1
|
Abass S, Parveen R, Irfan M, Malik Z, Husain SA, Ahmad S. Mechanism of antibacterial phytoconstituents: an updated review. Arch Microbiol 2024; 206:325. [PMID: 38913205 DOI: 10.1007/s00203-024-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- Sageer Abass
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rabea Parveen
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Irfan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zoya Malik
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Sosa-Fajardo A, Díaz-Muñoz C, Van der Veken D, Pradal I, Verce M, Weckx S, Leroy F. Genomic exploration of the fermented meat isolate Staphylococcus shinii IMDO-S216 with a focus on competitiveness-enhancing secondary metabolites. BMC Genomics 2024; 25:575. [PMID: 38849728 PMCID: PMC11161930 DOI: 10.1186/s12864-024-10490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Staphylococcus shinii appears as an umbrella species encompassing several strains of Staphylococcus pseudoxylosus and Staphylococcus xylosus. Given its phylogenetic closeness to S. xylosus, S. shinii can be found in similar ecological niches, including the microbiota of fermented meats where the species may contribute to colour and flavour development. In addition to these conventional functionalities, a biopreservation potential based on the production of antagonistic compounds may be available. Such potential, however, remains largely unexplored in contrast to the large body of research that is available on the biopreservative properties of lactic acid bacteria. The present study outlines the exploration of the genetic basis of competitiveness and antimicrobial activity of a fermented meat isolate, S. shinii IMDO-S216. To this end, its genome was sequenced, de novo assembled, and annotated. RESULTS The genome contained a single circular chromosome and eight plasmid replicons. Focus of the genomic exploration was on secondary metabolite biosynthetic gene clusters coding for ribosomally synthesized and posttranslationally modified peptides. One complete cluster was coding for a bacteriocin, namely lactococcin 972; the genes coding for the pre-bacteriocin, the ATP-binding cassette transporter, and the immunity protein were also identified. Five other complete clusters were identified, possibly functioning as competitiveness factors. These clusters were found to be involved in various responses such as membrane fluidity, iron intake from the medium, a quorum sensing system, and decreased sensitivity to antimicrobial peptides and competing microorganisms. The presence of these clusters was equally studied among a selection of multiple Staphylococcus species to assess their prevalence in closely-related organisms. CONCLUSIONS Such factors possibly translate in an improved adaptation and competitiveness of S. shinii IMDO-S216 which are, in turn, likely to improve its fitness in a fermented meat matrix.
Collapse
Affiliation(s)
- Ana Sosa-Fajardo
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
3
|
Kumaran D, Ramirez-Arcos S. Sebum Components Dampen the Efficacy of Skin Disinfectants against Cutibacterium acnes Biofilms. Microorganisms 2024; 12:271. [PMID: 38399675 PMCID: PMC10891977 DOI: 10.3390/microorganisms12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
At Canadian Blood Services, despite the use of 2% chlorhexidine and 70% isopropyl alcohol (standard disinfectant, SD) prior to venipuncture, Cutibacterium acnes evades eradication and is a major contaminant of platelet concentrates (PCs). Since C. acnes forms bacterial aggregates known as biofilms in the sebaceous niches of the skin, this study aimed to assess whether sebum-like components impact disinfectant efficacy against C. acnes leading to its dominance as a PC contaminant. C. acnes mono-species and dual-species biofilms (C. acness and a transfusion-relevant Staphylococcus aureus isolate) were formed in the presence and absence of sebum-like components and exposed to SD, a hypochlorous acid-based disinfectant (Clinisept+, CP), or a combination of both disinfectants to assess disinfectant efficacy. Our data indicate that sebum-like components significantly reduce the disinfectant efficacy of all disinfectant strategies tested against C. acnes in both biofilm models. Furthermore, though none of the disinfectants led to bacterial eradication, the susceptibility of C. acnes to disinfectants was heightened in an isolate-dependent manner when grown in the presence of S. aureus. The reduction of skin disinfection efficacy in the presence of sebum may contribute to the overrepresentation of C. acnes as a PC contaminant and highlights the need for improved disinfection strategies.
