1
|
Aborode AT, Olamilekan Adesola R, Idris I, Adio WS, Scott GY, Chakoma M, Oluwaseun AA, Onifade IA, Adeoye AF, Aluko BA, Abok JI. Troponin C gene mutations on cardiac muscle cell and skeletal Regulation: A comprehensive review. Gene 2024; 927:148651. [PMID: 38871035 DOI: 10.1016/j.gene.2024.148651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The troponin complex plays a crucial role in regulating skeletal and cardiac contraction. Congenital myopathies can occur due to several mutations in genes that encode skeletal troponin. Moreover, there is limited information regarding the composition of skeletal troponin. This review specifically examines a comprehensive review of the TNNC gene mutations on cardiac and skeletal regulations. MAIN BODY Troponin C (TNNC) has been linked to a newly discovered inherited muscle disorder. Genetic variations in genes that encode skeletal troponin can impair the function of sarcomeres. Various treatment approaches have been employed to mitigate the impact of variations, including the use of troponin activators, the injection of wild-type protein via AAV gene therapy, and myosin modification to enhance muscle contraction. The processes responsible for the pathophysiological implications of the variations in genes that encode skeletal troponin are not fully understood. CONCLUSION This comprehensive review will contribute to the understanding of the relationship between human cardiomyopathy and TNNC mutations and will guide the development of therapy approaches.
Collapse
Affiliation(s)
| | - Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Ibrahim Idris
- Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria.
| | - Waheed Sakariyau Adio
- Department of Chemistry and Biochemistry, College of Health and Natural Science, The University of Tulsa, Tulsa, USA.
| | - Godfred Yawson Scott
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Mugove Chakoma
- Department of Primary Healthcare, Faculty of Medicine and Healthcare, University of Zimbabwe, Zimbabwe.
| | | | | | | | | | - Jeremiah I Abok
- Department of Chemistry & Chemical Biology University of New Mexico, USA.
| |
Collapse
|
2
|
Bu G, Zhao X, Wang M, Ti G, Chen F, Duan X, Huang Y, Li P. Identification of calcium chelating peptides from peanut protein hydrolysate and absorption activity of peptide-calcium complex. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6676-6686. [PMID: 38545944 DOI: 10.1002/jsfa.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Peanut peptides have good chelating ability with metal ions. However, there are few studies on the chelation mechanism of peanut peptides with calcium and absorption properties of peptide-calcium complex. RESULTS Peptides with high calcium chelating rate were isolated and purified from peanut protein hydrolysate (PPH), and the chelation rate of component F21 was higher (81.4 ± 0.8%). Six peptides were identified from component F21 by liquid chromatography-tandem mass spectrometry, and the frequency of acidic amino acids and arginine in the amino acid sequence was higher in all six peptides. Peanut peptide-calcium complex (PPH21-Ca) was prepared by selecting component F21 (PPH21). Ultraviolet analysis indicated that the chelate reaction occurred between peanut peptide and calcium ions. Fourier transform infrared analysis showed that the chelating sites were carboxyl and amino groups on the amino acid residues of peptides. Scanning electron microscopy revealed that the surface of peanut peptide had a smooth block structure, but the surface of the complex had a granular morphology. Caco-2 cell model tests revealed that the bioavailability of PPH21-Ca was 58.4 ± 0.5%, which was significantly higher than that of inorganic calcium at 37.0 ± 0.4%. CONCLUSION Peanut peptides can chelate calcium ions by carboxyl and amino groups, and the peptide-calcium complex had higher bioavailability. This study provides a theoretical basis for the development of new calcium supplement products that are absorbed easily. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanhao Bu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xiaoling Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Mengli Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Guanghui Ti
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xiaojie Duan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yanan Huang
- Henan Province Nanjie Village (Group) Co., Ltd, Luohe, China
| | - Panxin Li
- Henan Province Nanjie Village (Group) Co., Ltd, Luohe, China
| |
Collapse
|
3
|
Yan WZ, Wang J, Wang YM, Zeng YH, Chi CF, Wang B. Optimization of the Preparation Process and Ameliorative Efficacy in Osteoporotic Rats of Peptide-Calcium Chelates from Skipjack Tuna ( Katsuwonus pelamis) Meat. Foods 2024; 13:2778. [PMID: 39272543 PMCID: PMC11395252 DOI: 10.3390/foods13172778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to establish the preparation process of peptide-calcium chelates (TMP-Ca) using skipjack tuna meat and investigate the function and mechanism of TMP-Ca in an osteoporosis model of rats. The results indicated that trypsin is more suitable for preparing the Ca-chelating hydrolysates of tuna meat, and the optimal hydrolysis conditions were derived as follows: digestion time 4 h, material-liquid ratio 1:10, and enzyme dose 3%. The conditions for chelating Ca with tuna meat hydrolysate were optimized to be chelation time 50 min, temperature 50 °C, pH 8.0, and a peptide-Ca ratio 1:10. The prepared hydrolysate was subjected to ultrafiltration, and the fraction (TMP) (MW <1 kDa) showed the highest Ca chelation rate (51.27 ± 1.42%) and was made into the peptide-Ca chelates (TMP-Ca). In osteoporotic rats, TMP-Ca significantly improved the decrease in ovarian indexes caused by retinoic acid. It also elevated serum Ca, phosphorus, and bone turnover indexes, increased the number of bone trabeculae, and improved bone microstructure. In addition, we confirmed that TMP-Ca could regulate the OPG/TRAF6 pathway to reduce osteoclast differentiation, inhibit bone resorption, and promote bone formation. Therefore, TMP-Ca could significantly ameliorate osteoporosis, and this study provides a functional component for the preparation of healthcare products using skipjack tuna meat to treat osteoporosis.
