1
|
Gao G, Zhao J, Ding J, Liu S, Shen Y, Liu C, Ma H, Fu Y, Xu J, Sun Y, Zhang X, Zhang Z, Xie Z. Alisol B regulates AMPK/mTOR/SREBPs via directly targeting VDAC1 to alleviate hyperlipidemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155313. [PMID: 38520833 DOI: 10.1016/j.phymed.2023.155313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/03/2023] [Accepted: 12/25/2023] [Indexed: 03/25/2024]
Abstract
BACKGROUND The occurrence of hyperlipidemia is significantly influenced by lipid synthesis, which is regulated by sterol regulatory element binding proteins (SREBPs), thus the development of drugs that inhibit lipid synthesis has become a popular treatment strategy for hyperlipidemia. Alisol B (ALB), a triterpenoid compound extracted from Alisma, has been reported to ameliorate no-nalcoholic steatohepatitis (NASH) and slow obesity. However, the effect of ALB on hyperlipidemia and mechanism are unclear. PURPOSE To examine the therapeutic impact of ALB on hyperlipidemia whether it inhibits SREBPs to reduce lipid synthesis. STUDY DESIGN HepG2, HL7702 cells, and C57BL/6J mice were used to explore the effect of ALB on hyperlipidemia and the molecular mechanism in vivo and in vitro. METHODS Hyperlipidemia models were established using western diet (WD)-fed mice in vivo and oleic acid (OA)-induced hepatocytes in vitro. Western blot, real-time PCR and other biological methods verified that ALB regulated AMPK/mTOR/SREBPs to inhibit lipid synthesis. Cellular thermal shift assay (CETSA), molecular dynamics (MD), and ultrafiltration-LC/MS analysis were used to evaluate the binding of ALB to voltage-dependent anion channel protein-1 (VDAC1). RESULTS ALB decreased TC, TG, LDL-c, and increased HDL-c in blood, thereby ameliorating liver damage. Gene set enrichment analysis (GSEA) indicated that ALB inhibited the biosynthesis of cholesterol and fatty acids. Consistently, ALB inhibited the protein expression of n-SREBPs and downstream genes. Mechanistically, the impact of ALB on SREBPs was dependent on the regulation of AMPK/mTOR, thereby impeding the transportation of SREBPs from endoplasmic reticulum (ER) to golgi apparatus (GA). Further investigations indicated that the activation of AMPK by ALB was independent on classical upstream CAMKK2 and LKB1. Instead, ALB resulted in a decrease in ATP levels and an increase in the ratios of ADP/ATP and AMP/ATP. CETSA, MD, and ultrafiltration-LC/MS analysis indicated that ALB interacted with VDAC1. Molecular docking revealed that ALB directly bound to VDAC1 by forming hydrogen bonds at the amino acid sites S196 and H184 in the ATP-binding region. Importantly, the thermal stabilization of ALB on VDAC1 was compromised when VDAC1 was mutated at S196 and H184, suggesting that these amino acids played a crucial role in the interaction. CONCLUSION Our findings reveal that VDAC1 serves as the target of ALB, leading to the inhibition of lipid synthesis, presents potential target and candidate drugs for hyperlipidemia.
