
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (R.P.)
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (R.P.)
| | - Pairote Wiriyacharee
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Bee Gim Lim
- Chemical Engineering and Food Technology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore; (N.B.I.); (B.G.L.)
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Michael Burgett
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
9
|
Dong Z, Yu S, Zhai K, Bao N, Rashed MMA, Wu X. Fabrication and Characterization of Complex Coacervation: The Integration of Sesame Protein Isolate-Polysaccharides. Foods 2023; 12:3696. [PMID: 37835349 PMCID: PMC10572293 DOI: 10.3390/foods12193696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The exceptional biocompatibility of emulsion systems that rely on stabilizing protein-polysaccharide particles presents extensive possibilities for the transportation of bioactive carriers, making them highly promising for various biological applications. The current work aimed to explore the phenomenon of complex coacervation between sesame protein isolate (SPI) and four distinct polysaccharides, namely, Arabic gum (GA), carrageenan (CAR), sodium carboxymethyl cellulose (CMC), and sodium alginate (SA). The study objective was achieved by fabricating emulsions through the blending of these polymers with oil at their maximum turbidity level (φ = 0.6), followed by the measurement of their rheological properties. The turbidity, ζ-potential, and particle size were among the techno-parameters analyzed to assess the emulsion stability. The microstructural characterization of the emulsions was conducted using both transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Furthermore, the functional properties were examined using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The SPI incorporated with SA, CMC, and CAR reached the maximum turbidity (0.2% w/v) at a ratio of 4:1, corresponding to the pH values of 4.5, 3, or 3.5, respectively. The SPI-GA mixture exhibited the maximum turbidity at a ratio of 10:1 and pH 4.5. Results from the FTIR and XRD analyses provided evidence of complex formation between SPI and the four polysaccharides, with the electrostatic and hydrogen bond interactions facilitating the binding of SPI to these polysaccharides. SPI was bound to the four polysaccharides through electrostatic and hydrogen bond interactions. The SPI-CMC and SPI-SA emulsions were more stable after two weeks of storage.
Collapse
Affiliation(s)
- Zeng Dong
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Yu
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| | - Kefeng Zhai
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| | - Nina Bao
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| | - Marwan M. A. Rashed
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| | - Xiao Wu
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou 234000, China; (Z.D.); (S.Y.); (N.B.); (M.M.A.R.); (X.W.)
- Engineering Research Center for Development and High-Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou 234000, China
| |
Collapse
|
10
|
Zhang T, Xu X, Pan Y, Yang H, Han J, Liu J, Liu W. Specific surface modification of liposomes for gut targeting of food bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:3685-3706. [PMID: 37548603 DOI: 10.1111/1541-4337.13224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Liposomes have become a research hotspot in recent years as food delivery systems with attractive properties, including the bilayer structure assembled like the cell membrane, reducing the side-effect and improving environmental stability of cargos, controlling release, extending duration of functional ingredients, and high biodegradable and biocompatible abilities in the body. However, the conventional liposomes lack stability during storage and are weak in targeted absorption in the gastrointestinal track. At present, surface modification has been approved to be an effective platform to shield these barricades and help liposomes deliver the agents safely and effectively to the ideal site. In this review, the gastrointestinal stability of conventional liposomes, cargo release models from liposomes, and the biological fate of the core materials after release were emphasized. Then, the strategies in both physical and chemical perspectives to improve the stability and utilization of liposomes in the gastrointestinal tract, and the emerging approaches for improving gut targeting by specifically modified liposomes and the intestinal receptors relative to liposomes/cargos absorption were highlighted. Last but not the least, the safety, challenges, and opportunities for the improvement of liposomal bioavailability were also discussed to inspire new applications of liposomes as oral carriers.
Collapse
Affiliation(s)
- Tingting Zhang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yujie Pan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hui Yang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
11
|
Altuntas U, Altin-Yavuzarslan G, Ozçelik B. Enhanced Oxidative Stability and Bioaccessibility of Sour Cherry Kernel Byproducts Encapsulated by Complex Coacervates with Different Wall Matrixes by Spray- and Freeze-Drying. ACS OMEGA 2023; 8:23782-23790. [PMID: 37426239 PMCID: PMC10324091 DOI: 10.1021/acsomega.3c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
Sour cherry (Prunus cerasus L.) seeds are obtained as byproducts of the processing of sour cherries into processed foods. Sour cherry kernel oil (SCKO) contains n-3 PUFAs, which may provide an alternative to marine food products. In this study, SCKO was encapsulated by complex coacervates, and the characterization and in vitro bioaccessibility of encapsulated SCKO were investigated. Complex coacervates were prepared by whey protein concentrate (WPC) in combination with two different wall materials, maltodextrin (MD) and trehalose (TH). Gum Arabic (GA) was added to the final coacervate formulations to maintain droplet stability in the liquid phase. The oxidative stability of encapsulated SCKO was improved by drying on complex coacervate dispersions via freeze-drying and spray-drying. The optimum encapsulation efficiency (EE) was obtained for the sample 1% SCKO encapsulated with 3:1 MD/WPC ratio, followed by the 3:1 TH/WPC mixture containing 2% oil, while the sample with 4:1 TH/WPC containing 2% oil had the lowest EE. In comparison with freeze-dried coacervates containing 1% SCKO, spray-dried ones demonstrated higher EE and improved oxidative stability. It was also shown that TH could be a good alternative to MD when preparing complex coacervates with polysaccharide/protein networks.