Collapse
Affiliation(s)
- Dilini Kumaran
- Innovation & Portfolio Management, Canadian Blood Services, Ottawa, ON K1G 4J5, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sandra Ramirez-Arcos
- Innovation & Portfolio Management, Canadian Blood Services, Ottawa, ON K1G 4J5, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Salem SS, Elsayed HE, Shabana S, Khazaal MT, Moharram FA. Phytochemical profile and antimicrobial activity of essential oils from two Syzygium species against selected oral pathogens. BMC Complement Med Ther 2023; 23:448. [PMID: 38087292 PMCID: PMC10714517 DOI: 10.1186/s12906-023-04277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The genus Syzygium (Myrtaceae) comprises several essential oil-rich species that are utilized traditionally for treating tooth infections and toothache. The current study aimed to extract essential oils (EOs) from the leaves of Syzygium samarangense and Syzygium malaccense cultivated in Egypt for the first time and screen their antimicrobial potential against oral-related pathogens. METHODS The intended EOs were extracted using hydrodistillation (HD) by boiling fresh leaves with distilled water; supercritical fluid (SF) by extracting the dried leaves using supercritical CO2 at 40 °C and 150 bar; and the headspace (HS) in which the fresh leaves were heated in a glass vial and the vaporized aroma were analyzed. The volatile constituents were analyzed using GC/MS and identified by comparing the experimental Kovats' retention indices with the literature. The antimicrobial activity was assessed against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Candida albicans using agar diffusion, microwell dilution, and biofilm formation assays. Statistical significance (p < 0.05) was determined by applying one-way ANOVA and Duncan's post hoc test. RESULTS The yield of the extracted EOs differs between the applied methods, and the SF approach harvested the maximum (0.52-0.46%). The GC-MS analysis of SF EOs revealed a discrepancy between the two species. Since S. malaccense showed an abundance of hydrocarbons represented mainly by squalene (60.60%), S. samarangense was deemed to have oxygenated sesquiterpenes exemplified in globulol (52.09%). On the other side, the HD and HS EOs were sequentially comparable, while differed in the percentage of their majors. γ-terpinene (33.06%) pioneered the HS-derived aroma of S. malaccense, while S. samarangense was abundant with α-pinene (30.18%). Concurrently, the HD EOs of S. malaccense and S. samarangense were commonly denoted by caryophyllene oxide (8.19%-18.48%), p-cymene (16.02%- 19.50%), and γ-terpinene (12.20%-17.84). Ultimately, both species EOs exhibited broad-spectrum antimicrobial potential, although the HD EO was more potent than the SF EO. The HD EOs of both species potently inhibited the growth of E. coli (MIC 3.75 µL/mL) and suppressed C. albicans biofilm formation by 83.43 and 87.27%, respectively. The SF-EOs efficiently suppressed the biofilm formation of Gram-positive bacteria by 76.45%-82.95%. CONCLUSION EOs extracted from both species by different methods possessed a unique blend of volatile components with broad-spectrum antimicrobial activity. They were promoted as bioactive hits for controlling oral infections, however further investigations concerning their safety in clinical settings are needed.
Collapse
Affiliation(s)
- Sahar S Salem
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th October, Giza, Egypt
| | - Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ein Helwan, Cairo, 11795, Egypt.
| | - Samah Shabana
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th October, Giza, Egypt
| | - Mohamed T Khazaal
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ein Helwan, Cairo, 11795, Egypt
| |
Collapse
|
5
|
Ray S, Jin JO, Choi I, Kim M. Cell-Free Supernatant of Bacillus thuringiensis Displays Anti-Biofilm Activity Against Staphylococcus aureus. Appl Biochem Biotechnol 2023; 195:5379-5393. [PMID: 35593953 DOI: 10.1007/s12010-022-03971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
Staphylococcus aureus is an important bacterial pathogen responsible for biofilm formation in medical devices. Due to the increasing antibiotic resistance of S. aureus, it is necessary to search for new anti-biofilm agents. In this study, the cell-free supernatant of Bacillus thuringiensis inhibited biofilm formation up to 93% and dispersed biofilms up to 83% without affecting the growth of S. aureus. The ethyl acetate extract of B. thuringiensis cell-free supernatant exhibited a dose-dependent anti-biofilm activity against S. aureus with the biofilm inhibition concentration ranging from 8 to 64 µg/mL. Scanning electron microscopy revealed that the cell-free supernatant extract of B. thuringiensis resulted in a significant reduction in S. aureus biofilms. The ethyl acetate extract of cell-free supernatant of B. thuringiensis was found to contain various compounds with structural similarity to known anti-biofilm compounds. In particular, squalene, cinnamic acid derivatives, and eicosapentaene seem to act synergistically against S. aureus biofilms. Hence, B. thuringiensis cell-free supernatant proved to be effective against S. aureus biofilms. The results clearly show the potential of natural molecules produced by B. thuringiensis as alternative therapies with anti-biofilm activity instead of bactericidal properties.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jun-O Jin
