1
|
Pan JH, Lee MK, Chang MH, Crowley LN, Le BL, Lee DS, Kim TG, Kim D, Lee K, Ko SG, Lee JH, Lee SH, Kim JK. Optimized combination of Cervus nippon (Sika deer), Angelica (Dangui), and Rehmannia (Suk-jihwang) mitigates LPS-induced inflammation: exploring signaling pathways through plasma metabolomics. Food Sci Biotechnol 2024; 33:1671-1683. [PMID: 38623429 PMCID: PMC11016027 DOI: 10.1007/s10068-023-01476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 04/17/2024] Open
Abstract
This study aimed to determine the optimal combination of three anti-inflammatory materials [i.e., Cervus nippon Temminck (CT), Angelica gigas Nakai (AN), and Rehmannia glutinosa (RG)] for the strongest anti-inflammatory potential. Eighteen combinations of the three materials were tested in LPS-stimulated RAW264.7 cells via assessing nitric oxide (NO). The best combination from in vitro studies was administered to LPS-treated C57BL/6J mice for five days. Subsequently, plasma metabolites were profiled by bioinformatics analyses and validations. As results, 2, 20, and 50 µg/mL of CT, AN, and RG (TM) were the most effective combination suppressing inflammation. In mice, TM mitigated hepatic inflammatory markers. Similarly, the metabolomics indicated that TM may suppress NF-κB signaling pathway, thereby alleviating hepatic inflammation. TM also decreased systemic and hepatic pro-inflammatory cytokines. Collectively, we found the optimal combination of TM for mitigating inflammation; thus further studies on safety, mechanisms, and clinical models are warranted for human applications. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01476-x.
Collapse
Affiliation(s)
- Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716 USA
- Department of Food and Nutrition, Chosun University, Gwangju, 61452 Republic of Korea
| | - Min Kook Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
| | - Moon Han Chang
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
| | - Liana N. Crowley
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716 USA
| | - Brandy L. Le
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716 USA
| | - Da Seul Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365 Republic of Korea
| | - Tae Gyun Kim
- The Bioinformatix Inc, Cheongju, 28674 Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365 Republic of Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
- Biological Clock-Based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Suk Hee Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
- Biological Clock-Based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716 USA
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- Department of Behavioral Health and Nutrition, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| |
Collapse
|
2
|
Wang S, Zhang J, Li J, Wang J, Liu W, Zhang Z, Yu H. Label-free quantitative proteomics reveals the potential mechanisms of insoluble dietary fiber from okara in improving hepatic lipid metabolism of high-fat diet-induced mice. J Proteomics 2023; 287:104980. [PMID: 37499746 DOI: 10.1016/j.jprot.2023.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The high purity insoluble dietary fiber (IDF) from okara is a natural component with a potentially positive effect on a high-fat diet (HFD)-induced hepatic metabolic disorders, although its regulatory mechanism remains unclear. This study aims to elucidate the potential pathways and key proteins of IDF for the amelioration of hepatic lipid metabolism in mice fed with HFD. Here, we used label-free quantitative proteomics technology to quantity and identify differentially expressed proteins in the liver that are associated with IDF treatment. The differentially expressed proteins were assessed by GO annotation and KEGG pathways. Western blot and qRT-PCR analyses were conducted to validate the potential targets regulated by IDF. In total, 73 differentially expressed proteins were identified, of which 27 were up-regulated (FC > 1.5) and 46 were down-regulated (FC < 0.667). GO analysis suggested that differentially expressed proteins were mainly located in the cell and organelles, regulated biological processes, and were associated with enzyme activity and molecular binding. The KEGG pathway enrichment analysis further demonstrated glycolysis/gluconeogenesis, pyruvate metabolism, TCA cycle, arginine biosynthesis, alanine, aspartate and glutamate metabolism, and retinol metabolism were affected. The combination of proteomics, Western blot, and qRT-PCR suggested that ACS, ACLY, GOT1, GLS2, NAGS, CYP4A10, CYP3A25, and CYP2A5 in these pathways might be key proteins for IDF intervention. Taken together, our findings elucidate new mechanisms involved in how IDF affects hepatic metabolism, provide important information for the functional food industries, and improve the added value of okara. SIGNIFICANCE: Okara is evidenced as a high-quality by-product with several nutritional components, especially dietary fiber (50-60%) labeled as "The Seventh Nutrient". Previous studies have shown that IDF has a positive potential effect on a high-fat diet (HFD)-induced hepatic metabolic disorders, but its molecular mechanism remains unclear. To elucidate the therapeutic mechanism of IDF at the protein level, a label-free quantitative proteomic analysis was used to identify the dynamic changes of the liver proteome between HIDF and HFD groups in this study. These results provide a new perspective for exploring the therapeutic mechanism of IDF at the protein level and enlightenment for promoting the comprehensive utilization of okara.