Collapse
Affiliation(s)
- Umit Altuntas
- Food
Engineering Department, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Istanbul, Türkiye
- Food
Engineering Department, Faculty of Engineering and Natural Sciences, Gümüşhane University, 29100 Gümüşhane, Türkiye
| | - Gokce Altin-Yavuzarslan
- Molecular
Engineering & Sciences Institute, University
of Washington, 3946 W Stevens Way NE, Seattle, Washington 98105, United States
| | - Beraat Ozçelik
- Food
Engineering Department, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Istanbul, Türkiye
- BIOACTIVE
Research and Innovation Food Manufac. Indust. Trade Ltd., Teknokent ARI-3, B110, 34467 Istanbul, Turkey
| |
Collapse
|
12
|
Chen Y, Wang W, Zhang W, Lan D, Wang Y. Co-encapsulation of probiotics with acylglycerols in gelatin-gum arabic complex coacervates: Stability evaluation under adverse conditions. Int J Biol Macromol 2023; 242:124913. [PMID: 37217064 DOI: 10.1016/j.ijbiomac.2023.124913] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/21/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Co-encapsulation of acylglycerols and probiotics may improve the resistance of probiotics to adverse conditions. In this study, three probiotic microcapsule models were constructed using gelatin (GE)-gum arabic (GA) complex coacervate as wall material: microcapsules containing only probiotics (GE-GA), microcapsules containing triacylglycerol (TAG) oil and probiotics (GE-T-GA) and microcapsules containing diacylglycerol (DAG) oil and probiotics (GE-D-GA). The protective effects of three microcapsules on probiotic cells under environmental stresses (freeze-drying, heat treatment, simulated digestive fluid and storage) were evaluated. The results of cell membrane fatty acid composition and Fourier transform infrared (FTIR) spectroscopy revealed that GE-D-GA could improve the fluidity of cell membrane, maintain the stability of protein and nucleic acid structure, and decrease the damage of cell membrane. These characteristics supported the high freeze-dried survival rate (96.24 %) of GE-D-GA. Furthermore, regardless of thermotolerance or storage, GE-D-GA showed the best cell viability retention. More importantly, GE-D-GA provided the best protection for probiotics under simulated gastrointestinal conditions, as the presence of DAG reduced cell damage during freeze-drying and the degree of contact between probiotics and digestive fluids. Therefore, co-microencapsulation of DAG oil and probiotics is a promising strategy to resist adverse conditions.
Collapse
Affiliation(s)
- Ying Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural and Agrifood Res Inst, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Weiqian Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Intelligent Bio-manufacturing, Foshan 528225, China.
| |
Collapse
|
13
|
Clavijo-Romero A, Moyano-Molano M, Bauer Estrada K, Pachón-Rojas LV, Quintanilla-Carvajal MX. Evaluation of the Survival of Lactobacillus fermentum K73 during the Production of High-Oleic Palm Oil Macroemulsion Powders Using Rotor-Stator Homogenizer and Spray-Drying Technique. Microorganisms 2023; 11:1490. [PMID: 37374991 DOI: 10.3390/microorganisms11061490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to evaluate the survival of the probiotic Lactobacillus fermentum when it is encapsulated in powdered macroemulsions to develop a probiotic product with low water activity. For this purpose, the effect of the rotational speed of the rotor-stator and the spray-drying process was assessed on the microorganism survival and physical properties of probiotic high-oleic palm oil (HOPO) emulsions and powders. Two Box-Behnken experimental designs were carried out: in the first one, for the effect of the macro emulsification process, the numerical factors were the amount of HOPO, the velocity of the rotor-stator, and time, while the factors for the second one, the drying process, were the amount of HOPO, inoculum, and the inlet temperature. It was found that the droplet size (ADS) and polydispersity index (PdI) were influenced by HOPO concentration and time, ζ-potential by HOPO concentration and velocity, and creaming index (CI) by speed and time of homogenization. Additionally, HOPO concentration affected bacterial survival; the viability was between 78-99% after emulsion preparation and 83-107% after seven days. The spray-drying process showed a similar viable cell count before and after the drying process, a reduction between 0.04 and 0.8 Log10 CFUg-1; the moisture varied between 2.4% and 3.7%, values highly acceptable for probiotic products. We concluded that encapsulation of L. fermentum in powdered macroemulsions at the conditions studied is effective in obtaining a functional food from HOPO with optimal physical and probiotic properties according to national legislation (>106 CFU mL-1 or g-1).