Collapse
Affiliation(s)
- Wan-Zhen Yan
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiao Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Hui Zeng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
4
|
Zhao Q, Liang W, Xiong Z, Li C, Zhang L, Rong J, Xiong S, Liu R, You J, Yin T, Hu Y. Digestion and absorption characteristics of iron-chelating silver carp scale collagen peptide and insights into their chelation mechanism. Food Res Int 2024; 190:114612. [PMID: 38945620 DOI: 10.1016/j.foodres.2024.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Iron deficiency is widespread throughout the world, supplementing sufficient iron or improving the bioavailability of iron is the fundamental strategy to solve the problem of iron scarcity. Herein, we explored a new form of iron supplement, iron chelates of silver carp scales (SCSCP-Fe) were prepared from collagen peptide of silver carp scales (SCSCP) and FeCl2·4H2O, the effects of external environment and simulated gastrointestinal digestive environment on the stability of SCSCP-Fe and the structural changes of peptide iron chelates during digestion were investigated. The results of in vitro iron absorption promotion showed that the iron bioavailability of SCSCP-Fe was higher than that of FeSO4. Two potential high iron chelating peptides DTSGGYDEY (DY) and LQGSNEIEIR (LR) were screened and synthesized from the SCSCP sequence by molecular dynamics and LC-MS/MS techniques. The FTIR results displayed that the binding sites of DY and LR for Fe2+ were the carboxyl group, the amino group, and the nitrogen atom on the amide group on the peptide. ITC results indicated that the chelation reactions of DY and LR with Fe2+ were mainly dominated by electrostatic interactions, forming chelates in stoichiometric ratios of 1:2 and 1:1, respectively. Both DY and LR had a certain ability to promote iron absorption. The transport of DY-Fe chelate may be a combination of the three pathways: PepT1 vector pathway, cell bypass, and endocytosis, while LR-Fe chelate was dominated by bivalent metal ion transporters. This study is expected to provide theoretical reference and technical support for the high-value utilization of silver carp scales and the development of novel iron supplements.
Collapse
Affiliation(s)
- Qiannan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhe Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Lu Zhang
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Tarahi M, Abdolalizadeh L, Hedayati S. Mung bean protein isolate: Extraction, structure, physicochemical properties, modifications, and food applications. Food Chem 2024; 444:138626. [PMID: 38309079 DOI: 10.1016/j.foodchem.2024.138626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/19/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The intake of plant-based proteins is rapidly growing around the world due to their nutritional and functional properties, as well as growing demand for vegetarian and vegan diets. Mung bean seeds have been traditionally consumed in Asian countries due to their unique botanical and health-promoting characteristics. In recent years, mung bean protein isolate (MBPI) has attracted much attention due to its ideal techno-functional features, such as water and oil absorption capacity, solubility, emulsifying, foaming, and thermal properties. Therefore, it can be utilized in a native or modified form in different food sectors, such as biodegradable/edible films, colloidal systems, and plant-based alternative products. This study provides a comprehensive review on the extraction methods, amino acid profile, structure, physicochemical properties, modifications, and food applications of MBPI.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Leyla Abdolalizadeh
- Department of Food Science, Technology and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Cai C, Liu Y, Xu Y, Zhang J, Wei B, Xu C, Wang H. Mineral-element-chelating activity of food-derived peptides: influencing factors and enhancement strategies. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38841814 DOI: 10.1080/10408398.2024.2361299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Mineral elements including calcium, iron, and zinc play crucial roles in human health. Their deficiency causes public health risk globally. Commercial mineral supplements have limitations; therefore, alternatives with better solubility, bioavailability, and safety are needed. Chelates of food-derived peptides and mineral elements exhibit advantages in terms of stability, absorption rate, and safety. However, low binding efficiency limits their application. Extensive studies have focused on understanding and enhancing the chelating activity of food-derived peptides with mineral elements. This includes obtaining peptides with high chelating activity, elucidating interaction mechanisms, optimizing chelation conditions, and developing techniques to enhance the chelating activity. This review provides a comprehensive theoretical basis for the development and utilization of food-derived peptide-mineral element chelates in the food industry. Efforts to address the challenge of low binding rates between peptides and mineral elements have yielded promising results. Optimization of peptide sources, enzymatic hydrolysis processes, and purification schemes have helped in obtaining peptides with high chelating activity. The understanding of interaction mechanisms has been enhanced through advanced separation techniques and molecular simulation calculations. Optimizing chelation process conditions, including pH and temperature, can help in achieving high binding rates. Methods including phosphorylation modification and ultrasonic treatment can enhance the chelating activity.