Collapse
Affiliation(s)
- Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Jiarui Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, 32004, Spain
| | - Junyao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Wenhao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Zhao Zhang
- Shandong Sinoglory Health Food Co., Ltd., Liaocheng, Shandong 252000, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China.
| |
Collapse
|
3
|
Tehrani SS, Goodarzi G, Panahi G, Zamani-Garmsiri F, Meshkani R. The combination of metformin with morin alleviates hepatic steatosis via modulating hepatic lipid metabolism, hepatic inflammation, brown adipose tissue thermogenesis, and white adipose tissue browning in high-fat diet-fed mice. Life Sci 2023; 323:121706. [PMID: 37075944 DOI: 10.1016/j.lfs.2023.121706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
AIM The valuable effects of metformin (MET) and morin (MOR) in the improvement of NAFLD have been proposed, nevertheless, their combination impacts were not investigated so far. We determined the therapeutic effects of combined MET and MOR treatment in high-fat diet (HFD)-induced Non-alcoholic fatty liver disease (NAFLD) mice. METHODS C57BL/6 mice were fed on an HFD for 15 weeks. Animals were allotted into various groups and supplemented with MET (230 mg/kg), MOR (100 mg/kg), and MET + MOR (230 mg/kg + 100 mg/kg). KEY FINDINGS MET in combination with MOR reduced body and liver weight in HFD-fed mice. A significant decrease in fasting blood glucose and improvement in glucose tolerance was observed in HFD mice treated with MET + MOR. Supplementation with MET + MOR led to a decline in hepatic triglyceride levels and this impact was associated with diminished expression of fatty-acid synthase (FAS) and elevated expression of carnitine palmitoyl transferase 1 (CPT1) and phospho-Acetyl-CoA Carboxylase (p-ACC). Moreover, MET combined with MOR alleviates hepatic inflammation through the polarization of macrophages to the M2 phenotype, decreasing the infiltration of macrophages and lowering the protein level of NF-kB. MET and MOR in combination reduce the size and weight of epididymal white adipose tissue (eWAT), and subcutaneous WAT (sWAT), whereas improves cold tolerance, BAT activity, and mitochondrial biogenesis. Combination therapy results in stimulating brown-like adipocyte (beige) formation in the sWAT of HFD mice. SIGNIFICANCE These results suggest that the combination of MET and MOR has a protective effect on hepatic steatosis, which may use as a candidate therapeutic for the improvement of NAFLD.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Lü J, Jiang C, Schell TD, Joshi M, Raman JD, Xing C. Angelica gigas: Signature Compounds, In Vivo Anticancer, Analgesic, Neuroprotective and Other Activities, and the Clinical Translation Challenges. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1475-1527. [PMID: 35876033 DOI: 10.1142/s0192415x2250063x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Angelica gigas Nakai (AGN) root is a medicinal herbal widely used in traditional medicine in Korea. AGN root ethanolic extract dietary supplements are marketed in the United States for memory health and pain management. We comprehensively reviewed the anticancer, analgesic, pro-memory and other bio-activities of AGN extract and its signature phytochemicals decursin, decursinol angelate, and decursinol a decade ago in 2012 and updated their anticancer activities in 2015. In the last decade, significant progress has been made for understanding the pharmacokinetics (PK) and metabolism of these compounds in animal models and single