1
|
Mustafa G, Arif MAR, Bakhsh M, Wajih Ul Hassan S. First report of aflatoxin and ochratoxin contamination in ginger collected from different agroclimatic zones from Punjab, Pakistan. Toxicon 2024; 251:108138. [PMID: 39433257 DOI: 10.1016/j.toxicon.2024.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Ginger, a fresh rhizome, an economically important spice with extensive nutraceutical activities finds itself in vegetable and therapeutic market. Aflatoxins (AFB1, AFB2, AFG1 and AFG2) along with ochratoxin A (OTA) are the most significant and the most toxic form of mycotoxins which are produced by various fungi. This study was initiated to assess the contamination of AFs and OTA in raw and dried ginger products, collected from different agro-climatic zones in Punjab, Pakistan employing the high performance liquid chromatography. We found all (raw ginger samples commercial ginger powders) samples contaminated with AFB1 (range: 29.88-1060.12 μg/kg). AFB2 contamination was much lower (range: 0-17.54 μg/kg). Variable contamination of AFG1 was also observed (range: 0-170.58 μg/kg) whereas AFG2 contamination was found in only three (range: 0-21.88 μg/kg) out of 19 raw ginger samples. OTA contamination ranged from 0.05 to 3.42 μg/kg. Ginger samples from lower altitudes (<1000 m) were more contaminated with AFB1 sub type mycotoxin. Keeping in view that the toxicity of AFs is in the order of B1>G1> B2>G2, it was alarming to find that 100% of the samples were contaminated with AFB1 way beyond the permissible limits. Our very first report about the contamination of ginger with AFs presents a grave health issue because of wide use of ginger. We conclude that ginger production in Pakistan needs to be carefully crafted and due diligence is needed during ginger cultivation, harvest and post-harvest operations because the amount of aflatoxins detected in this study are very much above the permissible limits. In this regard, ginger storage in cooler environments such as refrigerator should be encouraged to contain the AFs proliferation.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan
| | - Mian Abdur Rehman Arif
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan.
| | - Murad Bakhsh
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan
| | - Syed Wajih Ul Hassan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
3
|
Guo T, Wang T, Chen L, Zheng B. Whole-grain highland barley premade biscuit prepared by hot-extrusion 3D printing: Printability and nutritional assessment. Food Chem 2024; 432:137226. [PMID: 37633148 DOI: 10.1016/j.foodchem.2023.137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
In this study, to explore the possibility of applying whole-grain highland barley (HB) in functional food, HB premade biscuit was created by hot-extrusion 3D printing (HEP) for the first time, and its printability and nutritional functions were evaluated. The rheology results showed 20% (w/w) HB suspension with 9% corn oil addition had better printability due to the formation of a structure with higher elasticity and stronger resistance to deformation. Moreover, the obtained premade biscuit had lower predicted glycemic index (pGI) and starch digestibility. Meanwhile, in vivo experiment results showed it could affect the glycolipid metabolism, ameliorate the high fat diet (HFD)-induced metabolic disorders and maintain the balance of the gut microbial ecology. This could be attributed to the decrease in Firmicutes/Bacteroidetes ratio and the proliferation of propionate-producing probiotics, especially Veilonella, Weissella and Desulfovibrio. Overall, this study could provide basic data and innovative approaches to prepare nutritional whole-grain foods.
Collapse
Affiliation(s)
- Tianli Guo
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tongtong Wang
- Institute of Food, Nutrition, and Health, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Bo Zheng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Shaukat MN, Nazir A, Fallico B. Ginger Bioactives: A Comprehensive Review of Health Benefits and Potential Food Applications. Antioxidants (Basel) 2023; 12:2015. [PMID: 38001868 PMCID: PMC10669910 DOI: 10.3390/antiox12112015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Ginger is an herbaceous and flowering plant renowned for its rhizome, which is widely employed as both a spice and an herb. Since ancient times, ginger has been consumed in folk medicine and traditional cuisines for its favorable health effects. Different in vitro and in vivo studies have disclosed the advantageous physiological aspects of ginger, primarily due to its antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic properties. These health-promoting features are linked to the variety of bioactive compounds that are present in ginger. Following the advancement in consumer awareness and the industrial demand for organic antioxidants and functional ingredients, the application of ginger and its derivatives has been broadly investigated in a wide range of food products. The prominent features transmitted by ginger into different food areas are antioxidant and nutraceutical values (bakery); flavor, acceptability, and techno-functional characteristics (dairy); hedonic and antimicrobial properties (beverages); oxidative stability, tenderization, and sensorial attributes (meat); and shelf life and sensorial properties (film, coating, and packaging). This review is focused on providing a comprehensive overview of the tendencies in the application of ginger and its derivatives in the food industry and concurrently briefly discusses the beneficial aspects and processing of ginger.