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Inho Choi
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
6
|
Ali MK, Liu X, Li J, Zhu X, Sen B, Wang G. Alpha-Tocopherol Significantly Improved Squalene Production Yield of Aurantiochytrium sp. TWZ-97 through Lowering ROS levels and Up-Regulating Key Genes of Central Carbon Metabolism Pathways. Antioxidants (Basel) 2023; 12:antiox12051034. [PMID: 37237900 DOI: 10.3390/antiox12051034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Media supplementation has proven to be an effective technique for improving byproduct yield during microbial fermentation. This study explored the impact of different concentrations of bioactive compounds, namely alpha-tocopherol, mannitol, melatonin, sesamol, ascorbic acid, and biotin, on the Aurantiochytrium sp. TWZ-97 culture. Our investigation revealed that alpha-tocopherol was the most effective compound in reducing the reactive oxygen species (ROS) burden, both directly and indirectly. Adding 0.7 g/L of alpha-tocopherol led to an 18% improvement in biomass, from 6.29 g/L to 7.42 g/L. Moreover, the squalene concentration increased from 129.8 mg/L to 240.2 mg/L, indicating an 85% improvement, while the squalene yield increased by 63.2%, from 19.82 mg/g to 32.4 mg/g. Additionally, our comparative transcriptomics analysis suggested that several genes involved in glycolysis, pentose phosphate pathway, TCA cycle, and MVA pathway were overexpressed following alpha-tocopherol supplementation. The alpha-tocopherol supplementation also lowered ROS levels by binding directly to ROS generated in the fermentation medium and indirectly by stimulating genes that encode antioxidative enzymes, thereby decreasing the ROS burden. Our findings suggest that alpha-tocopherol supplementation can be an effective method for improving squalene production in Aurantiochytrium sp. TWZ-97 culture.
Collapse
Affiliation(s)
- Memon Kashif Ali
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiuping Liu
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqian Li
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xingyu Zhu
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Qingdao Institute for Ocean Technology of Tianjin University Co., Ltd., Qingdao 266237, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Recent advances in the microbial production of squalene. World J Microbiol Biotechnol 2022; 38:91. [PMID: 35426523 PMCID: PMC9010451 DOI: 10.1007/s11274-022-03273-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 11/06/2022]
Abstract
Squalene is a triterpene hydrocarbon, a biochemical precursor for all steroids in plants and animals. It is a principal component of human surface lipids, in particular of sebum. Squalene has several applications in the food, pharmaceutical, and medical sectors. It is essentially used as a dietary supplement, vaccine adjuvant, moisturizer, cardio-protective agent, anti-tumor agent and natural antioxidant. With the increased demand for squalene along with regulations on shark-derived squalene, there is a need to find alternatives for squalene production which are low-cost as well as sustainable. Microbial platforms are being considered as a potential option to meet such challenges. Considerable progress has been made using both wild-type and engineered microbial strains for improved productivity and yields of squalene. Native strains for squalene production are usually limited by low growth rates and lesser titers. Metabolic engineering, which is a rational strain engineering tool, has enabled the development of microbial strains such as Saccharomyces cerevisiae and Yarrowia lipolytica, to overproduce the squalene in high titers. This review focuses on key strain engineering strategies involving both in-silico and in-vitro techniques. Emphasis is made on gene manipulations for improved precursor pool, enzyme modifications, cofactor regeneration, up-regulation of limiting reactions, and downregulation of competing reactions during squalene production. Process strategies and challenges related to both upstream and downstream during mass cultivation are detailed.