dose human PK studies have been published by us and others. In addition to increased knowledge of the known bioactivities, new bioactivities with potential novel health benefits have been reported in animal models of cerebral ischemia/stroke, anxiety, sleep disorder, epilepsy, inflammatory bowel disease, sepsis, metabolic disorders, osteoporosis, osteoarthritis, and even male infertility. Herein, we will update PK and metabolism of pyranocoumarins, review in vivo bioactivities from animal models and human studies, and critically appraise the relevant active compounds, the cellular and molecular pharmacodynamic targets, and pertinent mechanisms of action. Knowledge gaps include whether human pyranocoumarin PK metrics are AGN dose dependent and subjected to metabolic ceiling, or metabolic adaptation after repeated use. Critical clinical translation challenges include sourcing of AGN extracts, product consistency and quality control, and AGN dose optimization for different health conditions and disease indications. Future research directions are articulated to fill knowledge gaps and address these challenges.
Collapse
Affiliation(s)
- Junxuan Lü
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Cheng Jiang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Todd D Schell
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Monika Joshi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jay D Raman
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
A novel sight of the primary active compounds from Umbelliferae: focusing on mitochondria. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wang S, Sun W, Swallah MS, Amin K, Lyu B, Fan H, Zhang Z, Yu H. Preparation and characterization of soybean insoluble dietary fiber and its prebiotic effect on dyslipidemia and hepatic steatosis in high fat-fed C57BL/6J mice. Food Funct 2021; 12:8760-8773. [PMID: 34369950 DOI: 10.1039/d1fo01050f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potential benefits of insoluble dietary fiber (IDF) in the regulation of lipid metabolism have been reported in large prospective cohort studies although the molecular regulatory mechanism is still unclear. Okara is a by-product obtained during soybean processing for soy milk and soybean curd (tofu), which is rarely utilized and can be a cheap potential dietary fiber (DF) resource. In this study, the structure and physicochemical properties of insoluble dietary fiber (SIDF) extracted from okara were characterized, and the prebiotic effects on fat metabolism were investigated in vivo. The results showed that the main monosaccharides of SIDF (90.50%) identified were galactose, arabinose, xylose, rhamnose and glucose. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analyses suggested that SIDF had a loose and porous structure, polysaccharide functional groups, and a typical crystalline cellulose I structure. In addition, SIDF had ideal oil-adsorption capacity (OAC; 7.95 g g-1) and significantly improved cholesterol adsorption (11.14 mg g-1) at pH 7.0. In vivo, IDF supplementation reduced the serum lipid levels and inhibited hepatic fat accumulation. Additionally, SIDF administration improved hepatic steatosis by stimulating lipolysis via upregulation of PPARα, CYP4a10 and CPT1a. This is the first systematic study on the composition, structure, physicochemical properties, adsorption function and biological effects of SIDF. The above results show that SIDF could be used as an ideal functional ingredient in food processing as well as play a positive role in improving the added value of okara and promoting its comprehensive utilization.