Collapse
Affiliation(s)
- Muhammad Nouman Shaukat
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Biagio Fallico
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| |
Collapse
|
5
|
Crichton M, Marshall S, Marx W, Isenring E, Lohning A. Therapeutic health effects of ginger (Zingiber officinale): updated narrative review exploring the mechanisms of action. Nutr Rev 2023; 81:1213-1224. [PMID: 36688554 DOI: 10.1093/nutrit/nuac115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ginger (Zingiber officinale) has been investigated for its potentially therapeutic effect on a range of chronic conditions and symptoms in humans. However, a simplified and easily understandable examination of the mechanisms behind these effects is lacking and, in turn, hinders interpretation and translation to practice, and contributes to overall clinical heterogeneity confounding the results. Therefore, drawing on data from nonhuman trials, the objective for this narrative review was to comprehensively describe the current knowledge on the proposed mechanisms of action of ginger on conferring therapeutic health effects in humans. Mechanistic studies support the findings from human clinical trials that ginger may assist in improving symptoms and biomarkers of pain, metabolic chronic disease, and gastrointestinal conditions. Bioactive ginger compounds reduce inflammation, which contributes to pain; promote vasodilation, which lowers blood pressure; obstruct cholesterol production, which regulates blood lipid profile; translocate glucose transporter type 4 molecules to plasma membranes to assist in glycemic control; stimulate fatty acid breakdown to aid weight management; and inhibit serotonin, muscarinic, and histaminergic receptor activation to reduce nausea and vomiting. Additional human trials are required to confirm the antimicrobial, neuroprotective, antineoplastic, and liver- and kidney-protecting effects of ginger. Interpretation of the mechanisms of action will help clinicians and researchers better understand how and for whom ginger may render therapeutic effects and highlight priority areas for future research.
Collapse
Affiliation(s)
- Megan Crichton
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Cancer and Palliative Care Outcomes Centre, Centre for Healthcare Transformation, School of Nursing, Faculty of Health, Kelvin Grove, Queensland, Australia
| | - Skye Marshall
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Department of Science, Nutrition Research Australia, Sydney, New South Wales, Australia
| | - Wolfgang Marx
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Impact (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, Australia
| | - Elizabeth Isenring
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
| | - Anna Lohning
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
| |
Collapse
|
6
|
Lew SY, Mohd Hisam NS, Phang MWL, Syed Abdul Rahman SN, Poh RYY, Lim SH, Kamaruzzaman MA, Chau SC, Tsui KC, Lim LW, Wong KH. Adenosine Improves Mitochondrial Function and Biogenesis in Friedreich's Ataxia Fibroblasts Following L-Buthionine Sulfoximine-Induced Oxidative Stress. BIOLOGY 2023; 12:biology12040559. [PMID: 37106759 PMCID: PMC10136261 DOI: 10.3390/biology12040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023]
Abstract
Adenosine is a nucleoside that is widely distributed in the central nervous system and acts as a central excitatory and inhibitory neurotransmitter in the brain. The protective role of adenosine in different pathological conditions and neurodegenerative diseases is mainly mediated by adenosine receptors. However, its potential role in mitigating the deleterious effects of oxidative stress in Friedreich's ataxia (FRDA) remains poorly understood. We aimed to investigate the protective effects of adenosine against mitochondrial dysfunction and impaired mitochondrial biogenesis in L-buthionine sulfoximine (BSO)-induced oxidative stress in dermal fibroblasts derived from an FRDA patient. The FRDA fibroblasts were pre-treated with adenosine for 2 h, followed by 12.50 mM BSO to induce oxidative stress. Cells in medium without any treatments or pre-treated with 5 µM idebenone served as the negative and positive controls, respectively. Cell viability, mitochondrial membrane potential (MMP), aconitase activity, adenosine triphosphate (ATP) level, mitochondrial biogenesis, and associated gene expressions were assessed. We observed disruption of mitochondrial function and biogenesis and alteration in gene expression patterns in BSO-treated FRDA fibroblasts. Pre-treatment with adenosine ranging from 0-600 µM restored MMP, promoted ATP production and mitochondrial biogenesis, and modulated the expression of key metabolic genes, namely nuclear respiratory factor 1 (NRF1), transcription factor A, mitochondrial (TFAM), and NFE2-like bZIP transcription factor 2 (NFE2L2). Our study demonstrated that adenosine targeted mitochondrial defects in FRDA, contributing to improved mitochondrial function and biogenesis, leading to cellular iron homeostasis. Therefore, we suggest a possible therapeutic role for adenosine in FRDA.
Collapse
Affiliation(s)
- Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Michael Weng Lok Phang
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Rozaida Yuen Ying Poh
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siew Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sze Chun Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka Chun Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Hosseini H, Esmaeili N, Sepehr A, Zare M, Rombenso A, Badierah R, Redwan EM. Does supplementing laying hen diets with a herb mixture mitigate the negative impacts of excessive inclusion of extruded flaxseed? Anim Biosci 2023; 36:629-641. [PMID: 36397705 PMCID: PMC9996271 DOI: 10.5713/ab.22.0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/05/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study investigated the effects of extruded flaxseed with and without herbs mixture on egg performance, yolk fatty acids (FAs), lipid components, blood biochemistry, serological enzymes, antioxidants, and immune system of Hy-Line W-36 hens for nine weeks. METHODS Two hundred forty laying hens were randomly distributed to eight treatments, resulting in six replicates with five hens. Graded levels of dietary extruded flaxseed (0, 90, 180, and 270 g/kg) with and without herbs mixture (24 g/kg: garlic, ginger, green tea, and turmeric 6 g/kg each) were designed as treatments. RESULTS The two-way analysis of variance indicated that hens fed herbs mixture had a higher value of egg production, yolk high-density lipoprotein (HDL), superoxide dismutase, glutathione peroxidase, and white blood cell and lower contents of yolk cholesterol, glucose, and blood low-density lipoprotein than those fed diets without herb mixtures (p<0.05). The Flx27 (270 g/kg flaxseed) (153.5 g/kg n-3 FAs) and Flx27+H (270 g/kg flaxseed plus 24 g/kg herbs mixture) (150.5 g/kg n-3 FAs) groups were the most promising treatments in terms of yolk n-3 FAs content. In-teraction effect (herbs- flaxseed) for blood cholesterol, HDL, malondialdehyde, glutaredoxin, alanine transaminase, (ALT), aspartate transaminase (AST), haemoglobin and immune parameters was significant (p<0.05). The results showed layers fed herbs mixture (Flx9+H, Flx18+H, and Flx27+H) had a better value of total antibody, immunoglobulin M, immunoglobulin G, ALT, AST, and blood HDL as compared with representative flaxseed levels without herbs. CONCLUSION High inclusion levels of extruded flaxseed (270 g/kg) without herbs to enrich eggs with n-3 appears to impair the antioxidant system, immunohematological parameters, and sero-logical enzymes. Interestingly, the herbs mixture supplementation corrected those effects. Therefore, feeding layers with flaxseed-rich diets (270 g/kg) and herbs mixture can be a promising strategy to enrich eggs with n-3 FAs.