Collapse
Affiliation(s)
- Angélica Clavijo-Romero
- Engineering Department, Universidad de la Sabana, Km 7 vía Autopista Norte, Chía 250001, Colombia
| | - Miguel Moyano-Molano
- Engineering Department, Universidad de la Sabana, Km 7 vía Autopista Norte, Chía 250001, Colombia
| | - Katherine Bauer Estrada
- Engineering Department, Universidad de la Sabana, Km 7 vía Autopista Norte, Chía 250001, Colombia
| | | | | |
Collapse
|
14
|
Zhang W, Chen Y, Wang W, Lan D, Wang Y. Soy lecithin increases the stability and lipolysis of encapsulated algal oil and probiotics complex coacervates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4164-4173. [PMID: 36585953 DOI: 10.1002/jsfa.12422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/05/2022] [Accepted: 12/31/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Co-encapsulation of probiotics and omega-3 oil using complex coacervation is an effective method for enhancing the tolerance of probiotics under adverse conditions, whereas complex coacervation of omega-3 oil was found to have low lipid digestibility. In the present study, gelatin (GE, 30 g kg-1 ) and gum arabic (GA, 30 g kg-1 ) were used to encapsulate Lactobacillus plantarum WCFS1 and algal oil by complex coacervation to produce microcapsules containing probiotics (GE-P-GA) and co-microcapsules containing probiotics and algal oil (GE-P-O-GA), and soy lecithin (SL) was added to probiotics-algal oil complex coacervates [GE-P-O(SL)-GA] to enhance its stability and lipolysis. Then, we evaluated the viability of different microencapsulated probiotics exposed to freeze-drying and long-term storage, as well as the survival rate and release performance of encapsulated probiotics and algal oil during in vitro digestion. RESULTS GE-P-O(SL)-GA had a smaller particle size (51.20 μm), as well as higher freeze-drying survival (90.06%) of probiotics and encapsulation efficiency of algal oil (75.74%). Moreover, GE-P-O(SL)-GA showed a higher algal oil release rate (79.54%), lipolysis degree (74.63%) and docosahexaenoic acid lipolysis efficiency (64.8%) in the in vitro digestion model. The viability of microencapsulated probiotics after simulated digestion and long-term storage at -18,4 and 25 °C was in the order: GE-P-O(SL)-GA > GE-P-O-GA > GE-P-GA. CONCLUSION As a result of its amphiphilic properties, SL strongly affected the physicochemical properties of probiotics and algal oil complex coacervates, resulting in higher stability and more effective lipolysis. Thus, the GE-P-O(SL)-GA can more effectively deliver probiotics and docosahexaenoic acid to the intestine, which provides a reference for the preparation of high-viability and high-lipolysis probiotics-algal oil microcapsules. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqian Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ying Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Weifei Wang
- Sericultural and Agrifood Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dongming Lan
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yonghua Wang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing, Foshan, China
| |
Collapse
|
15
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
16
|
Yang Z, Li C, Wang T, Li Z, Zou X, Huang X, Zhai X, Shi J, Shen T, Gong Y, Holmes M, Povey M. Novel gellan gum-based probiotic film with enhanced biological activity and probiotic viability: Application for fresh-cut apples and potatoes. Int J Biol Macromol 2023; 239:124128. [PMID: 36963535 DOI: 10.1016/j.ijbiomac.2023.124128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
A novel probiotic film based on gellan gum (GN), cranberry extract (CE), and Lactococcus lactis (LA) was developed in the present study. The fluorescence and SEM image results showed that GN/CE film containing LA was successfully fabricated. The incorporation of LA significantly enhanced the antibacterial activity of the film. The presence of CE strengthened the antioxidant activity and LA survivability in the film. The combination of LA (0-1.0 %) and CE (0.5-1.0 %) improved the mechanical property of the film through the formation of density structure. The best comprehensive properties were obtained with the film containing 2.0 %LA and 0.5 %CE. The GN/2.0 %LA/0.5 %CE film also showed the optimal preservation effect on fresh-cut potatoes and apples. Hence, GN/2.0 %LA/0.5 %CE probiotic film has proved to be suitable for fruit and vegetable preservation.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chuang Li
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tao Wang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
17
|
Jiang Z, Tian J, Bai X, McClements DJ, Ma C, Liu X, Liu F. Improving probiotic survival using water-in-oil-in-water (W 1/O/W 2) emulsions: Role of fish oil in inner phase and sodium alginate in outer phase. Food Chem 2023; 417:135889. [PMID: 36933430 DOI: 10.1016/j.foodchem.2023.135889] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
Aqueous probiotic suspensions were dispersed in an oil phase consisting of fish oil and medium chain triglycerides to form W1/O emulsions. These emulsions were then homogenized with an aqueous solution containing soybean protein isolate and sodium alginate to form W1/O/W2 emulsions. Fish oil was used to promote the growth of the probiotics and increase their ability to adhere to the intestinal mucosa. Sodium alginate increased the viscosity, stability, and probiotic encapsulation efficiency of the double emulsions, which was mainly attributed to its interactions with adsorbed soy proteins. The encapsulation efficiency of the probiotics in the double emulsions was relatively high (>96%). In vitro simulated digestion experiments showed that the double emulsions significantly increased the number of viable probiotics remaining after passing through the entire gastrointestinal tract. This study suggests that encapsulation of probiotics in double emulsions may increase their viability under gastrointestinal conditions, thereby enhancing their efficacy in functional foods.
Collapse
Affiliation(s)
- Zhaowei Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Junqing Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangqi Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
18
|
Dos Santos Wanderley LA, Aguiar GPS, Calisto JFF, Magro JD, Rossato G, Zotti CA, de Souza Hassemer G, Puton BMS, Cansian RL, Dallago RM, Junges A. Microencapsulation of Yarrowia lipolytica: cell viability and application in vitro ruminant diets. World J Microbiol Biotechnol 2023; 39:88. [PMID: 36740658 DOI: 10.1007/s11274-023-03534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/07/2023]
Abstract
Microencapsulation is an alternative to increase the survival capacity of microorganisms, including Yarrowia lipolytica, a widely studied yeast that produces high-value metabolites, such as lipids, aromatic compounds, biomass, lipases, and organic acids. Thus, the present study sought to investigate the effectiveness of different wall materials and the influence of the addition of salts on the microencapsulation of Y. lipolytica, evaluating yield, relationship with cell stability, ability to survive during storage, and in vitro application of ruminant diets. The spray drying process was performed via atomization, testing 11 different compositions using maltodextrin (MD), modified starch (MS) and whey protein concentrate (WPC), Y. lipolytica (Y. lipo) cells, tripolyphosphate (TPP), and sodium erythorbate (SE). The data show a reduction in the water activity value in all treatments. The highest encapsulation yield was found in treatments using MD + TPP + Y. lipo (84.0%) and WPC + TPP + Y. lipo (81.6%). Microencapsulated particles showed a survival rate ranging from 71.61 to 99.83% after 24 h. The treatments WPC + Y. lipo, WPC + SE + Y. lipo, WPC + TPP + Y. lipo, and MD + SE + Y. lipo remained stable for up to 105 days under storage conditions. The treatment WPC + SE + Y. lipo (microencapsulated yeast) was applied in the diet of ruminants due to the greater stability of cell survival. The comparison between the WPC + SE + Y. lipo treatment, wall materials, and the non-microencapsulated yeast showed that the microencapsulated yeast obtained a higher soluble fraction, degradability potential, and release of nutrients.