Collapse
Affiliation(s)
- Chaonan Cai
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuling Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Juntao Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Benmei Wei
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chengzhi Xu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, China
| |
Collapse
|
7
|
Zapata JE, Gómez-Sampedro LJ. Antioxidant and antiproliferative activity of enzymatic hydrolysates from red tilapia ( Oreochromis spp.) viscera. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00832. [PMID: 38948352 PMCID: PMC11211095 DOI: 10.1016/j.btre.2024.e00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 07/02/2024]
Abstract
The antioxidant and antiproliferative activity of red tilapia (Oreochromis spp.) viscera hydrolysates (RTVH) was evaluated. For that, the hydrolysates was applied to three cancer cell lines (HepG2, Huh7 and SW480) and the control (CCD-18Co). Finally, the line on which the hydrolysate had the greatest effect (SW480) and the control (CCD-18Co) were subjected to the ApoTox-Glo Triplex Assay to determine apoptosis, toxicity, and cell viability. The result showed that hydrolysate had a dose-dependent cytotoxic effect selective on the three cancer cell lines, compared to the control cells. There is a relationship between the antioxidant capacity of RTVHs and their antiproliferative capacity on cancer cells evaluated, which achieved cell viability by action of RTVH of 34.68 and 41.58 and 25.41 %, to HepG2, Huh7 and SW480, respectively. The action of RTVH on cancer cell line SW480 is not due to the induction of apoptosis but to the rupture of the cell membrane.
Collapse
Affiliation(s)
- José E. Zapata
- Nutrition and Food Technology Group, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050010, Colombia
| | - Leidy J. Gómez-Sampedro
- Giepronal Group, School of Basic Sciences, Technology and Engineering, National Open and Distance University, Medellín 050023, Colombia
| |
Collapse
|
8
|
An J, Wang Y, Li W, Liu W, Zeng X, Liu G, Liu X, Li H. Evaluating the capability of soybean peptides as calcium ion carriers: a study through sequence analysis and molecular dynamics simulations. RSC Adv 2024; 14:15542-15553. [PMID: 38741956 PMCID: PMC11089645 DOI: 10.1039/d4ra02916j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Calcium homeostasis imbalance in the body can lead to a variety of chronic diseases. Supplement efficiency is essential. Peptide calcium chelate, a fourth-generation calcium supplement, offers easy absorption and minimal side effects. Its effectiveness relies on peptide's calcium binding capacity. However, research on amino acid sequences in peptides with high calcium binding capacity (HCBC) is limited, affecting the efficient identification of such peptides. This study used soybean peptides (SP), separated and purified by gel chromatography, to obtain HCBC peptide (137.45 μg mg-1) and normal peptide (≤95.78 μg mg-1). Mass spectrometry identified the sequences of these peptides, and an analysis of the positional distribution of characteristic amino acids followed. Two HCBC peptides with sequences GGDLVS (271.55 μg mg-1) and YEGVIL (272.54 μg mg-1) were discovered. Molecular dynamics showed that when either aspartic acid is located near the N-terminal's middle, or glutamic acid is near the end, or in cases of continuous Asp or Glu, the binding speed, probability, and strength between the peptide and calcium ions are superior compared to those at other locations. The study's goal was to clarify how the positions of characteristic amino acids in peptides affect calcium binding, aiding in developing peptide calcium chelates as a novel calcium supplement.
Collapse
Affiliation(s)
- Jiulong An
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education Beijing 100048 China
| | - Yumei Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education Beijing 100048 China
| | - Wenhui Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education Beijing 100048 China
| | - Wanlu Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education Beijing 100048 China
| | - Xiangquan Zeng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education Beijing 100048 China
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University Beijing 100048 China
| | - Guoqi Liu
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University Beijing 100048 China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education Beijing 100048 China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education Beijing 100048 China
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
9
|
Yang W, He Y, Tian Y, Xiong H, Zhang C, Sun Y. Characterization and Mechanism of a Novel Rice Protein Peptide (AHVGMSGEEPE) Calcium Chelate in Enhancing Calcium Absorption in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8569-8580. [PMID: 38563891 DOI: 10.1021/acs.jafc.3c09916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rice protein peptides (RPP) are a potentially valuable source of high-quality calcium chelating properties. However, there is a lack of information regarding the calcium-absorption-promoting effect of RPP and its underlying mechanism. The present study adopted molecular docking methodologies to analyze the 10 most potent peptide segments from RPP. Results revealed that the peptide AHVGMSGEEPE (AHV) displayed optimal calcium binding properties (calcium-chelating capacity 55.69 ± 0.66 mg/g). Quantum chemistry analysis revealed that the AHV peptide effectively binds and forms stable complexes with calcium via the carbonyl oxygen atoms in valine at position 3 and the carbonyl of the C-terminal carboxyl group of glutamate at position 11. The spectral analysis results indicated that AHV may bind to calcium through carboxyl oxygen atoms, resulting in a transition from a smooth surface block-like structure to a dense granular structure. Furthermore, this study demonstrated that the 4 mmol/L AHV-Ca chelate (61.75 ± 13.23 μg/well) significantly increases calcium absorption compared to 1 mM CaCl2 (28.57 ± 8.59 μg/well) in the Caco-2 cell monolayer. In terms of mechanisms, the novel peptide-calcium chelate AHV-Ca derived from RPP exerts a cell-level effect by upregulating the expression of TRPV6 calcium-ion-channel-related genes and proteins (TRPV6 and Calbindin-D9k). This study provides a theoretical basis for developing functional foods with the AHV peptide as ingredients to improve calcium absorption.
