1
|
Sheikhi S, Ebrahimi A, Heidari P, Amerian MR, Rashidi-Monfared S, Alipour H. Exogenous 24-epibrassinolide ameliorates tolerance to high-temperature by adjusting the biosynthesis of pigments, enzymatic, non-enzymatic antioxidants, and diosgenin content in fenugreek. Sci Rep 2023; 13:6661. [PMID: 37095206 PMCID: PMC10125993 DOI: 10.1038/s41598-023-33913-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
High-temperature stress is widely considered a main plant-growth-limiting factor. The positive effects of 24-epibrassinolide (EBR) as analogs of brassinosteroids (BRs) in modulating abiotic stresses have led this hormone to be referred to as a growth regulator in plants. The current study highlights the influence of EBR on enhancing tolerance to high-temperature and altering the diosgenin content in fenugreek. Different amounts of EBR (4, 8, and 16 μM), harvesting times (6, and 24 h), as well as temperature regimes (23 °C, and 42 °C) were, used as treatments. EBR application under normal temperature and high-temperature stress resulted in decreased malondialdehyde content and electrolyte leakage percentage, while the activity of antioxidant enzymes improved significantly. Exogenous EBR application possibly contributes to activating the nitric oxide, H2O2, and ABA-dependent pathways, enhancing the biosynthesis of abscisic acid and auxin, and regulating the signal transduction pathways, which raises fenugreek tolerance to high-temperature. The SQS (eightfold), SEP (2.8-fold), CAS (11-fold), SMT (17-fold), and SQS (sixfold) expression, considerably increased following EBR application (8 μM) compared to the control. Compared to the control, when the short-term (6 h) high-temperature stress was accompanied by EBR (8 μM), a sixfold increase in diosgenin content was achieved. Our findings highlight the potential role of exogenous 24-epibrassinolide in mitigating the high-temperature stress in fenugreek by stimulating the biosynthesis processes of enzymatic and non-enzymatic antioxidants, chlorophylls, and diosgenin. In conclusion, the current results could be of utmost importance in breeding or biotechnology-based programs of fenugreek and also in the researches related to the engineering of the biosynthesis pathway of diosgenin in this valuable plant.
Collapse
Affiliation(s)
- Shahla Sheikhi
- Department of Agriculture and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Department of Agriculture and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Parviz Heidari
- Department of Agriculture and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Mohamad Reza Amerian
- Department of Agriculture and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Sajad Rashidi-Monfared
- Plant Breeding and Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
| |
Collapse
|
2
|
Miller N, Joubert E. Critical Assessment of In Vitro Screening of α-Glucosidase Inhibitors from Plants with Acarbose as a Reference Standard. PLANTA MEDICA 2022; 88:1078-1091. [PMID: 34662924 DOI: 10.1055/a-1557-7379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Postprandial hyperglycemia is treated with the oral antidiabetic drug acarbose, an intestinal α-glucosidase inhibitor. Side effects of acarbose motivated a growing number of screening studies to identify novel α-glucosidase inhibitors derived from plant extracts and other natural sources. As "gold standard", acarbose is frequently included as the reference standard to assess the potency of these candidate α-glucosidase inhibitors, with many outperforming acarbose by several orders of magnitude. The results are subsequently used to identify suitable compounds/products with strong potential for in vivo efficacy. However, most α-glucosidase inhibitor screening studies use enzyme preparations obtained from nonmammalian sources (typically Saccharomyces cerevisiae), despite strong evidence that inhibition data obtained using nonmammalian α-glucosidase may hold limited value in terms of identifying α-glucosidase inhibitors with actual in vivo hypoglycemic potential. The aim was to critically discuss the screening of novel α-glucosidase inhibitors from plant sources, emphasizing inconsistencies and pitfalls, specifically where acarbose was included as the reference standard. An assessment of the available literature emphasized the cruciality of stating the biological source of α-glucosidase in such screening studies to allow for unambiguous and rational interpretation of the data. The review also highlights the lack of a universally adopted screening assay for novel α-glucosidase inhibitors and the commercial availability of a standardized preparation of mammalian α-glucosidase.