Collapse
Affiliation(s)
- Hossein Hosseini
- Department of Microbiology, Pathobiology and Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, 6714967346,
Iran
| | - Noah Esmaeili
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7053,
Australia
| | - Aref Sepehr
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Padua,
Italy
| | - Mahyar Zare
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, 38925,
Czech Republic
| | - Artur Rombenso
- CSIRO, Agriculture and Food, Livestock & Aquaculture Program, Bribie Island Research Centre, Bribie Island, Queensland, 4507,
Australia
| | - Raied Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589,
Saudi Arabia
- Medical Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589,
Saudi Arabia
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589,
Saudi Arabia
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexan-dria 21934,
Egypt
| |
Collapse
|
8
|
Abdelfattah MG, Hussein MT, Ragab SMM, Khalil NSA, Attaai AH. The effects of Ginger (Zingiber officinale) roots on the reproductive aspects in male Japanese Quails (Coturnix coturnix japonica). BMC Vet Res 2023; 19:34. [PMID: 36737791 PMCID: PMC9896824 DOI: 10.1186/s12917-023-03576-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The Japanese quail is considered one of the most significant species in the poultry industry. However, the high male-to-female ratio results in the aggressive behavior of males. Dietary strategies that improve the properties of semen could reduce the number of males required to maintain optimal fertility and reduce aggressive behavior. Therefore, this study aims to provide insight into the possible improving efm fect of ginger roots on the reproductive aspects of Japanese male quails. RESULTS To achieve this objective, powder of Ginger roots was administrated to 2 groups of quails (10, and 15 g/Kg feed) from 7 days until 70 days of age. Some males were reared singly in cages (n = 40 for each group) to assess sperm quality and other males (n = 32 for each group) were raised with females to assess fertility and sperm-egg penetration. Additionally, biochemical tests and histological examination were also performed. When compared to the control group, dietary inclusion of Ginger at a dose of 15 g caused more improvement in ejaculate volume, sperm concentration, motility, viability and sperm-egg penetration. Whereas, the motility and fertility percentages of sperms were equipotent in both doses. Dose-dependent increases were found in the cloacal gland area and volume, as well as foam production and weight. Both doses resulted in a significant reduction in plasma total cholesterol along with an elevation cin plasma testosterone and lipid peroxides. The comparison between all groups concerning nitric oxide, catalase, superoxide dismutase, and total antioxidant capacity revealed the absence of significant difference. Morphologically, the diameter of the seminiferous tubules and the height of germinal epithelium significantly increased especially in the higher dose of Ginger. CONCLUSIONS Ginger roots especially at a dose of 15 gm/kg feed was effective in improving male reproductive performance. These findings are of utmost importance in encouraging the addition of Ginger roots in ration formulation in male quails.
Collapse
Affiliation(s)
| | - Manal T. Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Sohair M. M. Ragab
- Laboratory of Physiology, Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Nasser S. Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abdelraheim H. Attaai
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Anatomy and Histology, School of Veterinary Medicine, Badr University, New Nasser City, West of Assiut, Assiut, Egypt
| |
Collapse
|
9
|
Effects of the Dietary Inclusion of Allium mongolicum Regel Extract on Serum Index and Meat Quality in Small-Tailed Han Sheep. Animals (Basel) 2022; 13:ani13010110. [PMID: 36611719 PMCID: PMC9817714 DOI: 10.3390/ani13010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to evaluate the effects of Allium mongolicum Regel ethanol extract (AME) on the serum index and meat quality of lambs. A total of 30 male Small-tailed Han sheep (3 months old) with an average weight of 33.60 ± 1.23 kg were divided randomly into one of two groups: the control group (CON) was offered a basal diet, and the AME group was offered a basal diet with supplementation 2.8 g·lamb−1·day−1 AME. The trial lasted for 75 days. AME supplementation significantly decreased the concentration of triglyceride and total cholesterol (p < 0.05), and tended to lower the concentration of non-esterified fatty acids (0.05 < p < 0.1), but significantly increased the concentration of high-density lipoprotein, leptin, and insulin (p < 0.05) in the serum of lambs. AME also decreased cooking losses and shear force and increased the content of intramuscular fat in the longissimus dorsi (LD) muscle of lambs (p < 0.05). In addition, there was no difference in the composition of hydrolyzed protein amino acids in the LD muscle among treatments (p > 0.05). However, AME changed the composition of free amino acids and promoted MUFA and PUFA deposition in the LD muscle of the lambs. These findings indicate that a diet supplemented with AME may improve the lipid metabolic capacity and meat quality of lambs.