Collapse
Affiliation(s)
- Wenting Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yue Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Chunbo Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
10
|
Echavarría JAC, El Hajj S, Irankunda R, Selmeczi K, Paris C, Udenigwe CC, Canabady-Rochelle L. Screening, separation and identification of metal-chelating peptides for nutritional, cosmetics and pharmaceutical applications. Food Funct 2024; 15:3300-3326. [PMID: 38488016 DOI: 10.1039/d3fo05765h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metal-chelating peptides, which form metal-peptide coordination complexes with various metal ions, can be used as biofunctional ingredients notably to enhance human health and prevent diseases. This review aims to discuss recent insights into food-derived metal-chelating peptides, the strategies set up for their discovery, their study, and identification. After understanding the overall properties of metal-chelating peptides, their production from food-derived protein sources and their potential applications will be discussed, particularly in nutritional, cosmetics and pharmaceutical fields. In addition, the review provides an overview of the last decades of progress in discovering food-derived metal-chelating peptides, addressing several screening, separation and identification methodologies. Furthermore, it emphasizes the methods used to assess peptide-metal interaction, allowing for better understanding of chemical and thermodynamic parameters associated with the formation of peptide-metal coordination complexes, as well as the specific amino acid residues that play important roles in the metal ion coordination.
Collapse
Affiliation(s)
| | - Sarah El Hajj
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | | | | | - Cédric Paris
- Université de Lorraine, LIBIO, F-54000 Nancy, France
| | - Chibuike C Udenigwe
- School of Nutrition Science, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
11
|
Zhang J, Wu Y, Tang H, Li H, Da S, Ciren D, Peng X, Zhao K. Identification, characterization, and insights into the mechanism of novel dipeptidyl peptidase-IV inhibitory peptides from yak hemoglobin by in silico exploration, molecular docking, and in vitro assessment. Int J Biol Macromol 2024; 259:129191. [PMID: 38184042 DOI: 10.1016/j.ijbiomac.2023.129191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/17/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides were screened and identified from yak hemoglobin for the first time by in silico analysis, molecular docking, and in vitro evaluation. Results showed that yak hemoglobin had a high potential to produce DPP-IV inhibitory peptides based on the sequence alignment and bioactive potential evaluation. Furthermore, "pancreatic elastase + stem bromelain" was the optimal combined-enzymatic strategy by simulated proteolysis. Additionally, 25 novel peptides were found from its simulated hydrolysate, among which 10 peptides had high binding affinities with DPP-IV by molecular docking. Most of these peptides were also in silico characterized with favorable physicochemical properties and biological potentials, including relatively low molecular weight, high hydrophobicity, several net charges, good water solubility, nontoxicity, acceptable sensory quality, and good human intestinal absorption. Finally, six novel DPP-IV inhibitory peptides were identified via in vitro assessment, among which EEKA (IC50 = 235.26 μM), DEV (IC50 = 339.45 μM), and HCDKL (IC50 = 632.93 μM) showed the strongest capacities. The hydrogen bonds and electrostatic attractions formed with core residues within the S2 pocket of DPP-IV could be mainly responsible for their inhibition performances. This work provided a time-saving method and broadened application for yak by-products development as sources of functional foods.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| | - Yulong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China; School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Honggang Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| | - Huanhuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Se Da
- Gonyal Animal Husbandry Technology and Industry Co., Naqu, Tibet 852014, PR China
| | - Dajie Ciren
- Gonyal Animal Husbandry Technology and Industry Co., Naqu, Tibet 852014, PR China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| |
Collapse
|
12
|
Ge MX, Chen RP, Zhang L, Wang YM, Chi CF, Wang B. Novel Ca-Chelating Peptides from Protein Hydrolysate of Antarctic Krill ( Euphausia superba): Preparation, Characterization, and Calcium Absorption Efficiency in Caco-2 Cell Monolayer Model. Mar Drugs 2023; 21:579. [PMID: 37999403 PMCID: PMC10672039 DOI: 10.3390/md21110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Antarctic krill (Euphausia superba) is the world's largest resource of animal proteins and is thought to be a high-quality resource for future marine healthy foods and functional products. Therefore, Antarctic krill was degreased and separately hydrolyzed using flavourzyme, pepsin, papain, and alcalase. Protein hydrolysate (AKH) of Antarctic krill prepared by trypsin showed the highest Ca-chelating rate under the optimized chelating conditions: a pH of 8.0, reaction time of 50 min, temperature of 50 °C, and material/calcium ratio of 1:15. Subsequently, fourteen Ca-chelating peptides were isolated from APK by ultrafiltration and a series of chromatographic methods and identified as AK, EAR, AEA, VERG, VAS, GPK, SP, GPKG, APRGH, GVPG, LEPGP, LEKGA, FPPGR, and GEPG with molecular weights of 217.27, 374.40, 289.29, 459.50, 275.30, 300.36, 202.21, 357.41, 536.59, 328.37, 511.58, 516.60, 572.66, and 358.35 Da, respectively. Among fourteen Ca-chelating peptides, VERG presented the highest Ca-chelating ability. Ultraviolet spectrum (UV), Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM) analysis indicated that the VERG-Ca chelate had a dense granular structure because the N-H, C=O and -COOH groups of VERG combined with Ca2+. Moreover, the VERG-Ca chelate is stable in gastrointestinal digestion and can significantly improve Ca transport in Caco-2 cell monolayer experiments, but phytate could significantly reduce the absorption of Ca derived from the VERG-Ca chelate. Therefore, Ca-chelating peptides from protein hydrolysate of Antarctic krill possess the potential to serve as a Ca supplement in developing healthy foods.