Collapse
Affiliation(s)
| | - Gean Pablo Silva Aguiar
- Environmental Sciences Area, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil
| | - Jean Felipe Fossá Calisto
- Environmental Sciences Area, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil
| | - Jacir Dal Magro
- Environmental Sciences Area, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil
| | - Gabriel Rossato
- Department of Animal Science, University of West Santa Catarina, Xanxerê, SC, 89820-000, Brazil
| | - Claiton André Zotti
- Department of Animal Science, University of West Santa Catarina, Xanxerê, SC, 89820-000, Brazil
| | - Guilherme de Souza Hassemer
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
| | - Bruna Maria Saorin Puton
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
| | - Rogério Luis Cansian
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
| | - Rogério Marcos Dallago
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
| | - Alexander Junges
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil.
| |
Collapse
|
19
|
Glomm WR, Molesworth PP, Yesiltas B, Jacobsen C, Johnsen H. Encapsulation of salmon oil using complex coacervation: Probing the effect of gum acacia on interfacial tension, coacervation and oxidative stability. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
20
|
Vera-Santander VE, Hernández-Figueroa RH, Jiménez-Munguía MT, Mani-López E, López-Malo A. Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review. Molecules 2023; 28:molecules28031230. [PMID: 36770898 PMCID: PMC9920731 DOI: 10.3390/molecules28031230] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Over the years, probiotics have been extensively studied within the medical, pharmaceutical, and food fields, as it has been revealed that these microorganisms can provide health benefits from their consumption. Bacterial probiotics comprise species derived from lactic acid bacteria (LAB) (genus Lactobacillus, Leuconostoc, and Streptococcus), the genus Bifidobacterium, and strains of Bacillus and Escherichia coli, among others. The consumption of probiotic products is increasing due to the current situation derived from the pandemic caused by COVID-19. Foods with bacterial probiotics and postbiotics are premised on being healthier than those not incorporated with them. This review aims to present a bibliographic compilation related to the incorporation of bacterial probiotics in food and to demonstrate through in vitro and in vivo studies or clinical trials the health benefits obtained with their metabolites and the consumption of foods with bacterial probiotics/postbiotics. The health benefits that have been reported include effects on the digestive tract, metabolism, antioxidant, anti-inflammatory, anticancer, and psychobiotic properties, among others. Therefore, developing food products with bacterial probiotics and postbiotics is a great opportunity for research in food science, medicine, and nutrition, as well as in the food industry.
Collapse
|
21
|
Kouamé KJEP, Bora AFM, Li X, Sun Y, Tian S, Hussain M, Liu L, Coulibaly I. Development and characterization of probiotic (co)encapsulates in biopolymeric matrices and evaluation of survival in a millet yogurt formulation. J Food Sci 2023; 88:9-27. [PMID: 36443949 DOI: 10.1111/1750-3841.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/28/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022]
Abstract
The formulation of probiotics-enriched products still remains a challenge for the food industry due to the loss of viability, mainly occurring upon consumption and during storage. To tackle this challenge, the current study investigated the potential of using sodium alginate and inulin (SIN) in combination with various encapsulating materials such as skim milk (SKIM), whey protein concentrate (WPC), soy protein concentrate (SPC), and flaxseed oil (FS) to increase the viability of Lactobacillus casei upon freeze-drying, under simulated gastrointestinal conditions, during 28 days of storage at 4°C, and in a formulation of millet yogurt. Microstructural properties of microcapsules and co-microcapsules by SEM, oxidative stability of flaxseed oil in co-microcapsules, and physicochemical and sensory analysis of the product were performed. The produced microcapsules (SIN-PRO-SKIM, SIN-PRO-WP, and SIN-PRO-SP) and co-microcapsules (SIN-PRO-FS-SKIM, SIN-PRO-FS-WP, and SIN-PRO-FS-SP) had a high encapsulation rate >90%. Moreover, encapsulated and co-encapsulated strains exhibited a high in vitro viability accounting for 9.24 log10 CFU/g (SIN-PRO-SKIM), 8.96 log10 CFU/g (SIN-PRO-WP), and 8.74 log10 CFU/g (SIN-PRO-SP) for encapsulated and 10.08 log10 CFU/g (SIN-PRO-FS-SKIM), 10.03 log10 CFU/g (SIN-PRO-FS-WP), and 10.14 log10 CFU/g (SIN-PRO-FS-SP) for co-encapsulated. Moreover, encapsulated and co-encapsulated cells showed higher survival upon storage than free cells. Also, the SEM analysis showed spherical particles of 77.92-230.13 µm in size. The physicochemical and sensory analysis revealed an interesting nutritional content in the millet yogurt. The results indicate that the SIN matrix has significant promise as probiotic encapsulating material as it may provide efficient cell protection while also providing considerable physicochemical and nutritional benefits in functional foods.