Collapse
|
8
|
cDNA cloning, prokaryotic expression, and functional analysis of squalene synthase (SQS) in Camellia vietnamensis Huang. Protein Expr Purif 2022; 194:106078. [DOI: 10.1016/j.pep.2022.106078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023]
|
9
|
Sheng YY, Xiang J, Wang KR, Li ZY, Li K, Lu JL, Ye JH, Liang YR, Zheng XQ. Extraction of Squalene From Tea Leaves (Camellia sinensis) and Its Variations With Leaf Maturity and Tea Cultivar. Front Nutr 2022; 9:755514. [PMID: 35223940 PMCID: PMC8866563 DOI: 10.3389/fnut.2022.755514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Squalene is a precursor of steroids with diverse bioactivities. Tea was previously found to contain squalene, but its variation between tea cultivars remains unknown. In this study, tea leaf squalene sample preparation was optimized and the squalene variation among 30 tea cultivars was investigated. It shows that squalene in the unsaponified tea leaf extracts was well separated on gas chromatography profile. Saponification led to a partial loss of squalene in tea leaf extract and so it is not an essential step for preparing squalene samples from tea leaves. The tea leaf squalene content increased with the maturity of tea leaf and the old leaves grown in the previous year had the highest level of squalene among the tested samples. The squalene levels in the old leaves of the 30 tested cultivars differentiated greatly, ranging from 0.289 to 3.682 mg/g, in which cultivar “Pingyun” had the highest level of squalene. The old tea leaves and pruned littering, which are not used in tea production, are an alternative source for natural squalene extraction.
Collapse
Affiliation(s)
- Yue Yue Sheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jing Xiang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Kai Rong Wang
- Forest Technology Extension Center, Ningbo Agricultural and Rural Affairs Bureau, Ningbo, China
| | - Ze Yu Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Kai Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China
- *Correspondence: Yue Rong Liang
| | - Xin Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
- Xin Qiang Zheng
| |
Collapse
|
10
|
Liu X, Xu Z, Chang X, Fang JKH, Song J, He J, Tai Z, Zhu Q, Hu M. Enhanced immunity and hemocytes proliferation by three immunostimulants in tri-spine horseshoe crab Tachypleus tridentatus. FISH & SHELLFISH IMMUNOLOGY 2021; 115:112-123. [PMID: 34098068 DOI: 10.1016/j.fsi.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/26/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Tachypleus amebocyte lysate (TAL) is crucial in medical testing, but its industry in China has been restricted due to the decline of horseshoe crab population in recent years. Exploring methods of enhancing immunity and rapid hemocytes proliferation is urgent for the industrial horseshoe crab culture. In this study, β-glucan (G), peptidoglycan (P), and squalene (S) were injected to horseshoe crabs at two concentrations (5 and 10 mg/kg), in order to compare their effects on total hemocyte count (THC), reactive oxygen species (ROS), and non-specific immune enzyme activities. Results showed that the THC, superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC) were significantly increased by three immunostimulants at different points of time; ROS was significantly increased except at two squalene groups; lysozyme (LZM) and alkaline phosphatase (AKP) activity were increased except at low dose (5 mg/kg) squalene group; malondialdehyde (MDA) activity was decreased in all treatments; and hemocyanin concentration (HC) changed little during the experiment. At the 48th hour, THC, ROS, SOD, CAT, T-AOC, LZM, and AKP activities were significantly higher in the two peptidoglycan groups than those in the control group; the low dose β-glucan and squalene groups showed significantly higher SOD and CAT, but their THC and AKP were not significantly different from those of the control group. In general, all three immunostimulants stimulated the hemolymph parameters of horseshoe crabs, notably, peptidoglycan could significantly increase the THC and enzyme activities, suggesting that peptidoglycan can be developed as an efficient immunostimulant for horseshoe crabs.