Collapse
Affiliation(s)
- Gai Gao
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Jie Zhao
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Jing Ding
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Shuyan Liu
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yanyan Shen
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Changxin Liu
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Huifen Ma
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yu Fu
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yiran Sun
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Xiaowei Zhang
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Zhishen Xie
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| |
Collapse
|
2
|
Białek M, Białek A, Wojtak W, Czauderna M. Organic and Inorganic Selenium Compounds Affected Lipidomic Profile of Spleen of Lambs Fed with Diets Enriched in Carnosic Acid and Fish Oil. Animals (Basel) 2023; 14:133. [PMID: 38200864 PMCID: PMC10778479 DOI: 10.3390/ani14010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The purpose of our study was to investigate the effect of 0.35 mg Se/kg basal diet (BD) (Se as sodium selenate (Se6) and yeast rich in seleno-methionine (SeYe)) and 0.1% carnosic acid (CA) supplementation to the diet containing 1% fish oil (F-O) and 2% rapeseed oil (R-O) on the contents of fatty acids (FA), malondialdehyde (MDA), tocopherols (Ts), and total cholesterol (TCh) in lambs' spleens. A total of 24 male lambs (4 groups per 6 animals) have been fed: the control diet-the basal diet (BD) enriched in F-O and R-O; the CA diet-BD enriched in F-O, R-O, and CA; the SeYeCA diet-BD enriched in F-O, R-O, CA, and SeYe; the Se6CA diet-BD enriched in F-O, R-O, CA, and Se6. Dietary modifications affected the profiles of saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids in spleens. The SeYeCA and Se6CA diets increased the docosapentaenoic acid preference in Δ4-desaturase; hence, a higher content of docosahexaenoic acid was found in the spleens of SeYe- or Se6-treated lambs than in spleens of animals receiving the CA and control diets. The SeYeCA and Se6CA diets increased the concentration ratio of n-3long-chain PUFA (n-3LPUFA) to FA (n-3LPUFA/FA) in spleens compared to the control and CA diets. The content of n-3PUFA was higher in the spleens of Se6 treated lambs than in spleens of animals receiving the SeYeCA, CA, and control diets. The Se6CA diet increased the content of c9t11CLA in the spleen compared to the control, CA, and SeYeCA diets. Experimental diets reduced the level of atherogenic FA, the content ratios of n-6PUFA/n-3PUFA and n-6LPUFA/n-3LPUFA, and improved the content ratio of MUFA/FA and the value of the hypocholesterolemic/hypercholesterolemic FA ratio in the spleen in comparison with the control diet. The experimental diets supplemented with SeYe or Se6 increased levels of TCh and Ts in spleens in comparison with the CA and control CA diets. The present studies documented that Se6, SeYe, and CA influenced the metabolism of FA, Ts, and cholesterol in spleens.
Collapse
Affiliation(s)
- Małgorzata Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (A.B.); (W.W.)
| | - Agnieszka Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (A.B.); (W.W.)
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
| | - Wiktoria Wojtak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (A.B.); (W.W.)
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; (M.B.); (A.B.); (W.W.)
| |
Collapse
|
3
|
Xie ZS, Zhao JP, Wu LM, Chu S, Cui ZH, Sun YR, Wang H, Ma HF, Ma DR, Wang P, Zhang XW, Zhang ZQ. Hederagenin improves Alzheimer's disease through PPARα/TFEB-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154711. [PMID: 36809694 DOI: 10.1016/j.phymed.2023.154711] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Autophagic flux is coordinated by a network of master regulatory genes, which centered on transcription factor EB (TFEB). The disorders of autophagic flux are closely associated with Alzheimer's disease (AD), and thus restoring autophagic flux to degrade pathogenic proteins has become a hot therapeutic strategy. Hederagenin (HD), a triterpene compound, isolated from a variety food such as Matoa (Pometia pinnata) Fruit, Medicago sativa, Medicago polymorpha L. Previous studies have shown that HD has the neuroprotective effect. However, the effect of HD on AD and underlying mechanisms are unclear. PURPOSE To determine the effect of HD on AD and whether it promotes autophagy to reduce AD symptoms. STUDY DESIGN BV2 cells, C. elegans and APP/PS1 transgenic mice were used to explore the alleviative effect of HD on AD and the molecular mechanism in vivo and in vitro. METHODS The APP/PS1 transgenic mice at 10 months were randomized into 5 groups (n = 10 in each group) and orally administrated with either vehicle (0.5% CMCNa), WY14643 (10 mg/kg/d), low-dose of HD (25 mg/kg/d), high-dose of HD (50 mg/kg/d) or MK-886 (10 mg/kg/d) + HD (50 mg/kg/d) for consecutive 2 months. The behavioral experiments including morris water maze test, object recognition test and Y maze test were performed. The effects of HD on Aβ deposition and alleviates Aβ pathology in transgenic C. elegans were operated using paralysis assay and fluorescence staining assay. The roles of HD in promoting PPARα/TFEB-dependent autophagy were investigated using the BV2 cells via western blot analysis, real-time quantitative PCR (RT-qPCR), molecular docking, molecular dynamic (MD) simulation, electron microscope assay and immunofluorescence. RESULTS In this study, we found that HD upregulated mRNA and protein level of TFEB and increased the distribution of TFEB in the nucleus, and the expressions of its target genes. HD also promoted the expressions of LC3BII/LC3BI, LAMP2, etc., and promoted autophagy and the degradation of Aβ. HD reduced Aβ deposition in the head area of C. elegans and Aβ-induced paralysis. HD improved cognitive impairment and pathological changes in APP/PS1 mice by promoting autophagy and activating TFEB. And our results also showed that HD could strongly target PPARα. More importantly, these effects were reversed by treatment of MK-886, a selective PPARα antagonist. CONCLUSION Our present findings demonstrated that HD attenuated the pathology of AD through inducing autophagy and the underlying mechanism associated with PPARα/TFEB pathway.