Collapse
Affiliation(s)
- Ming-Xue Ge
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (M.-X.G.); (R.-P.C.)
| | - Ru-Ping Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (M.-X.G.); (R.-P.C.)
| | - Lun Zhang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (L.Z.)
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (M.-X.G.); (R.-P.C.)
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (L.Z.)
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (M.-X.G.); (R.-P.C.)
| |
Collapse
|
13
|
Wang J, Zhang Y, Huai H, Hou W, Qi Y, Leng Y, Liu X, Wang X, Wu D, Min W. Purification, Identification, Chelation Mechanism, and Calcium Absorption Activity of a Novel Calcium-Binding Peptide from Peanut ( Arachis hypogaea) Protein Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11970-11981. [PMID: 37493196 DOI: 10.1021/acs.jafc.3c03256] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A novel calcium-binding peptide was purified from peanut protein hydrolysate using gel filtration chromatography and identified using HPLC-MS/MS. Its amino acid sequence was determined as Phe-Pro-Pro-Asp-Val-Ala (FPPDVA, named as FA6) with the calcium-binding capacity of 15.67 ± 0.39 mg/g. Then, the calcium chelating characteristics of FPPDVA were investigated using ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, particle size, and zeta potential. The results showed that FPPDVA interacted with calcium ions, the chelation of calcium ions induced FPPDVA to fold and form a denser structure, the calcium-binding sites may mainly involve oxygen atoms from the carboxyl residues of Asp and Ala, and Phe possessed contact energy and carbonyl residues of Val. Microstructure analysis showed that FPPDVA-calcium chelate exhibited a regularly ordered and tightly aggregated sheets or block structures. Additionally, FPPDVA-calcium chelate had good gastrointestinal digestive stability and thermal stability. The results of everted rat intestinal sac and Caco-2 cell monolayer experiments showed that FPPDVA-calcium chelate could promote calcium absorption and transport through the Cav1.3 and TRPV6 calcium channels. These data suggest that FPPDVA-calcium chelate possesses the potential to be developed and applied as calcium supplement.
Collapse
Affiliation(s)
- Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Yaoxin Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Haiping Huai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Weiyu Hou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Yuan Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, P. R. China
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P. R. China
| |
Collapse
|
14
|
Joshua Ashaolu T, Lee CC, Opeolu Ashaolu J, Pourjafar H, Jafari SM. Metal-binding peptides and their potential to enhance the absorption and bioavailability of minerals. Food Chem 2023; 428:136678. [PMID: 37418874 DOI: 10.1016/j.foodchem.2023.136678] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 07/09/2023]
Abstract
Minerals including calcium, iron, zinc, magnesium, and copper have several human nutritional functions due to their metabolic activities. Body tissues require sufficient levels of a variety of micronutrients to maintain their health. To achieve these micronutrient needs, dietary consumption must be adequate. Dietary proteins may regulate the biological functions of the body in addition to acting as nutrients. Some peptides encoded in the native protein sequences are primarily responsible for the absorption and bioavailability of minerals in physiological functions. Metal-binding peptides (MBPs) were discovered as potential agents for mineral supplements. Nevertheless, sufficient studies on how MBPs affect the biological functions of minerals are lacking. The hypothesis is that the absorption and bioavailability of minerals are significantly influenced by peptides, and these properties are further enhanced by the configuration and attribute of the metal-peptide complex. In this review, the production of MBPs is discussed using various key parameters such as the protein sources and amino acid residues, enzymatic hydrolysis, purification, sequencing and synthesis and in silico analysis of MBPs. The mechanisms of metal-peptide complexes as functional food ingredients are elucidated, including metal-peptide ratio, precursors and ligands, complexation reaction, absorbability and bioavailability. Finally, the characteristics and application of different metal-peptide complexes are also described.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam
| | - Chi Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey
| | - Joseph Opeolu Ashaolu
- Department of Public Health, Faculty of Basic Medical Sciences, Redeemers University, PMB 230, Ede, Osun State, Nigeria
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
15
|
Qi L, Zhang H, Guo Y, Zhang C, Xu Y. A novel calcium-binding peptide from bovine bone collagen hydrolysate and chelation mechanism and calcium absorption activity of peptide-calcium chelate. Food Chem 2023; 410:135387. [PMID: 36621334 DOI: 10.1016/j.foodchem.2023.135387] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/11/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
A novel calcium-binding peptide from bovine bone collagen hydrolysate was screened based on a new target-the calcium-sensing receptor (CaSR), and its chelation mechanism and calcium absorption activity were investigated. Glu-Tyr-Gly exhibited superior binding affinities to CaSR because of its interaction with the active sites of the CaSR Venus Flytrap (VFT) domain. Glu-Tyr-Gly-Ca may exist in five potential chelation modes and its potential chelation mechanism was that calcium ions were located in the center and surrounded by ionic bonds (carboxyl group) and coordination bonds (carbonyl, amino, and carboxyl group). Glu-Tyr-Gly-Ca was slightly damaged in the intestinal fluid and at different temperatures, whereas it was severely damaged in the gastric fluid and acidic conditions. The results of the calcium dialysis percentage and Caco-2 cells experiments showed that Glu-Tyr-Gly-Ca possessed good calcium transport activity and bioavailability. The findings provided theoretical basis for Glu-Tyr-Gly-Ca as potential calcium supplement to improve intestinal calcium absorption.