Collapse
|
10
|
Daniels CC, Isaacs Z, Finelli R, Leisegang K. The efficacy of Zingiber officinale on dyslipidaemia, blood pressure, and inflammation as cardiovascular risk factors: A systematic review. Clin Nutr ESPEN 2022; 51:72-82. [PMID: 36184251 DOI: 10.1016/j.clnesp.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND & AIMS Hypertension, dyslipidaemia, and chronic inflammation contribute to the development of cardiovascular disease (CVD). Zingiber officinale has been suggested to reduce these CVD risk factors; however, the clinical evidence remains unclear. This systematic review aims to analyse the effect of Z. officinale as a sole intervention on these risk factors. METHODS In this PRISMA-based systematic review, we included randomised clinical trials from PubMed, Scopus and Cochrane Database of Systematic Reviews (July 2020) analysing triglycerides, low- and high-density lipoprotein (LDL, HDL), total cholesterol, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin 1, 6, 10, systolic and/or diastolic blood pressure as outcomes. Quality of studies was evaluated by JADAD and the Cochrane risk-of-bias tools. RESULTS A total of 24 studies were included, mostly (79.2%) showing low risk of bias. These were based on obesity and cardio-metabolic derangements (33.3%), type 2 diabetes mellitus (37.5%), and miscellaneous conditions (29.2%). While total cholesterol and triglycerides levels mostly improved after Z. officinale, results were inconsistent for other blood lipids markers. Inflammatory markers (CRP, TNF-α) were more consistently reduced by Z. officinale, while only 3 studies reported a non-significant reduction of blood pressure. CONCLUSIONS Although there remains a paucity of studies, Z. officinale may be beneficial for improving dyslipidaemia and inflammation.
Collapse
Affiliation(s)
- Chelsea Courtney Daniels
- School of Natural Medicine, Faculty of Community and Health Sciences, University of the Western Cape, Bellville, South Africa
| | - Zaiyaan Isaacs
- School of Natural Medicine, Faculty of Community and Health Sciences, University of the Western Cape, Bellville, South Africa
| | | | - Kristian Leisegang
- School of Natural Medicine, Faculty of Community and Health Sciences, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
11
|
Zhang X, Deng J, Tang Y, Guan X, Chen X, Fan J. Zingiberaceae plants/curcumin consumption and multiple health outcomes: An umbrella review of systematic reviews and meta-analyses of randomized controlled trials in humans. Phytother Res 2022; 36:3080-3101. [PMID: 35623903 DOI: 10.1002/ptr.7500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/17/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023]
Abstract
This umbrella review is to recapitulate and grade the available evidence of associations between consumption of Zingiberaceae plants/curcumin (Cur) and multiple health-related outcomes. This study included 161 meta-analyses of randomized controlled trials in 76 articles with 67 unique health outcomes. Data on heterogeneity and publication bias are considered to assess the quality of evidence. Based on the different impact of Zingiberaceae plants/Cur on human health, the advantages outweigh the disadvantages. Zingiberaceae plants/Cur can mainly improve metabolic syndrome, non-alcoholic fatty liver disease, cardiovascular disease, and some chronic inflammatory diseases, likewise, obviously relief the pain of osteoarthritis and related diseases. Ginger supplements have been shown to improve vomiting during pregnancy and to relieve nausea and vomiting caused by chemotherapy and surgery. The surgery is any type of surgery, including laparoscopic surgery, gynecological surgery and mixed surgery. Beneficial associations were found with Cur intervention in gastrointestinal, neurological and oral diseases. Zingiberaceae plants/Cur are generally safe and favorable for multiple health outcomes in humans. High-quality research is further needed to prove the observed associations.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yujun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoxian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jianming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Li H, Rafie R, Xu Z, Siddiqui RA. Phytochemical profile and anti-oxidation activity changes during ginger ( Zingiber officinale) harvest: Baby ginger attenuates lipid accumulation and ameliorates glucose uptake in HepG2 cells. Food Sci Nutr 2022; 10:133-144. [PMID: 35035916 PMCID: PMC8751441 DOI: 10.1002/fsn3.2654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
We determined the phenolic content and anti-oxidation properties of ginger at different harvesting time and tested its effects on lipid droplet formation and glucose uptake in HepG2 cells. Ginger samples at different stages of maturity were harvested every two weeks starting from mid-October for 16 weeks. Our data indicate that ginger has the highest phenolic contents and superior anti-oxidation activity when harvested early (immature baby ginger); however, the concentration of phenolic contents and its anti-oxidation activity were progressively reduced up to 50% as ginger matures. Furthermore, the data indicate that baby ginger extract inhibits lipid accumulation and triglyceride content in oleic acid-induced HepG2 cells up to 20% in a dose-dependent manner. Baby ginger exhibited significant inhibition of α-amylase enzyme activity by 29.5% and ameliorated glucose uptake in HepG2 cell at similar level. Our results suggest that harvesting ginger at an appropriate (early) time may be beneficial for optimizing its biological active contents and qualitative properties. The data also suggest that a regular use of ginger can potentially lower incidences of obesity and diabetes.