Collapse
Affiliation(s)
- Zhi-Shen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Jian-Ping Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Li-Min Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Shuang Chu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Zheng-Hao Cui
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Yi-Ran Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Hui Wang
- College of Pharmacy, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Hui-Fen Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Dong-Rui Ma
- Department of Neurology, Singapore General Hospital, 20 College Road, Singapore 169856; Duke-Nus Medical School, 8 College Road, Singapore 169857
| | - Pan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China.
| | - Xiao-Wei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China.
| | - Zhen-Qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China.
| |
Collapse
|
4
|
Xie Z, Li EW, Gao G, Du Y, Wang M, Wang H, Wang P, Qiao Y, Su Y, Xu J, Zhang X, Zhang Z. Zexie Tang targeting FKBP38/mTOR/SREBPs pathway improves hyperlipidemia. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115101. [PMID: 35151834 DOI: 10.1016/j.jep.2022.115101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zexie Tang (ZXT), only two consists with Alismatis Rhizoma (AR) and Atractylodes macrocephala Rhizoma (AM), a classical Chinese medicine formula from Synopsis of the Golden Chamber with a history of 2000 years. Clinical observation in recent years has found that ZXT has excellent lipid-lowering effect. AIM OF THE STUDY To explore the potential mechanism of ZXT ameliorates hyperlipidemia based on FKBP38/mTOR/SREBPs pathway. MATERIALS AND METHODS WD-induced hyperlipidemia mice and oleic acid induced cell lipid accumulation model were used to investigate pharmacodynamic. The effect of ZXT on the transcriptional activity of SREBPs was detected by reporter gene assay. Proteins and downstream genes of mTOR/SREBPs pathway were detected in vivo and in vitro. Combined with network pharmacology and HPLC-Q-TOF/MS, the active ingredients were screened and identified. The interaction between active compounds of ZXT and FKBP38 protein were analyzed by docking analysis. RESULTS ZXT decreased TC, TG and LDL-c levels in blood of WD-induced hyperlipidemia mouse model, and improved insulin resistance in vivo. ZXT also reduced TC, TG and lipid accumulation in cells line, and inhibited SREBPs luciferase activity, protein and its target genes expression such as FASN, HMGCR, etc. Meanwhile, ZXT inhibited protein expression levels of p-mTOR, p-S6K, etc in vitro and in vivo. Combined with network pharmacology and HPLC-Q-TOF/MS, 16 active ingredients were screened and identified. Docking results showed that active compounds of ZXT binding to FKBP38 and formed hydrogen bond. CONCLUSION Our findings highlighted that ZXT ameliorates hyperlipidemia, in which FKBP/mTOR/SREBPs pathway might be the potential regulatory mechanism.