Collapse
Affiliation(s)
- Neil Miller
- Department of Food Science, Stellenbosch University, South Africa
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Elizabeth Joubert
- Department of Food Science, Stellenbosch University, South Africa
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| |
Collapse
|
3
|
Mabizela GS, du Preez BVP, Human C, Muller M, de Beer D, van der Rijst M, Slabbert MM, Bester C, Joubert E. A balancing act – Optimising harvest season of Cyclopia genistoides (honeybush tea) for enhanced phenolic content and acceptable sensory profile. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Walters NA, de Beer D, de Villiers A, Danton O, Hamburger M, Joubert E. Comprehensive off-line CCC × LC-DAD-MS separation of Cyclopia pubescens Eckl. & Zeyh. phenolic compounds and structural elucidation of isolated compounds. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:347-361. [PMID: 32803806 DOI: 10.1002/pca.2981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The minor phenolic constituents of Cyclopia pubescens Eckl. & Zeyh. are unknown and one dimensional (1D) liquid chromatography (LC) is unable to provide sufficient separation. METHODOLOGY A two-dimensional (2D) LC method incorporating normal-phasehigh performance countercurrent chromatography (NP-HPCCC) in the first dimension (1 D) and reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) as the second dimension (2 D) was developed. The analytical HPCCC method was subsequently scaled up to semi-preparative mode and fractions pooled based on phenolic sub-groups. The phenolic compounds in selected fractions were subsequently isolated using RP-HPLC on a C18 column. Isolated compounds were identified by nuclear magnetic resonance (NMR) spectroscopy. The absolute configurations of compounds were determined by optical rotation and electronic circular dichroism spectra. Sugars were identified by gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS The comprehensive off-line 2D CCC × LC method gave a good spread of the phenolic compounds. Orthogonality calculated using both the convex hull and conditional entropy methods were 81%. High-resolution mass spectrometric fragmentation spectra obtained from a quadrupole-time-of-flight instrument and ultraviolet-visible (UV-vis) spectral data were used to (tentatively) identify 32 phenolic compounds from the analytical CCC fractions. Of the seven isolated compounds, (2S)-5-O-[α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl]eriodictyol (3) and (2S)-5-O-[α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl]-5,7,3',4'-tetrahydroxyflavan (4) were newly identified in all plants. The other isolated compounds were identified as (2S)-5-O-[α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl]naringenin (1), R-neo-eriocitrin (2), 3-O-α-l-arabinopyranosyl-3,4-dihydroxybenzoic acid (5), 4-O-β-d-glucopyranosyl-Z-4-hydroxycinnamic acid (6) and 4-(4'-O-β-d-glucopyranosyl-4'-hydroxy-3'-methoxyphenyl)-2-butanone (7). CONCLUSIONS Among the 32 compounds (tentatively) identified, only six were previously identified in Cyclopia pubescens using 1D LC. Most of the isolated compounds were also identified for the first time in Cyclopia spp., improving the knowledge of the minor phenolic compounds of this genus.
Collapse
Affiliation(s)
- Nico A Walters
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Dalene de Beer
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Ombeline Danton
- Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
5
|
Miller N, Malherbe CJ, Gerber W, Hamman JH, van der Rijst M, Aucamp M, Joubert E. Physicochemical Stability of Enriched Phenolic Fractions of Cyclopia genistoides and ex vivo Bi-directional Permeability of Major Xanthones and Benzophenones. PLANTA MEDICA 2021; 87:325-335. [PMID: 33142345 DOI: 10.1055/a-1265-1945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fractions of an ultrafiltered Cyclopia genistoides extract, respectively enriched in xanthones and benzophenones, were previously shown to inhibit mammalian α-glucosidase in vitro. The present study investigated ex vivo intestinal transport of these fractions, using excised porcine jejunal tissue, to determine whether the gut could be a predominant in vivo site of action. The major bioactive compounds, the xanthones (mangiferin, isomangiferin) and benzophenones (3-β-D-glucopyranosyliriflophenone, 3-β-D-glucopyranosyl-4-O-β-D-glucopyranosyliriflophenone) exhibited poor permeation in the absorptive direction with a relatively high efflux ratio (efflux ratio > 1). The efflux ratio of 3-β-D-glucopyranosyl-4-O-β-D-glucopyranosyliriflophenone (3.05) was similar to rhodamine 123 (2.99), a known substrate of intestinal P-glycoprotein 1 efflux transporters. Low epithelial membrane transport rates, coupled with efflux mechanisms, would effectively concentrate these bioactive compounds at the target site (gut lumen). Storage stability testing and moisture sorption assays of the xanthone-enriched fraction, benzophenone-enriched fraction, and ultrafiltered Cyclopia genistoides extract were performed to determine their susceptibility to physical and chemical degradation during storage. Hygroscopicity of the powders, indicated by moisture uptake, decreased in the order: benzophenone-enriched fraction (22.7%) > ultrafiltered Cyclopia genistoides extract (14.0%) > xanthone-enriched fraction (10.7%). 3-β-D-Glucopyranosylmaclurin, a minor benzophenone, was the least stable of the compounds, degrading faster in the benzophenone-enriched fraction than in ultrafiltered Cyclopia genistoides extract, suggesting that the ultrafiltered extract matrix may provide a degree of protection against chemical degradation. Compound degradation during 12 wk of storage at 40 °C in moisture-impermeable containers was best explained by first order reaction kinetics.