Collapse
Affiliation(s)
- Haiwen Li
- Food Chemistry and Nutrition Science Laboratory, Agricultural Research StationVirginia State UniversityPetersburgVirginiaUSA
| | - Reza Rafie
- Cooperate ExtensionCollege of AgricultureVirginia State UniversityPetersburgVirginiaUSA
| | - Zhidong Xu
- Key Laboratory of Molecular Chemistry for Medicine of Hebei ProvinceCollege of Chemical & Pharmaceutical EngineeringHebei University of Science & TechnologyShijiazhuangChina
| | - Rafat A. Siddiqui
- Food Chemistry and Nutrition Science Laboratory, Agricultural Research StationVirginia State UniversityPetersburgVirginiaUSA
| |
Collapse
|
13
|
Yang XY, Zhong DY, Wang GL, Zhang RG, Zhang YL. Effect of Walnut Meal Peptides on Hyperlipidemia and Hepatic Lipid Metabolism in Rats Fed a High-Fat Diet. Nutrients 2021; 13:1410. [PMID: 33922242 PMCID: PMC8146006 DOI: 10.3390/nu13051410] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
As a natural active substance that can effectively improve blood lipid balance in the body, hypolipidemic active peptides have attracted the attention of scholars. In this study, the effect of walnut meal peptides (WMP) on lipid metabolism was investigated in rats fed a high-fat diet (HFD). The experimental results show that feeding walnut meal peptides counteracted the high-fat diet-induced increase in body, liver and epididymal fat weight, and reduce the serum concentrations of total cholesterol, triglycerides, and LDL-cholesterol and hepatic cholesterol and triglyceride content. Walnut meal peptides also resulted in increased HDL-cholesterol while reducing the atherosclerosis index (AI). Additionally, the stained pathological sections of the liver showed that the walnut meal peptides reduced hepatic steatosis and damage caused by HFD. Furthermore, walnut meal peptide supplementation was associated with normalization of elevated apolipoprotein (Apo)-B and reduced Apo-A1 induced by the high-fat diet and with favorable changes in the expression of genes related to lipid metabolism (LCAT, CYP7A1, HMGR, FAS). The results indicate that walnut meal peptides can effectively prevent the harmful effects of a high-fat diet on body weight, lipid metabolism and liver fat content in rats, and provide, and provide a reference for the further development of walnut meal functional foods.
Collapse
Affiliation(s)
| | | | | | | | - You-Lin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.-Y.Y.); (D.-Y.Z.); (G.-L.W.); (R.-G.Z.)
| |
Collapse
|
14
|
Zhang M, Zhao R, Wang D, Wang L, Zhang Q, Wei S, Lu F, Peng W, Wu C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother Res 2021; 35:711-742. [PMID: 32954562 DOI: 10.1002/ptr.6858] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/17/2020] [Accepted: 08/02/2020] [Indexed: 12/25/2022]
Abstract
Zingiber officinale Rosc. (Zingiberacae), commonly known as ginger, is a perennial and herbaceous plant with long cultivation history. Ginger rhizome is one of the most popular food spices with unique pungent flavor and is prescribed as a well-known traditional Chinese herbal medicine. To date, over 160 constituents, including volatile oil, gingerol analogues, diarylheptanoids, phenylalkanoids, sulfonates, steroids, and monoterpenoid glycosides compounds, have been isolated and identified from ginger. Increasing evidence has revealed that ginger possesses a broad range of biological activities, especially gastrointestinal-protective, anti-cancer, and obesity-preventive effects. In addition, gingerol analogues such as 6-gingerol and 6-shogaol can be rapidly eliminated in the serum and detected as glucuronide and sulfate conjugates. Structural variation would be useful to improve the metabolic characteristics and bioactivities of lead compounds derived from ginger. Furthermore, some clinical trials have indicated that ginger can be consumed for attenuating nausea and vomiting during early pregnancy; however, there is not sufficient data available to rule out its potential toxicity, which should be monitored especially over longer periods. This review provides an up-to-date understanding of the scientific evidence on the development of ginger and its active compounds as health beneficial agents in future clinical trials.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujun Wei
- Basic Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Ginger oil, Zingiber officinale, improve palatability, growth and nutrient utilisation efficiency in Nile tilapia fed with excess of starch. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Ouyang J, Hou Q, Wang M, Zhao W, Feng D, Pi Y, Sun X. Effects of dietary mulberry leaf powder on growth performance, blood metabolites, meat quality, and antioxidant enzyme-related gene expression of fattening Hu lambs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study was conducted to investigate the effects of the mulberry [Morus alba var. multicaulis (Perrott.) Loud.] leaf powder (MLP) supplementation in dietary concentrates on growth performance, blood metabolites, meat quality, and antioxidant enzyme (AOE) gene expression in fattening Hu lambs. Forty approximately 3-mo-old Hu lambs (16.5 ± 0.6 kg) were randomly allocated to five groups and fed with concentrates containing 0%, 15%, 30%, 45%, or 60% MLP (control, T15, T30, T45, and T60, respectively). The results showed that 15%–30% MLP supplementation maintained growth and carcass performance, and the weight of total stomach, especially of rumen in T15 and T30, were higher than those of the control. Dietary MLP supplementation decreased serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, cholesterol, and triglyceride levels, but increased the high-density lipoprotein levels. Moreover, MLP supplementation improved the longissimus lumborum muscle color (redness), tenderness, and water-holding capacity. It was further observed that 15% MLP supplementation enhanced all AOE mRNA levels apart from that of EPHX1. In summary, dietary MLP supplementation could partially improve the blood metabolites, meat quality, and AOE mRNA levels in the liver of fattening Hu lamb, and the level of 15% supplementation was the most promising.