Collapse
Affiliation(s)
- Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yang Xu
- Inner Mongolia Mengtai Biological Engineering Co., Ltd, Shengle Economic Park, Helinger County, Hohhot, Inner Mongolia 010000, China
| |
Collapse
|
16
|
Gan J, Xiao Z, Wang K, Kong X, Du M, Wang Z, Xu B, Cheng Y. Isolation, characterization, and molecular docking analyses of novel calcium-chelating peptide from soy yogurt and the study of its calcium chelation mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2939-2948. [PMID: 36460619 DOI: 10.1002/jsfa.12370] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/21/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Calcium is an essential dietary mineral nutrient for humans. Digestive instability limits the bioavailability of calcium ions. Peptide-calcium chelate has been proven to excite higher calcium absorption than amino acid-calcium chelate, organic and inorganic calcium. Soy yogurt, which is produced via liquid-state fermentation using lactic acid bacteria, has a high amount of bioavailable calcium. In this study, a novel peptide with high calcium binding affinity was purified and identified from soy yogurt. The binding mechanism of peptide and calcium was then analyzed by bioinformatics and spectral analysis. Furthermore, the effect of the novel peptide on gastrointestinal stability by the Caco-2 cell model and calcium bioavailability in vivo were investigated by the zebrafish model. RESULTS The results showed that a novel peptide was purified and identified as DEDEQIPSHPPR (CBP). Calcium ions probably coordinate with Glu-2 and Glu-4 carboxyl groups via salt bridges and interact with Asp-1, Asp-3, and Arg-12 in CBP via charge pairing. The calcium binding activity of the CBP was 36.64 ± 0.04 mg g-1 . Fourier transform infrared (FTIR) spectra showed that calcium spontaneously bound to the amino group nitrogen and oxygen atoms of the carboxyl group. The binding mode is either bidentate or unidentate, depending on the circumstances. More importantly, the CBP peptide substantially increased the bone mass in a zebrafish osteoporosis model. CONCLUSION The more glutamic acid and aspartic acid, the high was the calcium affinity with peptide. Soy yogurt-derived peptides can be used as carriers of calcium ions throughout the gastrointestinal tract, which may be clinically useful for osteoporosis therapy. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Gan
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Ziqun Xiao
- College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- School of Food Science and Technology, Jiangnan University, Jiangsu, China
| | - Kuaitian Wang
- College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiao Kong
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Mengdi Du
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Zhenhua Wang
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Bo Xu
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Aksoy Z, Ersus S. The comparative studies on the physicochemical properties of mung bean protein isolate–polysaccharide conjugates prepared by ultrasonic or controlled heating treatment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
18
|
Li C, Cao L, Liu T, Huang Z, Liu Y, Fan R, Wang Y. Preparation of soybean meal peptide for chelation with copper/zinc using Aspergillus oryzae in solid-state fermentation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Joshua Ashaolu T, Le TD, Suttikhana I. Stability and bioactivity of peptides in food matrices based on processing conditions. Food Res Int 2023; 168:112786. [PMID: 37120233 DOI: 10.1016/j.foodres.2023.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Bioactive peptides (BPs) generated from food proteins can serve therapeutic purposes against degenerative and cardiovascular diseases such as inflammation, diabetes, and cancer. There are numerous reports on the in vitro, animal, and human studies of BPs, but not as much information on the stability and bioactivity of these peptides when incorporated in food matrices. The effects of heat and non-heat processing of the food products, and storage on the bioactivity of the BPs, are also lacking. To this end, we describe the production of BPs in this review, followed by the food processing conditions that affect their storage bioactivity in the food matrices. As this area of research is open for industrial innovation, we conclude that novel analytical methods targeting the interactions of BPs with other components in food matrices would be greatly significant while elucidating their overall bioactivity before, during and after processing.