Collapse
Affiliation(s)
- Ximei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xueqing Chang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - James K H Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jie Song
- Tianjin Era Biology Technology Co., Ltd., China
| | - Jinfeng He
- Beihai Product Quality Testing Institute, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, China
| | - Menghong Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
11
|
Ali AMM, Gullo M, Rai AK, Bavisetty SCB. Bioconservation of iron and enhancement of antioxidant and antibacterial properties of chicken gizzard protein hydrolysate fermented by Pediococcus acidilactici ATTC 8042. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2718-2726. [PMID: 33124041 DOI: 10.1002/jsfa.10898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The poultry industry is one of the fastest growing sectors, and it generates considerable quantities of chicken gizzards (CG) every day. However, due to their hard texture and high microbial load, and due to cultural beliefs, they are not preferred by consumers. Chicken gizzards are a substantial source of proteins, iron, and other nutrients, which can be used effectively to produce nutraceuticals, rich in peptides (antioxidants and antibacterial), bio-iron, essential free amino acids, and fatty acids vital for human health. RESULTS Lactic acid fermentation of CG by Pediococcus acidilactici ATTC 8042 increased the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH), azino-bis (3-ethylbenzothiaziline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) by up to 26 times compared with unfermented CG (P < 0.05). The amount of hydrolysis and solvents (ethanol and water) used for extracting protein hydrolysates significantly affected the antioxidant properties. Moreover, fermented CG showed a negligible reduction in bio-iron (2-3%) compared with heat-processed CG (85 °C for 15 min), in which bio-iron was reduced by up to 20.3% (P < 0.05). The presence of unsaturated fatty acids such as C20:4 and C22:4 n-6 indicated a low level of lipid oxidation. CONCLUSION Fermented CG, with its reasonably high antioxidant and antibacterial activity, together with a substantial amount of bio-iron and other nutritional components can serve as a functional food or feed additive to reduce oxidative stress and to treat iron deficiency. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ali Muhammed Moula Ali
- Department of Food Science, Faculty of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Sri Charan Bindu Bavisetty
- Department of Fermentation Technology, Faculty of Food-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
12
|
Marquardt P, Vissiennon C, Schubert A, Birkemeyer C, Ahyi V, Fester K. Phytochemical Analysis, In Vitro Anti-Inflammatory and Antimicrobial Activity of Piliostigma thonningii Leaf Extracts from Benin. PLANTA MEDICA 2020; 86:1269-1277. [PMID: 32898874 DOI: 10.1055/a-1229-4565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The leaves of Piliostigma thonningii are used in traditional medicine in Benin to treat inflammatory skin diseases and infections. So far, pharmacological studies of the anti-inflammatory and anti-infective effects of phytochemically characterized extracts of P. thonningii have been very limited. Therefore, we investigated the in vitro anti-inflammatory and antimicrobial effect of P. thonningii leaf extracts and analyzed the phytochemical composition of extracts of different polarities (water, 50% ethanol, and n-hexane). Quercetin-3-O-rhamnoside was confirmed as the main flavonoid in the polar extracts. GC-MS analysis identified 20 constituents of the aqueous extract and 28 lipophilic compounds of the n-hexane extract by comparison with authentic standards and spectral library data. The aqueous P. thonningii leaf extract inhibited the IL-8 and IL-6 secretion in TNF-α-stimulated HaCaT cells in a concentration-dependent manner with IC50 values of 74 µg/mL for IL-8 and 89 µg/mL for IL-6. However, an inhibitory effect of the identified quercetin-3-O-rhamnoside and its aglycone, quercetin, on the release of IL-8 and IL-6 could not be demonstrated. In the antimicrobial screening, inhibition zones for a 50% EtOH leaf extract of P. thonningii were found for Staphylococcus epidermidis, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. For none of the microbial strains, however, the MIC was below 500 µg/mL, so that the antibacterial activity must be classified as low. As a result, our investigations primarily support the ethnomedical use of P. thonningii leaf extracts in topical inflammatory conditions. Further studies are required to identify the compounds responsible for the in vitro anti-inflammatory effects.
Collapse
Affiliation(s)
- Peter Marquardt
- Department of Pharmaceutical Biology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Cica Vissiennon
- Institute for Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Andreas Schubert
- Antimicrobial Agents Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | - Virgile Ahyi
- IRGIB Africa University, Inter-Regional University of Industrial Engineering, Biotechnologies and Applied Sciences, Cotonou, Benin
| | - Karin Fester
- Department of Pharmaceutical Biology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany
| |
Collapse
|
13
|
Mishra RC, Kumari R, Yadav S, Yadav JP. Target Based Virtual Screening of New Leads Inhibitor against Bacterial Cell Division Protein FtsZ for the Discovery of Antibacterial Agents. Med Chem 2020; 16:169-175. [DOI: 10.2174/1573406415666190206233448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/14/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023]
Abstract
Background:
Staphylococus epidermidis coagulase negative and gram positive streptococci
have emerged as major nosocomial pathogens associated with the infection of implanted
medical devices and dandruff on human scalp. S. epidermidis filamenting temperature-sensitive
mutant Z (FtsZ) gene encoded FtsZ protein that assembles at future bacterial cell division site that
forms Z-ring structure. FtsZ is a tubulin homolog protein with low sequence similarity; this makes
it possible to inhibit bacterial FtsZ protein without affecting the eukaryote cell division.