Collapse
Affiliation(s)
- Jialiang Ouyang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People’s Republic of China
| | - Qirui Hou
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People’s Republic of China
| | - Weiguo Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
| | - Dan Feng
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yu Pi
- Department of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Xuezhao Sun
- The Centre for Ruminant Precision Nutrition and Smart Farming, Jilin Agricultural Science and Technology University, Jilin 132101, People’s Republic of China
| |
Collapse
|
17
|
Effects of Ginger Extract on Laying Performance, Egg Quality, and Antioxidant Status of Laying Hens. Animals (Basel) 2019; 9:ani9110857. [PMID: 31652863 PMCID: PMC6912797 DOI: 10.3390/ani9110857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The application of in-feed antibiotic growth promoters was banned in many countries due to their negative effects, and several kinds of feed additives were widely investigated as antibiotic alternatives, in which natural plant-derived products received much attention due to their environmentally friendly properties and numerous biological activities. Ginger (Zingiber officinale Roscoe), a widely used herbal medicine and spice, was proven to have potential as an antibiotic alternative in poultry feed, but there is little literature on the efficacy of ginger extract (GE), which has concentrated bioactive compounds with high bioavailability. Our results showed that dietary GE supplementation increased egg weight, improved egg quality, and reduced the yolk cholesterol content of laying hens. Decreased serum activities of alanine transaminase and aspartate transaminase and improved antioxidant status were observed in the GE group. Our study demonstrated the potential benefits of GE in laying hens. Abstract The objective of this study was to investigate the effects of ginger extract (GE) as a dietary supplement for laying hens. A total of 40-week-old 288 Hyline Brown laying hens were randomly divided into two groups with six replicates, and fed a basal diet with or without 100 g/t GE for eight weeks. Dietary GE supplementation increased egg weight, albumin height, and Haugh unit of eggs, and decreased yolk cholesterol content and activities of alanine transaminase and aspartate transaminase in serum at eight weeks. Moreover, GE resulted in higher total superoxide dismutase (T-SOD) activity and lower malondialdehyde (MDA) content in yolk at four and eight weeks and in serum. It was concluded that GE was effective in increasing egg weight and improving the egg quality and antioxidant status of laying hens.
Collapse
|
18
|
Deng X, Zhang S, Wu J, Sun X, Shen Z, Dong J, Huang J. Promotion of Mitochondrial Biogenesis via Activation of AMPK-PGC1ɑ Signaling Pathway by Ginger (Zingiber officinale Roscoe) Extract, and Its Major Active Component 6-Gingerol. J Food Sci 2019; 84:2101-2111. [PMID: 31369153 DOI: 10.1111/1750-3841.14723] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/10/2023]
Abstract
Several studies indicated that ginger (Zingiber officinale Roscoe) enhances thermogenesis and/or energy expenditure with which to interpret the beneficial effects of ginger on metabolic disorders. It is well known that mitochondrial activity plays an essential role in these processes. Thus, this study aimed to investigate the effect of ginger extract (GE) and its major components, 6-gingerol and 6-shogaol, on mitochondrial biogenesis and the underlying molecular mechanisms. Our results showed that GE at dose of 2 g/kg promoted oxygen consumption and intrascapular temperature in mice. The mitochondrial DNA (mtDNA) copy number in muscle and liver increased. Expression levels of oxidative phosphorylation (OXPHOS) related proteins and AMP-activated protein kinase ɑ/proliferator-activated receptor gamma coactivator 1 ɑ (AMPK/PGC1ɑ) signaling related proteins in the muscle, liver, and brown adipose tissue (BAT) increased as well. In HepG2 cells, GE at concentration of 2.5 and 5 mg/mL increased mitochondrial mass and mtDNA copy number. GE promoted ATP production, the activities of mitochondrial respiratory chain complex I and IV, and expression levels of OXPHOS complex related proteins and AMPK/PGC1ɑ signaling related proteins. The antagonist of AMPK eliminated partly the effect of GE on mitochondrial biogenesis. 6-Gingerol increased mitochondrial mass, mtDNA copy number and ATP production, and the activities of mitochondrial respiratory chain complexes in HepG2 cells as well. However, both 6-gingerol at high concentration of 200 µM and 6-shogaol at 10 to 200 µM inhibited cell viability. In conclusion, GE promoted mitochondrial biogenesis and improved mitochondrial functions via activation of AMPK-PGC1ɑ signaling pathway, and 6-gingerol other than 6-shogaol, may be the main active component. PRACTICAL APPLICATION: Ginger (Zingiber officinale Roscoe) is a food seasoning and also used as a medical plant in alternative medicine throughout the world. Here, we demonstrated that ginger extract (GE) promoted mitochondrial biogenesis and mitochondrial function via activation of AMPK-PGC1ɑ signaling pathway both in mice and in HepG2 cells, and 6-gingerol may be its main active component. Ginger, with anticipated safety, is expected to be a long-term used dietary supplement and be developed into a new remedy for mitochondrial dysfunctional disorders.