Collapse
|
20
|
Zhai W, Lin D, Mo R, Zou X, Zhang Y, Zhang L, Ge Y. Process Optimization, Structural Characterization, and Calcium Release Rate Evaluation of Mung Bean Peptides-Calcium Chelate. Foods 2023; 12:foods12051058. [PMID: 36900575 PMCID: PMC10000905 DOI: 10.3390/foods12051058] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
To reduce grievous ecological environment pollution and protein resource waste during mung bean starch production, mung bean peptides-calcium chelate (MBP-Ca) was synthesized as a novel and efficient calcium supplement. Under the optimal conditions (pH = 6, temperature = 45 °C, mass ratio of mung bean peptides (MBP)/CaCl2 = 4:1, MBP concentration = 20 mg/mL, time = 60 min), the obtained MBP-Ca achieved a calcium chelating rate of 86.26%. MBP-Ca, different from MBP, was a new compound rich in glutamic acid (32.74%) and aspartic acid (15.10%). Calcium ions could bind to MBP mainly through carboxyl oxygen, carbonyl oxygen, and amino nitrogen atoms to form MBP-Ca. Calcium ions-induced intra- and intermolecular interactions caused the folding and aggregation of MBP. After the chelation reaction between calcium ions and MBP, the percentage of β-sheet in the secondary structure of MBP increased by 1.90%, the size of the peptides increased by 124.42 nm, and the dense and smooth surface structure of MBP was transformed into fragmented and coarse blocks. Under different temperatures, pH, and gastrointestinal simulated digestion conditions, MBP-Ca exhibited an increased calcium release rate compared with the conventional calcium supplement CaCl2. Overall, MBP-Ca showed promise as an alternative dietary calcium supplement with good calcium absorption and bioavailability.
Collapse
Affiliation(s)
- Wenliang Zhai
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
| | - Dong Lin
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
- Key Laboratory of Functional Food of Universities in Guizhou Province, Guiyang 550005, China
- Biopharmaceutical Engineering Research Center of Guizhou Province, Guiyang 550005, China
- Correspondence:
| | - Ruoshuang Mo
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
| | - Xiaozhuan Zou
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
| | - Yongqing Zhang
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
| | - Liyun Zhang
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
| | - Yonghui Ge
- College of Food and Pharmacy Engineering, Guiyang University, Guiyang 550005, China
- Biopharmaceutical Engineering Research Center of Guizhou Province, Guiyang 550005, China
| |
Collapse
|
21
|
Lao L, Jian H, Liao W, Zeng C, Liu G, Cao Y, Miao J. Casein Calcium-Binding Peptides: Preparation, Characterization, and Promotion of Calcium Uptake in Caco-2 Cell Monolayers. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
22
|
Exploration of the Nutritional and Functional Properties of Underutilized Grains as an Alternative Source for the Research of Food-Derived Bioactive Peptides. Nutrients 2023; 15:nu15020351. [PMID: 36678223 PMCID: PMC9864886 DOI: 10.3390/nu15020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The estimated increase in world population will lead to a deterioration in global food security, aggravated in developing countries by hidden hunger resulting from protein deficiency. To reduce or avoid this crisis, a dietary shift towards the consumption of sustainable, nutrient-rich, and calorically efficient food products has been recommended by the FAO and WHO. Plant proteins derived from grains and seeds provide nutritionally balanced diets, improve health status, reduce poverty, enhance food security, and contain several functional compounds. In this review, the current evidence on the nutritional and functional properties of underutilized grains is summarized, focusing on their incorporation into functional foods and the role of their proteins as novel source of bioactive peptides with health benefits.
Collapse
|
23
|
Enzymatic Modification of Plant Proteins for Improved Functional and Bioactive Properties. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Mao W, Zhan F, Youssef M, Wang X, Wang M, Li B. Improvement on Ca2+ tolerance of insect-based milk based on pH-shifting treatment combined with dynamic high pressure microfluidization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. SEPARATIONS 2022. [DOI: 10.3390/separations9110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metal-Chelating Peptides (MCPs), obtained from protein hydrolysates, present various applications in the field of nutrition, pharmacy, cosmetic etc. The separation of MCPs from hydrolysates mixture is challenging, yet, techniques based on peptide-metal ion interactions such as Immobilized Metal Ion Affinity Chromatography (IMAC) seem to be efficient. However, separation processes are time consuming and expensive, therefore separation prediction using chromatography modelling and simulation should be necessary. Meanwhile, the obtention of sorption isotherm for chromatography modelling is a crucial step. Thus, Surface Plasmon Resonance (SPR), a biosensor method efficient to screen MCPs in hydrolysates and with similarities to IMAC might be a good option to acquire sorption isotherm. This review highlights IMAC experimental methodology to separate MCPs and how, IMAC chromatography can be modelled using transport dispersive model and input data obtained from SPR for peptides separation simulation.