Collapse
Affiliation(s)
- Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Wanling Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Bo Lyu
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Zhao Zhang
- Shandong Jiahua Health Care Products Co., Ltd., Liaocheng, Shandong, 252000, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| |
Collapse
|
7
|
Phytotherapy as Multi-Hit Therapy to Confront the Multiple Pathophysiology in Non-Alcoholic Fatty Liver Disease: A Systematic Review of Experimental Interventions. ACTA ACUST UNITED AC 2021; 57:medicina57080822. [PMID: 34441028 PMCID: PMC8400978 DOI: 10.3390/medicina57080822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated fatty liver disease (MAFLD), is a metabolic condition distinguished by fat deposition in the hepatocytes. It has a prevalence of about 25% worldwide and is associated with other conditions such as diabetes mellitus, obesity, hypertension, etc. Background and Objectives: There is currently no approved drug therapy for NAFLD. Current measures in the management of NAFLD include lifestyle modification such as an increase in physical activity or weight loss. Development of NAFLD involves a number of parallel hits: including genetic predisposition, insulin resistance, disordered lipid metabolism, mitochondrial dysfunction, lipotoxicity, oxidative stress, etc. Herbal therapy may have a role to play in the treatment of NAFLD, due to their numerous bioactive constituents and the multiple pharmacological actions they exhibit. Therefore, this systematic review aims to investigate the potential multi-targeting effects of plant-derived extracts in experimental models of NAFLD. Materials and Methods: We performed a systematic search on databases and web search engines from the earliest available date to 30 April 2021, using relevant keywords. The study included articles published in English, assessing the effects of plant-derived extracts, fractions, or polyherbal mixtures in the treatment of NAFLD in animal models. These include their effects on at least disordered lipid metabolism, insulin resistance/type 2 diabetes mellitus (T2DM), and histologically confirmed steatosis with one or more of the following: oxidative stress, inflammation, hepatocyte injury, obesity, fibrosis, and cardiometabolic risks factors. Results: Nine articles fulfilled our inclusion criteria and the results demonstrated the ability of phytomedicines to simultaneously exert therapeutic actions on multiple targets related to NAFLD. Conclusions: These findings suggest that herbal extracts have the potential for effective treatment or management of NAFLD.
Collapse
|
8
|
Caldas APS, Rocha DMUP, Bressan J, Hermsdorff HHM. Dietary fatty acids as nutritional modulators of sirtuins: a systematic review. Nutr Rev 2021; 79:235-246. [PMID: 32403131 DOI: 10.1093/nutrit/nuaa007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CONTEXT The sirtuins (SIRT1 to SIRT7) constitute a family of highly conserved nicotinamide adenine dinucleotide-dependent proteins. When activated, sirtuins control essential cellular processes to maintain metabolic homeostasis, while lack of expression of sirtuins has been related to chronic disease. OBJECTIVE The aim of this systematic review is to analyze the role of fat consumption as a modulator of human sirtuins. DATA SOURCES This review was conducted according to PRISMA guidelines. Studies were identified by searches of the electronic databases PubMed/MEDLINE, Scopus, and Web of Science. STUDY SELECTION Randomized clinical trials assessing the effect of fatty acid consumption on sirtuin mRNA expression, sirtuin protein expression, or sirtuin protein activity were eligible for inclusion. DATA EXTRACTION Two authors screened and determined the quality of the studies; disagreements were resolved by the third author. All authors compared the compiled data. RESULTS Seven clinical studies with 3 different types of interventions involving healthy and nonhealthy participants were selected. Only SIRT1 and SIRT3 were evaluated. Overall, the evidence from clinical studies to date is insufficient to understand how lipid consumption modulates sirtuins in humans. The best-characterized mechanism highlights oleic acid as a natural activator of SIRT1. CONCLUSION These results draw attention to a new field of interest in nutrition science. The possible activation of sirtuins by dietary fat manipulation may represent an important nutritional strategy for management of chronic and metabolic disease. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42018114456.