Collapse
Affiliation(s)
- Kouadio Jean Eric-Parfait Kouamé
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Awa Fanny Massounga Bora
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaodong Li
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yue Sun
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Songfan Tian
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Muhammad Hussain
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lu Liu
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ibourahema Coulibaly
- Department of Biochemistry-Microbiology, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| |
Collapse
|
22
|
Yuan C, Hu R, He L, Hu J, Liu H. Extraction and prebiotic potential of β-glucan from highland barley and its application in probiotic microcapsules. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Tirta GD, Martin L, Bani MD, Kho K, Pramanda IT, Pui LP, How YH, Lim CSY, Devanthi PVP. Spray Drying Encapsulation of Pediococcus acidilactici at Different Inlet Air Temperatures and Wall Material Ratios. Foods 2022; 12:165. [PMID: 36613381 PMCID: PMC9818494 DOI: 10.3390/foods12010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Pediococcus acidilactici has gained research and commercial interest due to its outstanding probiotic properties, yet its survival during storage and consumption requires improvement. This study aims to enhance P. acidilactici survival using spray drying encapsulation. Different inlet air temperatures (120 °C, 150 °C, and 170 °C) and whey protein isolate (WPI):gum arabic (GA) ratios (1:1, 3:1, 1:3) were tested. Cell viability was significantly (p < 0.05) affected by the inlet temperature but not the WPI:GA ratio. Increasing the inlet temperature to 170 °C significantly decreased P. acidilactici viability by 1.36 log cycles, from 8.61 log CFU/g to 7.25 log CFU/g. The inlet temperature of 150 °C resulted in a powder yield (63.12%) higher than at 120 °C (58.97%), as well as significantly (p < 0.05) lower moisture content (5.71%) and water activity (aw 0.21). Viable cell counts in all encapsulated P. acidilactici were maintained at 5.24−6.75 log CFU/g after gastrointestinal tract (GIT) simulation, with WPI:GA of 3:1 and inlet temperature 150 °C having the smallest log reduction (0.3 log cycles). All samples containing different WPI:GA ratios maintained sufficient viability (>7 log CFU/g) during the first three weeks of storage at 25 °C. These results could provide insights for further developing P. acidilactici as commercial probiotic products.
Collapse
Affiliation(s)
- Gabriella Devina Tirta
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Leon Martin
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Mario Donald Bani
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Katherine Kho
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Ihsan Tria Pramanda
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Liew Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yu Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia
| | - Putu Virgina Partha Devanthi
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| |
Collapse
|
24
|
Rodrigues JB, Prata AS, Bollini HMA. Encapsulation of chia (
Salvia hispanica
) oil on an industrial scale to protect the omega‐3 against ultra‐high‐temperature (
UHT
) damage and lipid oxidation. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juliana Burger Rodrigues
- Department of Food and Nutrition School of Food Engineering (FEA), University of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Ana Silvia Prata
- Department of Food Engineering School of Food Engineering (FEA), University of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Helena Maria André Bollini
- Department of Food and Nutrition School of Food Engineering (FEA), University of Campinas (UNICAMP) Campinas São Paulo Brazil
| |
Collapse
|
25
|
Sharifi E, Yazdani Z, Najafi M, Hosseini‐khah Z, Jafarpour A, Rafiei A. The combined effect of fish oil containing Omega-3 fatty acids and Lactobacillus plantarum on colorectal cancer. Food Sci Nutr 2022; 10:4411-4418. [PMID: 36514755 PMCID: PMC9731559 DOI: 10.1002/fsn3.3037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies. Recent attempts have indicated the role of diet in the etiology of CRC. Natural dietary compounds such as probiotics and Omega-3 fatty acids that act synergistically can be beneficial in finding a tremendous solution against CRC. To date, the combined effect of fish oil containing Omega-3 fatty acids (Omega-3) and Lactobacillus plantarum (L. plantarum) on CRC has been left behind. We here evaluated the effects of co-encapsulation of Omega-3 and probiotic bacteria on CRC cell lines compared to normal cells. Omega-3 and L. plantarum bacteria were co-encapsulated in three ways, including gelatin-gum Arabic, gelatin-chitosan, and chitosan-gum Arabic complex coacervate microcapsules. After treatment of cells (Normal [L929] and colorectal [C26]) by L. plantarum, Omega-3, and microcapsules, viability and growth capacity of cell lines were measured using the MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay. Isolated total RNA was used to evaluate the expression profile of BCL2-associated X protein (BAX), B-cell lymphoma 2 (BCL-2), and Caspase-3 (CASP3) genes by real-time polymerase chain reaction (PCR). Statistical analysis was performed with SPSS 25 software. A value of p < .05 was considered statistically significant. The results indicated a significant reduction in cell viability of C26 in a concentration-dependent manner in the treated cells with all treatments, except gelatin-gum Arabic microcapsules. The messenger RNA (mRNA) expression level of the BAX and CASP3 genes in C26 cells being treated with all treatments significantly increased than in untreated cells, and the expression level of the anti-apoptotic factor of the BCL-2 gene decreased in C26 cells simultaneously (p < .05). Although, the combined effect of Omega-3 and L. plantarum and microcapsulated treatments had no more effect on viability and apoptosis gene expression of cancer cells compared to Omega-3 or L. plantarum. In conclusion, combination therapy with fish oil containing Omega-3 and L. plantarum does not improve the anticancer effect of each alone.
Collapse
Affiliation(s)
- Elahe Sharifi
- Department of Fisheries, Faculty of Marine SciencesChabahar Maritime UniversityChabaharIran
| | - Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of MedicineMazandaran University of Medical SciencesSariIran
- Student Research CommitteeMazandaran University of Medical SciencesSariIran
| | - Mojtaba Najafi
- Genetics and Animal Breeding DepartmentGorgan University of Agricultural Sciences and Natural ResourcesGolestanIran
| | | | - Ali Jafarpour
- Department of Fisheries, Faculty of Animal Science and FisheriesSari Agricultural Sciences and Natural Resources UniversitySariIran
- Food R&D teamUPSIDE FOODS IncBerkeleyUSA
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of MedicineMazandaran University of Medical SciencesSariIran
| |
Collapse
|
26
|
Zavaleta EB, Coavichi LL, Rodríguez LV, Andrade EF, García HS, Rascón Díaz M. Co-microencapsulation of Lactobacillus rhamnosus and krill oil by spray-drying. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Abdel-Razek AG, Hassanein MM, Ozçelik B, Baranenko DA, El-Messery TM. Omega fatty acid-balanced oil formula and enhancing its oxidative stability by encapsulation with whey protein concentrate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Al-Moghazy M, El-Sayed HS, Abo-Elwafa GA. Co-encapsulation of probiotic bacteria, fish oil and pomegranate peel extract for enhanced white soft cheese. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Zhang W, Li Y, Zhang L, Zhang Q, Liu H. Preparation of meal replacement powder based on bacterial cellulose/konjac glucomannan and its influence on sugar metabolism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Spray drying co-encapsulation of lactic acid bacteria and lipids: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Nami Y, Kiani A, Elieh‐Ali‐Komi D, Jafari M, Haghshenas B. Impacts of alginate–basil seed mucilage–prebiotic microencapsulation on the survival rate of the potential probiotic
Leuconostoc mesenteroides
ABRIINW
.