Collapse
Affiliation(s)
- Zhishen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Er-Wen Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Gai Gao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yueyue Du
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Mengyao Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Hui Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Pan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yonghui Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yunfang Su
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Jiangyan Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Xiaowei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| |
Collapse
|
5
|
Wei J, Liang Q, Guo Y, Zhang W, Wu L. A Deep Insight in the Antioxidant Property of Carnosic Acid: From Computational Study to Experimental Analysis. Foods 2021; 10:2279. [PMID: 34681327 PMCID: PMC8534978 DOI: 10.3390/foods10102279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Since the deep cause for the anti-oxidation of carnosic acid (CA) against oleic acid (OA) remains unclear, we focused on exploring the CA inhibition mechanism via a combined experimental and computational study. Atomic charge, total molecular energy, phenolic hydroxyl bond dissociation enthalpy (BDE), the highest occupied molecular orbital (HOMO), and the lowest unoccupied orbital (LUMO) energy were first discussed by the B3LYP/6-31G (d,p) level, a density functional method. A one-step hydrogen atom transfer (HAT) was proposed for the anti-oxidation of CA towards OA, and the Rancimat method was carried out for analyzing the thermal oxidation stability. The results indicate that the two phenolic hydroxyl groups located at C7(O15) and C8(O18) of CA exert the highest activity, and the chemical reaction heat is minimal when HAT occurs. Consequently, the activity of C7(O15) (303.27 kJ/mol) is slightly lower than that of C8(O18) (295.63 kJ/mol), while the dissociation enthalpy of phenol hydroxyl groups is much lower than those of α-CH2 bond of OA (C8, 353.92 kJ/mol; C11, 353.72 kJ/mol). Rancimat method and non-isothermal differential scanning calorimetry (DSC) demonstrate that CA outcompetes tertiary butylhydroquinone (TBHQ), a synthetic food grade antioxidant, both in prolonging the oxidation induction period and reducing the reaction rate of OA. The Ea (apparent activation energies of reaction) of OA, TBHQ + OA, and CA + OA were 50.59, 57.32 and 66.29 kJ/mol, revealing that CA could improve the Ea and thermal oxidation stability of OA.
Collapse
Affiliation(s)
- Jing Wei
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, 285 Nanhai Road, Haikou 570314, China
| | - Qian Liang
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
| | - Yuxin Guo
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
| | - Weimin Zhang
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, 285 Nanhai Road, Haikou 570314, China
| | - Long Wu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
6
|
Zhang X, Liu DY, Shang H, Jia Y, Xu XD, Tian Y, Guo P. Amino acid ester-coupled caffeoylquinic acid derivatives as potential hypolipidemic agents: synthesis and biological evaluation. RSC Adv 2021; 11:1654-1661. [PMID: 35424091 PMCID: PMC8693647 DOI: 10.1039/d0ra09621k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Pandanus tectorius (L.) Parkins. (PTPs) is rich in caffeoylquinic acids and amino acids, especially some essential amino acids, such as valine, phenylalanine, and so forth. A series of novel amino acid ester-coupled caffeoylquinic acid derivatives have been designed and synthesized. Biological evaluation suggested that some amino acid ester-coupled derivatives exhibited varying degrees of lipid-lowering effects on oleic acid-elicited lipid accumulation in HepG2 liver cells. Particularly, derivatives 6c, 6d, 6e and 6f exhibited comparable potential lipid-lowering effect with the positive control simvastatin and chlorogenic acid. Further studies on the mechanism of 6c, 6d, 6e and 6f revealed that the lipid-lowering effects were related to their regulation of TG levels and mRNA levels of lipometabolic-modulating genes, and merit further investigation.
Collapse
Affiliation(s)
- Xi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College No. 151, Malianwa North Road, Haidian District Beijing 100193 P. R. China
| | - Dong-Yun Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College No. 151, Malianwa North Road, Haidian District Beijing 100193 P. R. China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College No. 151, Malianwa North Road, Haidian District Beijing 100193 P. R. China
| | - Yi Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College No. 151, Malianwa North Road, Haidian District Beijing 100193 P. R. China
| | - Xu-Dong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College No. 151, Malianwa North Road, Haidian District Beijing 100193 P. R. China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College No. 151, Malianwa North Road, Haidian District Beijing 100193 P. R. China
| | - Peng Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College No. 151, Malianwa North Road, Haidian District Beijing 100193 P. R. China
| |
Collapse
|
7
|
Zheng ZG, Cheng HM, Zhou YP, Zhu ST, Thu PM, Li HJ, Li P, Xu X. Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss. Cell Death Differ 2020; 27:2048-2065. [PMID: 31907393 PMCID: PMC7308277 DOI: 10.1038/s41418-019-0484-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Osteoporosis develops because of impaired bone formation and/or excessive bone resorption. Several pharmacological treatment of osteoporosis has been developed; however, new treatments are still necessary. Cholesterol and estrogen receptor-related receptor alpha (ERRα) promote osteoclasts formation, survival, and cellular fusion and thus become high risk factors of osteoporosis. In this study, we identified that carnosic acid (CA) suppressed bone loss by dual-targeting of sterol regulatory element-binding protein 2 (SREBP2, a major regulator that regulates cholesterol synthesis) and ERRα. Mechanistically, CA reduced nuclear localization of mature SREBP2 and suppressed de novo biogenesis of cholesterol. CA subsequently decreased the interaction between ERRα and peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β), resulting in decreased the transcription activity of ERRα and its target genes expression. Meanwhile, CA directly bound to the ligand-binding domain of ERRα and significantly promoted its ubiquitination and proteasomal degradation. Subsequently, STUB1 was identified as the E3 ligase of ERRα. The lysine residues (K51 and K68) are essential for ubiquitination and proteasomal degradation of ERRα by CA. In conclusion, CA dually targets SREBP2 and ERRα, thus inhibits the RANKL-induced osteoclast formation and improves OVX-induced bone loss. CA may serve as a lead compound for pharmacological control of osteoporosis.