Collapse
Affiliation(s)
- Ana Paula S Caldas
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Daniela Mayumi U P Rocha
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
9
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
10
|
Lee TK, Kim B, Kim DW, Ahn JH, Sim H, Lee JC, Yang GE, Her Y, Park JH, Kim HS, Sim TH, Lee HS, Won MH. Effects of Decursin and Angelica gigas Nakai Root Extract on Hair Growth in Mouse Dorsal Skin via Regulating Inflammatory Cytokines. Molecules 2020; 25:E3697. [PMID: 32823713 PMCID: PMC7464339 DOI: 10.3390/molecules25163697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
This current study investigates the facilitative effects and mechanisms of decursin, a major component of Angelica gigas Nakai (AGN), and AGN root extract on hair growth in mice. We perform high-performance liquid chromatography on AGN extract to show it contains 7.3% decursin. Hairs in mouse dorsal skin are shaved distilled in water, 0.15% decursin, and 2% AGN root extract (0.15% decursin in the diluted extract) and topically applied twice a day for 17 days. Hematoxylin and eosin staining are done to examine the morphological changes in the hair follicles. To compare the effects of decursin and AGN extract on inflammatory cytokines in the dorsal skin, Western blot analysis and immunohistochemistry for tumor necrosis factor α (TNF-α) and interleukin (IL)-1β as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines are conducted. The results show that the application of decursin and AGN extract confer effects on hair growth. Hair growth is significantly facilitated from seven days after the treatments compared to that in the control group, and completely grown hair was found 17 days after the treatments. The protein levels and immunoreactivity of TNF-α and IL-1β in this case are significantly decreased, whereas the IL-4 and IL-13 levels and immunoreactivity are significantly increased compared to those in the control group. Additionally, high-mobility group box 1, an inflammatory mediator, is elevated by the topical application of decursin and AGN extract. Taken together, the treatment of mouse dorsal skin with AGE root extract containing decursin promotes hair growth by regulating pro- and/or anti-inflammatory cytokines. We, therefore, suggest that AGN root extract as well as decursin can be utilized as materials for developing hair growth-facilitating treatments.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea; (T.-K.L.); (J.H.A.)
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Korea;
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea; (T.-K.L.); (J.H.A.)
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Korea;
| | - Young Her
- Department of Dermatology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Korea;
| | - Hyun Sook Kim
- Leefarm Co., Ltd., Hongcheon, Gangwon 25117, Korea; (H.S.K.); (T.H.S.)
| | - Tae Heung Sim
- Leefarm Co., Ltd., Hongcheon, Gangwon 25117, Korea; (H.S.K.); (T.H.S.)
| | - Hyun Sam Lee
- Leefarm Co., Ltd., Hongcheon, Gangwon 25117, Korea; (H.S.K.); (T.H.S.)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| |
Collapse
|
11
|
Jung SJ, Kim WR, Oh MR, Cha YS, Park BH, Chae SW. A Randomized, Double-Blind, Placebo-Controlled Clinical Trial Assessing the Effects of Angelica Gigas Nakai Extract on Blood Triglycerides. Nutrients 2020; 12:nu12020377. [PMID: 32023922 PMCID: PMC7071255 DOI: 10.3390/nu12020377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 11/25/2022] Open
Abstract
Angelica gigas Nakai, Korean dang-gui, has long been widely used in traditional treatment methods. There have been a number of studies of the health effects of A. gigas and related compounds, but studies addressing effects on blood triglycerides (TG) are lacking. To investigate the effects of A. gigas Nakai extract (AGNE) on TG in Korean subjects, we carried out a 12-week, randomized, double-blind, placebo-controlled clinical trial. Subjects who met the inclusion criterion (130 mg/dL ≤ fasting blood TG ≤ 200 mg/dL) were recruited for this study. One hundred subjects were assigned to the AGNE group (n = 50) or the placebo group (n = 50), who were given 1 g/day of AGNE (as a gigas Nakai extract 200 mg/d) in capsules and the control group for 12 weeks. Outcomes were efficacy TG, lipid profiles, atherogenic index, and safety parameters were assessed initially for a baseline measurement and after 12 weeks. After 12 weeks of supplementation, TG and very low-density lipoprotein cholesterol (VLDL-C) concentration and TG/HDL-C ratio in the AGNE group were significantly reduced compared to the placebo group (p < 05). No significant changes in any safety parameter were observed. These results suggest that the ingestion of AGNE may improve TG and be useful to manage or prevent hypertriglyceridemia.