N18
in yogurt. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology Branch for Northwest and West Region Agricultural Biotechnology Research Institute of Iran Agricultural Research, Education and Extension Organization (AREEO) Tabriz Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC) Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Daniel Elieh‐Ali‐Komi
- Regenerative Medicine Research Center (RMRC) Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mahdieh Jafari
- Department of Animal, Marine and Aquatic Biology and Biotechnology Faculty of Life Sciences and Biotechnology Shahid Beheshti University, Evin Tehran Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC) Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
32
|
Luo S, Chen J, Zeng Y, Dai J, Li S, Yan J, Liu Y. Effect of water-in-oil-in-water (W/O/W) double emulsions to encapsulate nisin on the quality and storage stability of fresh noodles. Food Chem X 2022; 15:100378. [PMID: 36211791 PMCID: PMC9532707 DOI: 10.1016/j.fochx.2022.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Ultrasonic and microwave treatment improved the extraction rate of rock bean protein. Rock bean protein has a high content of 7S and 11S globulin components. The prepared W/O/W microcapsules can keep the noodles fresh.
Rock-bean protein (RP) was extracted from wild rock beans by ultrasonic treatment and microwave extraction. The RP has a high content of 7S and 11S globulin components and good heat stability. Subsequently, water-oil-water double emulsions were prepared using a water core containing nisin, momordica charantia extract (MCE), and Lactobacillus plantarum as functional additives, corn oil as the intermediate wall, and RP/gum arabic (GA) as the outer wall material. For a ratio of corn oil to water of 5:1, the maximum encapsulation efficiency was 28.22%, and RP/GA had good dispersion characteristics, where the smallest average particle size was achieved for a 1:1 ratio. Finally, the microcapsules were used to study the effect of its addition to noodles. The addition of 2 wt% of the microcapsules to low-gluten flour resulted in a dough with suitable rheology, and can extend the shelf life of the fresh noodles prepared using this dough.
Collapse
|
33
|
Xie S, Qu P, Luo S, Wang C. Potential uses of milk proteins as encapsulation walls for bioactive compounds: A review. J Dairy Sci 2022; 105:7959-7971. [PMID: 36028346 DOI: 10.3168/jds.2021-21127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/11/2022] [Indexed: 11/19/2022]
Abstract
Milk proteins have received much awareness due to their bioactivity. However, their encapsulation functions have not attracted enough attention. Milk proteins as encapsulation walls can increase the bioavailability of bioactive compounds. As the benefits of bioactive compounds are critically determined by bioavailability, the effect of interactions between milk proteins and active substances is a critical topic. In the present review, we summarize the effects of milk proteins as encapsulation walls on the bioavailability of active substances with a special focus. The methods and mechanisms of interactions between milk proteins and active substances are also discussed. The evidence collected in the present review suggests that when active substances are encapsulated by milk proteins, the bioavailability of active substances can be significantly affected. This review also provides valuable guidelines for the use of milk protein-based microcarriers.
Collapse
Affiliation(s)
- Siyu Xie
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110
| | - Peng Qu
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110
| | - Shubo Luo
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110
| | - Caiyun Wang
- Inner Mongolia YiLi Industrial Group Co. Ltd., Hohhot, China 010110; Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China 010110.