Collapse
Affiliation(s)
- Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Min Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ya-Ping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Si-Tong Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Pyone Myat Thu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Bao TQ, Li Y, Qu C, Zheng ZG, Yang H, Li P. Antidiabetic Effects and Mechanisms of Rosemary ( Rosmarinus officinalis L.) and its Phenolic Components. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1353-1368. [PMID: 33016104 DOI: 10.1142/s0192415x20500664] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Diabetes mellitus is a chronic endocrine disease result from absolute or relative insulin secretion deficiency, insulin resistance, or both, and has become a major and growing public healthy menace worldwide. Currently, clinical antidiabetic drugs still have some limitations in efficacy and safety such as gastrointestinal side effects, hypoglycemia, or weight gain. Rosmarinus officinalis is an aromatic evergreen shrub used as a food additive and medicine, which has been extensively used to treat hyperglycemia, atherosclerosis, hypertension, and diabetic wounds. A great deal of pharmacological research showed that rosemary extract and its phenolic constituents, especially carnosic acid, rosmarinic acid, and carnosol, could significantly improve diabetes mellitus by regulating glucose metabolism, lipid metabolism, anti-inflammation, and anti-oxidation, exhibiting extremely high research value. Therefore, this review summarizes the pharmacological effects and underlying mechanisms of rosemary extract and its primary phenolic constituents on diabetes and relative complications both in vitro and in vivo studies from 2000 to 2020, to provide some scientific evidence and research ideas for its clinical application.
Collapse
Affiliation(s)
- Tian-Qi Bao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Qu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
9
|
Xie Z, Zhong L, Wu Y, Wan X, Yang H, Xu X, Li P. Carnosic acid improves diabetic nephropathy by activating Nrf2/ARE and inhibition of NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 47:161-173. [PMID: 30166101 DOI: 10.1016/j.phymed.2018.04.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/22/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN), one of the most serious complications of diabetes, is the leading cause of morbidity and mortality of end-stage renal disease. Our previous research found that carnosic acid (CA) or rosemary extract can effectively improve glucose and lipid metabolism disorder by inhibiting SREBPs. PURPOSE In this study, we aimed to explore the therapeutic effects of CA on the DN. METHODS The mice glomerular mesangial cells (mGMCs) were used to evaluate the anti-oxidative and anti-inflammation effects of CA under high glucose (HG) condition. Furthermore, db/db mice and streptozotocin (STZ)-induced diabetic mice were used to investigate the effects of CA against DN in vivo. RESULTS The results showed that CA activated Nrf2, inhibited NF-κB pathway and regulated related downstream genes in mGMC under HG condition. A 14-week treatment of mice with CA reduced water uptake and urine volume, attenuated diabetes-induced albuminuria, increased urine creatinine, and subsequently improved the glomerular sclerosis and mesangial expansion in db/db mice. Similarly, a 20-week oral administration of CA improved kidney damage in STZ-induced diabetic mice. In addition, CA inhibited the expression of profibrotic factors, such as TGF-β1, fibronectin and E-cadherin. Compared to irbesartan, CA exerted better glucose lowering effect, and in kidney, CA was more potent to reduce fibronectin and E-cadherin expression. In all the animal experiment, CA did not lead to abnormal damages to other tissues. CONCLUSION These findings suggest that CA is a safe compound which exerts the protective effects on diabetes-induced kidney complications.
Collapse
Affiliation(s)
- Zhisheng Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lingjun Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yanrao Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaomeng Wan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|