Collapse
Affiliation(s)
- Xiaohong Deng
- Dept. of Integrative Medicine, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| | - Siwei Zhang
- Dept. of Traditional Chinese Medicine, Shenzhen People's Hospital, No. 1017, Dongmen (North) Road, Shenzhen, 518020, China
| | - Junzhen Wu
- Inst. of Antibiotics, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| | - Xianjun Sun
- Dept. of Integrative Medicine, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| | - Ziyin Shen
- Dept. of Integrative Medicine, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| | - Jingcheng Dong
- Dept. of Integrative Medicine, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| | - Jianhua Huang
- Dept. of Integrative Medicine, Huashan Hospital, Fudan Univ., No. 12, Wu Lu Mu Qi (Middle) Road, Shanghai, 200040, China
| |
Collapse
|
19
|
Wang J, Li D, Wang P, Hu X, Chen F. Ginger prevents obesity through regulation of energy metabolism and activation of browning in high-fat diet-induced obese mice. J Nutr Biochem 2019; 70:105-115. [PMID: 31200315 DOI: 10.1016/j.jnutbio.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Numerous natural herbs have been proven as safe anti-obesity resources. Ginger, one of the most widely consumed spices, has shown beneficial effects against obesity and related metabolic disorders. The present study aimed to examine whether the antiobesity effect of ginger is associated with energy metabolism. Mice were maintained on either a normal control diet or a high-fat diet (HFD) with or without 500 mg/kg (w/w) ginger supplementation. After 16 weeks, ginger supplementation alleviated the HFD-induced increases in body weight, fat accumulation, and levels of serum glucose, triglyceride and cholesterol. Indirect calorimetry showed that ginger administration significantly increased the respiratory exchange ratio (RER) and heat production in both diet models. Furthermore, ginger administration corrected the HFD-induced changes in concentrations of intermediates in glycolysis and the TCA cycle. Moreover, ginger enhanced brown adipose tissue function and activated white adipose tissue browning by altering the gene expression and protein levels of some brown and beige adipocyte-selective markers. Additionally, stimulation of the browning program by ginger may be partly regulated by the sirtuin-1 (SIRT1)/AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway. Taken together, these results indicate that dietary ginger prevents body weight gain by remodeling whole-body energy metabolism and inducing browning of white adipose tissue (WAT). Thus, ginger is an edible plant that plays a role in the therapeutic treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Pan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
El-Hawwary AA, Omar NM. The influence of ginger administration on cisplatin-induced cardiotoxicity in rat: Light and electron microscopic study. Acta Histochem 2019; 121:553-562. [PMID: 31068261 DOI: 10.1016/j.acthis.2019.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
Cisplatin is a powerful chemotherapeutic agent. Cardiotoxicity is one of its major adverse effects. Ginger is a commonly used element in herbal medicine due to its anti-oxidant potentials. This study was planned to assess the histological changes induced by cisplatin in the cardiac muscle and to clarify the possible protective influence of ginger intake. Forty rats were divided into four groups. Control; given normal saline. Ginger; received oral ginger (500 mg/kg/day) for 12 days. Cisplatin; given cisplatin (2 mg/kg/day) daily by intraperitoneal injection for 1 week. Cisplatin + Ginger; received ginger (500 mg/kg/day) for 5 days prior to and concomitant with intraperitoneal injection of cisplatin (2 mg/kg/day) for 1 week. Serum levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were estimated. Cardiac specimens were subjected to light, electron microscopic and immunohistochemical study using anti-P53 and anti-TNF-α antibodies. Morphometric and statistical studies were done. In Cisplatin group, cardiac muscle fibers appeared disorganized, disrupted or degenerated with pyknotic nuclei and showed a significant rise in the number of anti-P53 positive nuclei. Significant increments in the percent area of collagenous fibers and TNF-α immune-expression were observed. Ultrastructurally, the cardiomyocytes displayed disorganized or interrupted myofibrils, swollen disrupted mitochondria, and widening of intercalated discs. Serum levels of CK and LDH were significantly elevated. Cisplatin + Ginger group showed marked improvement in the cardiac histology and ultrastructure, downregulation of P53 and TNF-α immune-expressions and reduction in CK and LDH serum levels. In conclusion, ginger exhibits a protective effect against cisplatin cardiotoxicity mostly through its anti-apoptotic, anti-oxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Amany A El-Hawwary
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Nesreen Moustafa Omar
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| |
Collapse
|
21
|
Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive Compounds and Bioactivities of Ginger ( Zingiber officinale Roscoe). Foods 2019; 8:E185. [PMID: 31151279 PMCID: PMC6616534 DOI: 10.3390/foods8060185] [Citation(s) in RCA: 404] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ginger (Zingiber officinale Roscoe) is a common and widely used spice. It is rich in various chemical constituents, including phenolic compounds, terpenes, polysaccharides, lipids, organic acids, and raw fibers. The health benefits of ginger are mainly attributed to its phenolic compounds, such as gingerols and shogaols. Accumulated investigations have demonstrated that ginger possesses multiple biological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, cardiovascular protective, respiratory protective, antiobesity, antidiabetic, antinausea, and antiemetic activities. In this review, we summarize current knowledge about the bioactive compounds and bioactivities of ginger, and the mechanisms of action are also discussed. We hope that this updated review paper will attract more attention to ginger and its further applications, including its potential to be developed into functional foods or nutraceuticals for the prevention and management of chronic diseases.