| |
Collapse
|
34
|
Encapsulated-based films for bioactive compounds and their application in the food industry: A roadmap for food-derived functional and healthy ingredients. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Nami Y, Kahieshesfandiari M, Lornezhad G, Kiani A, Elieh-Ali-Komi D, Jafari M, Jaymand M, Haghshenas B. Administration of microencapsulated Enterococcus faecium ABRIINW.N7 with fructo-oligosaccharides and fenugreek on the mortality of tilapia challenged with Streptococcus agalactiae. Front Vet Sci 2022; 9:938380. [PMID: 35978708 PMCID: PMC9376237 DOI: 10.3389/fvets.2022.938380] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
We investigated the probiotic potential of a microencapsulated Enterococcus faecium ABRIINW.N7 for control of Streptococcus agalactiae infection in hybrid (Oreochromis niloticus × Oreochromis mossambicus) red tilapia. A two-phase experiment approach was completed in which E. faecium bacteria were propagated, from which a culture was isolated, identified using molecular techniques, and microencapsulated to produce a stable commercial fructooligosaccharide (FOS) and fenugreek (Fk) product of optimal concentration. The FOS and Fk products were assessed in a 90-days in vivo challenge study, in which red hybrid tilapia were allocated to one of five treatments: (1) No Streptococcus agalactiae (Sa) challenge (CON); (2) Sa challenge only (CON+); (3) Sa challenge in a free cell (Free Cell); (4) Sa challenge with 0.8% (w/v) Alginate; (5) Microencapsulated FOS and Fk. In vitro results showed high encapsulation efficiency (≥98.6 ± 0.7%) and acceptable viability of probiotic bacteria within the simulated fish digestive system and high stability of viable cells in all gel formulations (34 < SR% <63). In vivo challenges demonstrated that the FOS and Fk products could be used to control S. agalactiae infection in tilapia fish and represented a novel investigation using microencapsulation E. faecium as a probiotic diet for tilapia fish to control S. agalactiae infection and to lower fish mortality. It is recommended that local herbal gums such as 0.2% Persian gum and 0.4% Fk in combination with 0.8% alginate (Formulation 7) can be used as a suitable scaffold and an ideal matrix for the encapsulation of probiotics. These herbal gums as prebiotics are capable of promoting the growth of probiotic cells in the food environment and digestive tract.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Mahdi Kahieshesfandiari
- Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia, Selangor, Malaysia
| | - Gilda Lornezhad
- Department of Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Daniel Elieh-Ali-Komi
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdieh Jafari
- Department of Animal, Marine and Aquatic Biology and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
36
|
Rakotonirina A, Galperine T, Allémann E. Fecal microbiota transplantation: a review on current formulations in Clostridioides difficile infection and future outlooks. Expert Opin Biol Ther 2022; 22:929-944. [PMID: 35763604 DOI: 10.1080/14712598.2022.2095901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The role of the gut microbiota in health and the pathogenesis of several diseases has been highlighted in recent years. Even though the precise mechanisms involving the microbiome in these ailments are still unclear, microbiota-modulating therapies have been developed. Fecal microbiota transplantation (FMT) has shown significant results against Clostridioides difficile infection (CDI), and its potential has been investigated for other diseases. Unfortunately, the technical aspects of the treatment make it difficult to implement. Pharmaceutical technology approaches to encapsulate microorganisms could play an important role in providing this treatment and render the treatment modalities easier to handle. AREAS COVERED After an overview of CDI, this narrative review aims to discuss the current formulations for FMT and specifically addresses the technical aspects of the treatment. This review also distinguishes itself by focusing on the hurdles and emphasizing the possible improvements using pharmaceutical technologies. EXPERT OPINION FMT is an efficient treatment for recurrent CDI. However, its standardization is overlooked. The approach of industrial and hospital preparations of FMT are different, but both show promise in their respective methodologies. Novel FMT formulations could enable further research on dysbiotic diseases in the future.
Collapse
Affiliation(s)
- Adèle Rakotonirina
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Tatiana Galperine
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland.,French Group of Faecal Microbiota Transplantation
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
37
|
Advances in extrusion-dripping encapsulation of probiotics and omega-3 rich oils. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Silva MP, Martelli-Tosi M, Massarioli AP, Melo PS, Alencar SM, Favaro-Trindade CS. Co-encapsulation of guaraná extracts and probiotics increases probiotic survivability and simultaneously delivers bioactive compounds in simulated gastrointestinal fluids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Application of Spray Dried Encapsulated Probiotics in Functional Food Formulations. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Jiang Z, Li M, McClements DJ, Liu X, Liu F. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Rezvankhah A, Emam‐Djomeh Z, Safari M, Salami M, Askari G. Investigating the effects of maltodextrin, gum arabic, and whey protein concentrate on the microencapsulation efficiency and oxidation stability of hemp seed oil. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Amir Rezvankhah
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
| | - Zahra Emam‐Djomeh
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
- Center of Excellence in Biothermodynamics University of Tehran Tehran Iran
| | - Mohammad Safari
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
| | - Maryam Salami
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
| | - Gholamreza Askari
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
| |
Collapse
|
42
|
Zhang W, Ren X, Zhang L, Chen J. Preparation and Performance of Thickened Liquids for Patients with Konjac Glucomannan-Mediated Dysphagia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072194. [PMID: 35408593 PMCID: PMC9000327 DOI: 10.3390/molecules27072194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022]
Abstract
The present study sought to characterize the rheological and thickening properties of Konjac glucomannan (KGM) and prepare thickening components for special medical purposes using KGM and maltodextrin as the primary raw materials and guar gum (GG), xanthan gum (XG), locust bean gum (LBG), and carrageenan (KC) as the supplemented materials. The formulation and preparation processes were optimized through single factor experiments taking sensory evaluation as an indicator. The results confirm that KGM had excellent thickening performance, reaching about 90 times its own mass. The optimal formulation process of the thickening components based on KGM was as follows: the mass concentration of the compound thickener (KGM/GG/XG/LBG/KC = 13:2:2:2:1) was 5.0–7.0 mg/mL; the maltodextrin concentration was 10.0 mg/mL; the brewing temperature of the thickening component was 60 °C with no restriction on consumption time. The rheology test results revealed that the thickening components had shear thinning characteristics, which could provide three different thickening effects of nectar-thick level (350 mPa·s), honey-thick level (1250 mPa·s), and pudding-thick level (1810 mPa·s) suitable for people with different degrees of chewing disorders. Overall, this study provides a theoretical basis and technical reference for KGM as a dietary nutrition support for patients with dysphagia.