Collapse
Affiliation(s)
- Neil Miller
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Christiaan Johannes Malherbe
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Werner Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Marique Aucamp
- School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
6
|
Human C, Danton O, De Beer D, Maruyama T, Alexander L, Malherbe C, Hamburger M, Joubert E. Identification of a novel di-C-glycosyl dihydrochalcone and the thermal stability of polyphenols in model ready-to-drink beverage solutions with Cyclopia subternata extract as functional ingredient. Food Chem 2021; 351:129273. [PMID: 33662907 DOI: 10.1016/j.foodchem.2021.129273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/15/2022]
Abstract
Heat processing of ready-to-drink beverages is required to ensure a microbiologically safe product, however, this can result in the loss of bioactive compounds responsible for functionality. The objective of this study was to establish the thermal stability of a novel dihydrochalcone, 3',5'-di-β-d-glucopyranosyl-3-hydroxyphloretin (2), 3',5'-di-β-d-glucopyranosylphloretin (3) and other Cyclopia subternata phenolic compounds, in model solutions with or without citric acid and ascorbic acid. The solutions were heated at 93, 121 and 135 °C, relevant to pasteurisation, commercial sterilisation and ultra-high temperature (UHT) pasteurisation, respectively. For most compounds, the acids decreased the second order reaction rate constants, up to 27 times. Compound 2 (46.29 ± 0.53 (g/100 g)-1 h-1), and to a lesser extent compound 3 (5.94 ± 0.01 (g/100 g)-1 h-1) were the most thermo-unstable compounds when treated at 135 °C without added acids. Even though differential effects were observed for compounds at different temperatures and formulations, overall, the phenolic compounds were most stable under UHT pasteurisation conditions.
Collapse
Affiliation(s)
- Chantelle Human
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - Ombeline Danton
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Dalene De Beer
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch), 7600, South Africa
| | - Takuma Maruyama
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Lara Alexander
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch), 7600, South Africa
| | - Christiaan Malherbe
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch), 7600, South Africa.
| |
Collapse
|
7
|
Xanthone- and benzophenone-enriched nutraceutical: Development of a scalable fractionation process and effect of batch-to-batch variation of the raw material (Cyclopia genistoides). Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Miller N, Malherbe CJ, Joubert E. In vitro α-glucosidase inhibition by honeybush (Cyclopia genistoides) food ingredient extract—potential for dose reduction of acarbose through synergism. Food Funct 2020; 11:6476-6486. [DOI: 10.1039/d0fo01306d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synergistic in vitro inhibition of intestinal α-glucosidase by acarbose and xanthones indicates potential for reducing the effective dose of acarbose.
Collapse
Affiliation(s)
- Neil Miller
- Plant Bioactives Group
- Post-Harvest and Agro-processing Technologies
- Agricultural Research Council (ARC) Infruitec-Nietvoorbij
- Stellenbosch 7599
- South Africa
| | - Christiaan J. Malherbe
- Plant Bioactives Group
- Post-Harvest and Agro-processing Technologies
- Agricultural Research Council (ARC) Infruitec-Nietvoorbij
- Stellenbosch 7599
- South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group
- Post-Harvest and Agro-processing Technologies
- Agricultural Research Council (ARC) Infruitec-Nietvoorbij
- Stellenbosch 7599
- South Africa
| |
Collapse
|
9
|
Enhanced production of Th1- and Th2-type antibodies and induction of regulatory T cells in mice by oral administration of Cyclopia extracts with similar phenolic composition to honeybush herbal tea. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Miller N, Bosman SC, Malherbe CJ, De Beer D, Joubert E. Membrane selection and optimisation of tangential flow ultrafiltration of Cyclopia genistoides extract for benzophenone and xanthone enrichment. Food Chem 2019; 292:121-128. [DOI: 10.1016/j.foodchem.2019.04.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
|
11
|
Genotypic variation in phenolic composition of Cyclopia pubescens (honeybush tea) seedling plants. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Bitter profiling of phenolic fractions of green Cyclopia genistoides herbal tea. Food Chem 2019; 276:626-635. [DOI: 10.1016/j.foodchem.2018.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/24/2018] [Accepted: 10/05/2018] [Indexed: 11/30/2022]
|
13
|
Santos CMM, Freitas M, Fernandes E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur J Med Chem 2018; 157:1460-1479. [PMID: 30282319 DOI: 10.1016/j.ejmech.2018.07.073] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022]
Abstract
α-Glucosidase plays an important role in carbohydrate metabolism and is therefore an attractive therapeutic target for the treatment of diabetes, obesity and other related complications. In the last two decades, considerable interest has been given to natural and synthetic xanthone derivatives in this field of research. Herein, a comprehensive review of the literature on xanthones as inhibitors of α-glucosidase activity, their mechanism of action, experimental procedures and structure-activity relationships have been reviewed for more than 280 analogs. With this overview we intend to motivate and challenge researchers (e.g. chemistry, biology, pharmaceutical and medicinal areas) for the design of novel xanthones as multipotent drugs and exploit the properties of this class of compounds in the management of diabetic complications.
Collapse
Affiliation(s)
- Clementina M M Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Department of Chemistry, QOPNA &University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
14
|
Beelders T, de Beer D, Ferreira D, Kidd M, Joubert E. Thermal stability of the functional ingredients, glucosylated benzophenones and xanthones of honeybush (Cyclopia genistoides), in an aqueous model solution. Food Chem 2017; 233:412-421. [DOI: 10.1016/j.foodchem.2017.04.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 10/19/2022]
|