Collapse
Affiliation(s)
- Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Trust Beta
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
22
|
Kim S, Lee MS, Jung S, Son HY, Park S, Kang B, Kim SY, Kim IH, Kim CT, Kim Y. Ginger Extract Ameliorates Obesity and Inflammation via Regulating MicroRNA-21/132 Expression and AMPK Activation in White Adipose Tissue. Nutrients 2018; 10:E1567. [PMID: 30360535 PMCID: PMC6266584 DOI: 10.3390/nu10111567] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/08/2018] [Accepted: 10/19/2018] [Indexed: 02/01/2023] Open
Abstract
Ginger is a plant whose rhizome is used as a spice or folk medicine. We aimed to investigate the effect of ginger root extract on obesity and inflammation in rats fed a high-fat diet. Sprague-Dawley rats were divided into three groups and fed either a 45% high-fat diet (HF), HF + hot-water extract of ginger (WEG; 8 g/kg diet), or HF + high-hydrostatic pressure extract of ginger (HPG; 8 g/kg diet) for 10 weeks. The HPG group had lower body weight and white adipose tissue (WAT) mass compared to the HF group. Serum and hepatic lipid levels of HPG group were lower, while fecal lipid excretion of the HPG group was higher than that of the HF group. In the WAT of the WEG and HPG groups, mRNA levels of adipogenic genes were lower than those of the HF group. Moreover, HPG group had lower mRNA levels of pro-inflammatory cytokines than did the HF group. MicroRNA (miR)-21 expression was down-regulated by both WEG and HPG. Additionally, miR-132 expression was down-regulated by HPG. The adenosine monophosphate-activated protein kinase (AMPK) activity of HPG group was greater than that of the HF group. HPG may have beneficial effects on obesity and inflammation, partially mediated by regulation of miR-21/132 expression and AMPK activation in WAT.
Collapse
Affiliation(s)
- Seunghae Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Sunyoon Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Hye-Yeon Son
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Seonyoung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Bori Kang
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Seog-Young Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea.
| | - Chong-Tai Kim
- Research Group of Bioprocess Engineering, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
23
|
Zhao Y, Chen ZY. Roles of Spicy Foods and Their Bioactive Compounds in Management of Hypercholesterolemia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8662-8671. [PMID: 30056715 DOI: 10.1021/acs.jafc.8b02975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hypercholesterolemia, as one of the major risk factors in development of cardiovascular diseases, is of mounting prevalence worldwide in recent years. Many nutraceuticals and phytochemical supplements serve as a promising complementary therapy in the management of hypercholesterolemia. Among them, spicy foods have attracted special attention. Plasma lipid-lowering activity of garlic, ginger, and turmeric have been well-studied in both humans and animals. Consumption of either 3 g/day of ginger or 2 g/day of curcumin for over 4 weeks effectively reduced blood cholesterol in hypercholesterolemia subjects. However, effects of chili and black peppers on blood cholesterol are studied little clinically. The present review is to summarize the findings of recent studies on the efficacy and mechanism of spicy foods and their primary bioactive components in management of hypercholesterolemia from preclinical studies to clinical trials.
Collapse
Affiliation(s)
- Yimin Zhao
- Food and Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong, People's Republic of China
| | - Zhen-Yu Chen
- Food and Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong, People's Republic of China
| |
Collapse
|
24
|
Wang Y, Wei X, Wang F, Xu J, Tang X, Li N. Structural characterization and antioxidant activity of polysaccharide from ginger. Int J Biol Macromol 2018; 111:862-869. [PMID: 29360545 DOI: 10.1016/j.ijbiomac.2018.01.087] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 12/14/2022]
Abstract
Two components ginger polysaccharide 1 (GP1) and ginger polysaccharide 2 (GP2) were extracted. The results showed that the molecular weights of GP1 and GP2 were 6128 Da and 12,619 Da, respectively. The composition and proportion of GP1 and GP2 were mannose, glucose and galactose in a molar ratio of 4.96: 92.24: 2.80 and arabinose, mannose, glucose and galactose in a molar ratio of 4.78: 16.70: 61.77: 16.75, respectively, illustrating that GP1 and GP2 were not a kind of homopolysaccharide. GP1 has a three-helix structure, and the structure is closely linked. GP2 contains sulfuric acid groups, and has a high oxidation resistance, its structure is more evacuated and messy.
Collapse
Affiliation(s)
- Yun Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xuelian Wei
- University of Illinois at Urbana-Champaign, IL6801, USA
| | - Fuhou Wang
- Gasu Polytechnic College of Animal Husbandry & Engineering, Wuwei 733006, PR China
| | - Jingjing Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xiaozhen Tang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Ningyang Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
25
|
Lu M, Cao Y, Xiao J, Song M, Ho CT. Molecular mechanisms of the anti-obesity effect of bioactive ingredients in common spices: a review. Food Funct 2018; 9:4569-4581. [DOI: 10.1039/c8fo01349g] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mechanisms of the anti-obesity effects of bioactive compounds in common spices in adipocytes, animal models and human participants have been reviewed.
Collapse
Affiliation(s)
- Muwen Lu
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P. R. China
- Department of Food Science
| | - Yong Cao
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Jie Xiao
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P. R. China
- Department of Food Science
| | - Mingyue Song
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P. R. China
- Department of Food Science
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| |
Collapse
|
26
|
Bin-Meferi MM, Shati AA, Eid RA, El-kott AF. Anti-obesity and Anti-hepatosteatosis Effects of Dietary Zingiber officinale Extract in Male Obese Rats. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.620.627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|