Collapse
Affiliation(s)
- Wen Zhang
- Correspondence: ; Tel.: +86-029-86168583
| | | | | | | |
Collapse
|
43
|
Bi H, Xu Y, Fan F, Sun X. Effect of drying methods on
Lactobacillus Rhamnosus
GG microcapsules prepared using the complex coacervation method. J Food Sci 2022; 87:1282-1291. [DOI: 10.1111/1750-3841.16061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Huimin Bi
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, and College of Life Sciences Southwest Forestry University Kunming P. R. China
| | - Yuqiao Xu
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, and College of Life Sciences Southwest Forestry University Kunming P. R. China
| | - Fangyu Fan
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, and College of Life Sciences Southwest Forestry University Kunming P. R. China
| | - Xue Sun
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, and College of Life Sciences Southwest Forestry University Kunming P. R. China
| |
Collapse
|
44
|
Tchuenbou-Magaia FL, Tolve R, Anyadike U, Giarola M, Favati F. Co-encapsulation of vitamin D and rutin in chitosan-zein microparticles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [PMCID: PMC8853056 DOI: 10.1007/s11694-022-01340-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractThere is a growing interest in co-encapsulating multiple species to harness potential synergy between them, enhance their stability and efficacy in various products. The aim of this work was to co-encapsulate vitamin D3 and rutin inside chitosan-zein microparticles using a simple and easily scalable process for food fortification. This was achieved via anti-solvent precipitation coupled with spray-drying. Free-flowing powders of spherical microparticles with wrinkled surface and particle size < 10 μm were obtained. The encapsulation efficiency was 75% for vitamin D3 and 44% for rutin and this could be attributed to their different molecular size and affinity to the aqueous phase. The physicochemical properties were characterized by X-Ray powder diffraction and Fourier transform infrared spectroscopy. The two crystalline bioactive compounds were present in the microparticles in amorphous form, which would allow for better bioavailability when compared to non-encapsulated crystalline solid. Therefore, the obtained microparticles would be suitable for use as food ingredient for vitamin D3 fortification, with the co-encapsulated rutin acting as stability and activity enhancer.
Collapse
|
45
|
Microencapsulation and controlled release of α-tocopherol by complex coacervation between pea protein and tragacanth gum: A comparative study with arabic and tara gums. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
CAMPOS-ESPINOZA F, CASTAÑO-AGUDELO J, RODRIGUEZ-LLAMAZARES S. Polysaccharides systems for probiotic bacteria microencapsulation: mini review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.95121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Wang Y, Ye A, Hou Y, Jin Y, Xu X, Han J, Liu W. Microcapsule delivery systems of functional ingredients in infant formulae: Research progress, technology, and feasible application of liposomes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Sodium Caseinate and Acetylated Mung Bean Starch for the Encapsulation of Lutein: Enhanced Solubility and Stability of Lutein. Foods 2021; 11:foods11010065. [PMID: 35010190 PMCID: PMC8750002 DOI: 10.3390/foods11010065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 01/22/2023] Open
Abstract
Lutein is a kind of vital carotenoid with high safety and significant advantages in biological functions. However, poor water solubility and stability of lutein have limited its application. This study selected different weight ratios of sodium caseinate to acetylated mung bean starch (10:0, 9:1, 7:3, 5:5, 3:7, 1:9, and 0:10) to prepare lutein emulsions, and the microcapsules were produced by spray drying technology. The microstructure, physicochemical properties, and storage stability of microcapsules were investigated. The results show that the emulsion systems were typical non-Newtonian fluids. Lutein microcapsules were light yellow fine powder with smooth and relatively complete particle surface. The increase of sodium caseinate content led to the enhanced emulsion effect of the emulsion and the yield and solubility of microcapsules increased, and wettability and the average particle size became smaller. The encapsulation efficiency of lutein microcapsules ranged from 69.72% to 89.44%. The thermal characteristics analysis showed that the endothermic transition of lutein microcapsules occurred at about 125 °C. The microcapsules with sodium caseinate as single wall material had the worst stability. Thus, it provides a reference for expanding the application of lutein in food, biological, pharmaceutical, and other industries and improving the stability and water dispersion of other lipid-soluble active ingredients.
Collapse
|
50
|
Physicochemical and Functional Characterization of Newly Designed Biopolymeric-Based Encapsulates with Probiotic Culture and Charantin. Foods 2021; 10:foods10112677. [PMID: 34828958 PMCID: PMC8620448 DOI: 10.3390/foods10112677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/02/2023] Open
Abstract
The identification of novel sources of synbiotic agents with desirable functionality is an emerging concept. In the present study, novel encapsulates containing probiotic L. acidophilus LA-05® (LA) and Charantin (CT) were produced by freeze-drying technique using pure Whey Protein Isolate (WPI), pure Maltodextrin (MD), and their combination (WPI + MD) in 1:1 core ratio, respectively. The obtained microparticles, namely WPI + LA + CT, MD + LA + CT, and WPI + MD + LA + CT were tested for their physicochemical properties. Among all formulations, combined carriers (WPI + MD) exhibited the highest encapsulation yields for LA (98%) and CT (75%). Microparticles showed a mean d (4, 3) ranging from 50.393 ± 1.26 to 68.412 ± 3.22 μm. The Scanning Electron Microscopy revealed uniformly amorphous and glass-like structures, with a noticeably reduced porosity when materials were combined. In addition, Fourier Transform Infrared spectroscopy highlighted the formation of strong hydrogen bonds supporting the interactions between the carrier materials (WPI and MD) and CT. In addition, the thermal stability of the combined WPI + MD was superior to that of pure WPI and pure MD, as depicted by the Thermogravimetric and Differential Scanning Calorimetry analysis. More interestingly, co-encapsulation with CT enhanced LA viability (8.91 ± 0.3 log CFU/g) and Cells Surface Hydrophobicity (82%) in vitro, in a prebiotic-like manner. Correspondingly, CT content was heightened when co-encapsulated with LA. Besides, WPI + MD + LA + CT microparticles exhibited higher antioxidant activity (79%), α-amylase inhibitory activity (83%), and lipase inhibitory activity (68%) than single carrier ones. Furthermore, LA viable count (7.95 ± 0.1 log CFU/g) and CT content (78%) were the highest in the blended carrier materials after 30 days of storage at 4 °C. Synbiotic microparticle WPI + MD + LA + CT represents an effective and promising approach for the co-delivery of probiotic culture and bioactive compounds in the digestive tract, with enhanced functionality and storage properties.
Collapse
|