Objective:
In the present study, phytochemicals of Cinnamomum zeylanicum, Punica granatum
and Glycyrrhiza glabra were virtually screened for their antibacterial activity against Staphylococcus
epidermidis cell division protein, FtsZ.
Methods:
Molecular docking method was used to investigate new lead inhibitor against bacterial
cell division protein FtsZ. SwissADME and ProTox tool were used to evaluate the toxicity of the
lead molecule.
Results:
Molecular docking based screening confirmed that among 122 phytochemicals, β-
sitosterol and glabrol showed the highest inhibitory activity against FtsZ. SwissADME tool
showed β-sitosterol and glabrol as the ideal antibacterial agents.
Conclusion:
Structure based drug design strategy has been broadly used to optimize antimicrobial
activity of small molecule/ligand against large protein receptor of disease, causing pathogens
which gives a major breakthrough in pharmaceuticals industries. The molecular docking and SwissADME
tool showed that β-sitosterol and glabrol may be developed to be potential topical and
sublingual antibacterial agents, respectively.
Collapse
Affiliation(s)
- Ratish C. Mishra
- Department of Genetics, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Rosy Kumari
- Department of Genetics, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Shivani Yadav
- Department of Computer Science and Applications, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Jaya P. Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
14
|
Moula Ali AM, Caba KDL, Prodpran T, Benjakul S. Quality characteristics of fried fish crackers packaged in gelatin bags: Effect of squalene and storage time. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Moula Ali AM, Prodpran T, Benjakul S. Effect of squalene as a glycerol substitute on morphological and barrier properties of golden carp (Probarbus Jullieni) skin gelatin film. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Moula Ali AM, Prodpran T, Benjakul S. Effect of squalene rich fraction from shark liver on mechanical, barrier and thermal properties of fish (Probarbus Jullieni) skin gelatin film. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Grande-Tovar CD, Johannes DO, Puerta LF, Rodríguez GC, Sacchetti G, Paparella A, Chaves-López C. Bioactive micro-constituents of ackee arilli (Blighia sapida K.D. Koenig). AN ACAD BRAS CIENC 2019; 91:e20180140. [PMID: 31508662 DOI: 10.1590/0001-3765201920180140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022] Open
Abstract
Ackee (Blighia sapida K. D. Koenig) is an exotic fruit widely consumed in the Caribbean countries. While there is extensive research on the presence of hypoglycin A, other bioactive compounds have not been studied. We identified and quantified the changes in bioactive molecules (total phenol, ascorbic acid, hypoglycin A, squalene, D: A-Friedooleanan-7-ol, (7.alpha.), and oleic acid), antioxidant potential, and volatile compounds during two stages of ripe. A clear reduction in hypoglycin A, ascorbic acid, and total polyphenols during the maturation process were observed. On the contrary, oleic acid, squalene, and D: A-Friedooleanan-7-ol, (7.alpha.) contents increased about 12, 12, and 13 times, respectively with advancing maturity. These bioactive molecules were positively correlated with radical scavenging (DDPH and ABTS). Solid phase microextraction (SPME) and gas chromatography coupled mass spectrometry (GC/MS) analysis revealed more than 50 compounds with 3-penten-2-one and hexanal as the major compounds in the fully ripe stage. The results suggested that ripe ackee arilli could serve as an appreciable source of natural bioactive micro-constituents.