Collapse
Affiliation(s)
- Su-Jin Jung
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Korea; (S.-J.J.); (W.-R.K.); (M.-R.O.)
- Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Korea
| | - Woo-Rim Kim
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Korea; (S.-J.J.); (W.-R.K.); (M.-R.O.)
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, Jeonbuk 54896, Korea;
| | - Mi-Ra Oh
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Korea; (S.-J.J.); (W.-R.K.); (M.-R.O.)
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, Jeonbuk 54896, Korea;
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School Jeonju, Jeonbuk 54896, Korea;
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Korea; (S.-J.J.); (W.-R.K.); (M.-R.O.)
- Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Korea
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Korea
- Correspondence: ; Tel.: +82-63-259-3040; Fax: +82-63-259-3060
| |
Collapse
|
12
|
Decursin and Decursinol Angelate Suppress Adipogenesis through Activation of β-catenin Signaling Pathway in Human Visceral Adipose-Derived Stem Cells. Nutrients 2019; 12:nu12010013. [PMID: 31861646 PMCID: PMC7020042 DOI: 10.3390/nu12010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Visceral adiposity is closely associated with metabolic disorders and cardiovascular diseases. Angelica gigas Nakai (AGN) has been reported to possess anti-obesity effects and higher amounts of coumarin compounds are present in AGN. However, the active compounds suppressing adipogenesis in AGN and mechanisms of action have not been investigated in adipose-derived stem cells (ASCs) isolated from visceral adipose tissue (VAT). Among four coumarin compounds of AGN, decursin (D) and decursinol angelate (DA) significantly inhibited adipocyte differentiation from ASCs. D and DA downregulated CCAAT/enhancer binding protein α (C/EBPα), peroxisome proliferator-activated receptor γ (PPARγ), adipocyte fatty acid binding protein (aP2), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) at both mRNA and protein levels. Next, treatment with adipogenic differentiation medium (ADM) on ASCs downregulated β-catenin expression at protein level, while addition of D and DA could restore protein expression and nuclear translocation of β-catenin suppressed by ADM. D and DA treatment on ADM treated ASCs increased inhibitory phosphorylation of Glycogen synthase kinase (GSK)-3β, thereby preventing β-catenin from degradation. Additionally, si-β-catenin transfection significantly upregulated protein expression of C/EBPα and PPARγ, alleviating the anti-adipogenic effect of D and DA on ADM treated ASCs. Overall, D and DA, active compounds from AGN, suppressed adipogenesis through activation of β-catenin signaling pathway in ASCs derived from human VAT, possibly using as natural anti-visceral adiposity agents.
Collapse
|
13
|
Ravinayagam V, Shehzad A, Almohazey D, Almofty S, Aljafary MA, Alhamed NA, Alhamed N, Al-Rashid NA, AL-Suhaimi EA. Decursin induces apoptosis by regulating AMP-activated protein kinase and Bax/Bcl- 2 pathway in HepG2 cell line. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Du C, Ying D, Guo Y, Cheng Y, Han M, Zhang W, Qian H. Ameliorating effects of Sporidiobolus pararoseus extract on dyslipidemia in mice with high fat diet induced obesity. Biochem Cell Biol 2018; 96:695-701. [PMID: 29693421 DOI: 10.1139/bcb-2017-0332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023] Open
Abstract
The study investigated how an extract of Sporidiobolus pararoseus (S.p.) affects lipid metabolism in Kunming mice that were obese as a result of being fed a high-fat diet; the control group were administered Max EPA fish oil. Ten mice were randomly selected from a pool of 60 mice for the control group and the remaining 50 mice were fed with a high-fat diet to establish a dyslipidemia model. After 4 weeks, these 50 mice were randomly distributed among 5 groups: high-fat model group; Max EPA group; and 3 groups of mice fed different doses of S.p. extract (low dose, medium dose, and high dose). After 8 weeks, the mice were sacrificed and the relevant parameters were measured. Compared with the high-fat model group, the group administered the high dose of S.p. extract showed significantly decreased body mass and serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol, and increased levels of high-density lipoprotein cholesterol. The results from RT-PCR showed that the mRNA expression of sterol regulatory element-binding protein 1c, fatty acid synthesis enzyme, and acetyl-CoA carboxylase was lower in the groups supplemented with S.p. extract than in the high-fat model group, whereas the expression of carnitine palmitoyltransferase 1 was higher in the group supplemented with S.p. extract than in the high-fat model group. Our results suggest that taking S.p. extract could benefit patients with dyslipidemia. Therefore, S.p. extract should be developed as a dietary supplement to improve lipid metabolism in obese people.