Collapse
Affiliation(s)
- Carlos D Grande-Tovar
- Grupo de Investigación en Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Cali, Valle del Cauca, Colombia
| | - Delgado-Ospina Johannes
- Grupo de Investigación en Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Cali, Valle del Cauca, Colombia
| | - Luisa F Puerta
- Grupo de Investigación en Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Cali, Valle del Cauca, Colombia
| | - Gloria C Rodríguez
- Grupo de Investigación en Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Cali, Valle del Cauca, Colombia
| | - Giampiero Sacchetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
18
|
Ali AMM, Bavisetty SCB, Prodpran T, Benjakul S. Squalene from Fish Livers Extracted by Ultrasound‐Assisted Direct
In Situ
Saponification: Purification and Molecular Characteristics. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ali Muhammed Moula Ali
- Department of Food Technology, Faculty of Agro‐IndustryPrince of Songkla University Hat Yai, Songkhla 90112 Thailand
| | | | - Thummanoon Prodpran
- Department of Material Product Technology, Faculty of Agro‐IndustryPrince of Songkla University Hat Yai, Songkhla 90112 Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro‐IndustryPrince of Songkla University Hat Yai, Songkhla 90112 Thailand
| |
Collapse
|
19
|
Paramasivan K, Rajagopal K, Mutturi S. Studies on Squalene Biosynthesis and the Standardization of Its Extraction Methodology from Saccharomyces cerevisiae. Appl Biochem Biotechnol 2018; 187:691-707. [DOI: 10.1007/s12010-018-2845-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
|
20
|
Rubini D, Banu SF, Nisha P, Murugan R, Thamotharan S, Percino MJ, Subramani P, Nithyanand P. Essential oils from unexplored aromatic plants quench biofilm formation and virulence of Methicillin resistant Staphylococcus aureus. Microb Pathog 2018; 122:162-173. [PMID: 29920307 DOI: 10.1016/j.micpath.2018.06.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
Abstract
In the current study we have evaluated the antibiofilm and antivirulent properties of unexplored essential oils (EOs) obtained from Pogostemon heyneanus and Cinnamomum tamala against Methicillin Resistant Staphylococcus aureus (MRSA) strains. The EOs from both the aromatic plants was screened for their ability to prevent biofilm formation and to disrupt preformed biofilms. The efficacy of both the EOs to disrupt the preformed biofilms of various MRSA strains was determined by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM).The EOs were further able to reduce the Extracellular polymeric substance (EPS) and slime synthesis the two factors of the biofilm assemblage. The EOs was also found to be effective in reducing virulence factors like staphyloxanthin and hemolysin. In silico docking studies were performed for the major components of essential oils and dehydroxysqualene synthase of MRSA which is responsible for the synthesis of staphyloxanthin. The results suggest that (E)-nerolidol showed better binding affinity towards the enzyme. Other compounds have similar binding strengths with the enzyme. Furthermore, the synergistic effect EOs along with the commercially available DNaseI and Marine Bacterial DNase (MBD) showed that the synergistic effect had enhanced biofilm disruption ability. The results show that EOs from P. heyneanus and C. tamala has potential antivirulent and biofilm inhibitory properties against clinical and drug resistant S. aureus strains. The present study highlights the importance of bioprospecting plant based natural products as an alternative for antibiotics owing to the emergence of multi-drug resistant strains.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Sanaulla Farisa Banu
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Prakash Nisha
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Ramar Murugan
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - María Judith Percino
- Laboratorio de Polímeros, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Complejo de Ciencias, ICUAP, Edif. 103H, 22 Sur y San Claudio, Puebla, Puebla, C.P. 72570, Mexico
| | - Prabha Subramani
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India; Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
21
|
Ravensdale JT, Coorey R, Dykes GA. Integration of Emerging Biomedical Technologies in Meat Processing to Improve Meat Safety and Quality. Compr Rev Food Sci Food Saf 2018; 17:615-632. [PMID: 33350135 DOI: 10.1111/1541-4337.12339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/16/2023]
Abstract
Modern-day processing of meat products involves a series of complex procedures designed to ensure the quality and safety of the meat for consumers. As the size of abattoirs increases, the logistical problems associated with large-capacity animal processing can affect the sanitation of the facility and the meat products, potentially increasing transmission of infectious diseases. Additionally, spoilage of food from improper processing and storage increases the global economic and ecological burden of meat production. Advances in biomedical and materials science have allowed for the development of innovative new antibacterial technologies that have broad applications in the medical industry. Additionally, new approaches in tissue engineering and nondestructive cooling of biological specimens could significantly improve organ transplantation and tissue grafting. These same strategies may be even more effective in the preservation and protection of meat as animal carcasses are easier to manipulate and do not have the same stringent requirements of care as living patients. This review presents potential applications of emerging biomedical technologies in the food industry to improve meat safety and quality. Future research directions investigating these new technologies and their usefulness in the meat processing chain along with regulatory, logistical, and consumer perception issues will also be discussed.
Collapse
Affiliation(s)
- Joshua T Ravensdale
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| | - Ranil Coorey
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| | - Gary A Dykes
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| |
Collapse
|