Collapse
Affiliation(s)
- Chao Du
- a School of Food Engineering, Ludong University, 186 Middle Hongqi Road Yantai, Shandong Province, 264025, P. R. China
- b School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue Wuxi, Jiangsu Province, 214122, P. R. China
| | - Danyu Ying
- b School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue Wuxi, Jiangsu Province, 214122, P. R. China
| | - Yahui Guo
- b School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue Wuxi, Jiangsu Province, 214122, P. R. China
| | - Yuliang Cheng
- b School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue Wuxi, Jiangsu Province, 214122, P. R. China
| | - Mei Han
- c School of Biotechnology, Jiangnan University, 1800 Lihu Avenue Wuxi, Jiangsu Province, 214122, P. R. China
| | - Weiguo Zhang
- c School of Biotechnology, Jiangnan University, 1800 Lihu Avenue Wuxi, Jiangsu Province, 214122, P. R. China
| | - He Qian
- a School of Food Engineering, Ludong University, 186 Middle Hongqi Road Yantai, Shandong Province, 264025, P. R. China
- d National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue Wuxi, Jiangsu Province, 214122, P. R. China
- e Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue Wuxi, Jiangsu Province, 214122, P. R. China
| |
Collapse
|
15
|
Decursin and decursinol angelate: molecular mechanism and therapeutic potential in inflammatory diseases. Inflamm Res 2017; 67:209-218. [PMID: 29134229 DOI: 10.1007/s00011-017-1114-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
Epidemiological studies have shown that inflammation plays a critical role in the development and progression of various chronic diseases, including cancers, neurological diseases, hepatic fibrosis, diabetic retinopathy, and vascular diseases. Decursin and decursinol angelate (DA) are pyranocoumarin compounds obtained from the roots of Angelica gigas. Several studies have described the anti-inflammatory effects of decursin and DA. Decursin and DA have shown potential anti-inflammatory activity by modulating growth factors such as vascular endothelial growth factor, transcription factors such as signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells, cellular enzymes including matrix metalloproteinases cyclooxygenase, and protein kinases such as extracellular receptor kinase, phosphatidylinositol-3-kinase, and protein kinase C. These compounds have the ability to induce apoptosis by activating pro-apoptotic proteins and the caspase cascade, and reduced the expression of anti-apoptotic proteins such as B-cell lymphoma 2 and B-cell lymphoma-extra-large. Interaction with multiple molecular targets and cytotoxic effects, these two compounds are favorable candidates for treating various chronic inflammatory diseases such as cancers (prostate, breast, leukemia, cervical, and myeloma), rheumatoid arthritis, diabetic retinopathy, hepatic fibrosis, osteoclastogenesis, allergy, and Alzheimer's disease. We have summarized the preliminary studies regarding the biological effects of decursin and DA. In this review, we will also highlight the functions of coumarin compounds that can be translated to a clinical practice for the treatment and prevention of various inflammatory ailments.
Collapse
|