Collapse
|
26
|
Comparative study on structural, biological and functional activities of hydrolysates from Adzuki bean (Vigna angularis) and mung bean (Vigna radiata) protein concentrates using Alcalase and Flavourzyme. Food Res Int 2022; 161:111797. [DOI: 10.1016/j.foodres.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
|
27
|
Meiguni MSM, Salami M, Rezaei K, Aliyari MA, Ghaffari SB, Emam-Djomeh Z, Kennedy JF, Ghasemi A. Fabrication and characterization of a succinyl mung bean protein and arabic gum complex coacervate for curcumin encapsulation. Int J Biol Macromol 2022; 224:170-180. [DOI: 10.1016/j.ijbiomac.2022.10.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
28
|
Okagu IU, Udenigwe CC. Transepithelial transport and cellular mechanisms of food-derived antioxidant peptides. Heliyon 2022; 8:e10861. [PMID: 36217466 PMCID: PMC9547200 DOI: 10.1016/j.heliyon.2022.e10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the involvement of oxidative stress in the etiology of many non-communicable diseases, food-derived antioxidant peptides (FDAPs) are strong candidates for nutraceutical development for disease prevention and management. This paper reviews current evidence on the transepithelial transport and cellular mechanisms of antioxidant activities of FDAPs. Several FDAPs have multiple health benefits such as anti-inflammatory and anti-photoaging activities, in addition to antioxidant properties through which they protect cellular components from oxidative damage. Some FDAPs have been shown to permeate the intestinal epithelium, which could facilitate their bioavailability and physiological bioactivities. Molecular mechanisms of FDAPs include suppression of oxidative stress as evidenced by reduction in intracellular reactive oxygen species production, lipid peroxidation and apoptotic protein activation as well as increase in antioxidant defense mechanisms (enzymatic and non-enzymatic). Since many FDAPs have demonstrated promising antioxidant activity, future investigation should focus on further elucidation of molecular mechanisms and human studies to explore their practical application for the prevention and management of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
29
|
An J, Zhang Y, Ying Z, Li H, Liu W, Wang J, Liu X. The Formation, Structural Characteristics, Absorption Pathways and Bioavailability of Calcium–Peptide Chelates. Foods 2022; 11:foods11182762. [PMID: 36140890 PMCID: PMC9497609 DOI: 10.3390/foods11182762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
Calcium is one of the most important mineral elements in the human body and is closely related to the maintenance of human health. To prevent calcium deficiency, various calcium supplements have been developed, but their application tends to be limited by low calcium content and highly irritating effects on the stomach, among other side effects. Recently, calcium–peptide chelates, which have excellent stability and are easily absorbed, have received attention as an alternative emerging calcium supplement. Calcium-binding peptides (CaBP) are usually obtained via the hydrolysis of animal or plant proteins, and calcium-binding capacity (CaBC) can be further improved through chromatographic purification techniques. In calcium ions, the phosphate group, carboxylic group and nitrogen atom in the peptide are the main binding sites, and the four modes of combination are the unidentate mode, bidentate mode, bridging mode and α mode. The stability and safety of calcium–peptide chelates are discussed in this paper, the intestinal absorption pathways of calcium elements and peptides are described, and the bioavailability of calcium–peptide chelates, both in vitro and in vivo, is also introduced. This review of the research status of calcium–peptide chelates aims to provide a reasonable theoretical basis for their application as calcium supplementation products.
Collapse
Affiliation(s)
- Jiulong An
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yinxiao Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhiwei Ying
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.); Tel.: +86-10-68984481 (H.L.)
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Junru Wang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.); Tel.: +86-10-68984481 (H.L.)
| |
Collapse
|
30
|
Hu G, Wang D, Sun L, Su R, Corazzin M, Sun X, Dou L, Zhang M, Zhao L, Su L, Jin Y. Isolation, Purification and Structure Identification of a Calcium-Binding Peptide from Sheep Bone Protein Hydrolysate. Foods 2022; 11:foods11172655. [PMID: 36076840 PMCID: PMC9455869 DOI: 10.3390/foods11172655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
To isolate a novel peptide with calcium-binding capacity, sheep bone protein was hydrolyzed sequentially using a dual-enzyme system (alcalase treatment following neutrase treatment) and investigated for its characteristics, separation, purification, and structure. The sheep bone protein hydrolysate (SBPH) was enriched in key amino acids such as Gly, Arg, Pro, Leu, Lys, Glu, Val, and Asp. The fluorescence spectra, circular dichroism spectra, and Fourier-transform infrared spectroscopy results showed that adding calcium ions decreased the α-helix and β-sheet content but significantly increased the random and β-turn content (p < 0.05). Carboxyl oxygen and amino nitrogen atoms of SBPH may participate in peptide−calcium binding. Scanning electron microscopy and energy dispersive spectrometry results showed that SBPH had strong calcium-chelating ability and that the peptide−calcium complex (SBPH−Ca) combined with calcium to form a spherical cluster structure. SBPH was separated and purified gradually by ultrafiltration, gel filtration chromatography, and reversed-phase high-performance liquid chromatography. Liquid chromatography-electrospray ionization/mass spectrometry identified the amino acid sequences as GPSGLPGERG (925.46 Da) and GAPGKDGVRG (912.48 Da), with calcium-binding capacities of 89.76 ± 0.19% and 88.26 ± 0.25%, respectively. The results of this study provide a scientific basis for the preparation of a new type of calcium supplement and high-value utilization of sheep bone.
Collapse
Affiliation(s)
- Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Debao Wang
- Agricultural and Animal Products Processing Research Institute, Inner Mongolia Academy of Agriculture and Animal Husbandry Academy, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010010, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Xueying Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence:
| |
Collapse
|
31
|
Calcium-binding capacity of peptides obtained from sheep bone and structural characterization and stability of the peptide-calcium chelate. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
32
|
A Step for the Valorization of Spent Yeast through Production of Iron–Peptide Complexes—A Process Optimization Study. Processes (Basel) 2022. [DOI: 10.3390/pr10081464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Given the importance of iron in human nutrition and the significance of waste and by-product valorisation in a circular economy environment, we investigated the effects of protein and iron concentration on the production yield of iron–peptide complexes from spent Saccharomyces cerevisiae. For this purpose, different amounts of protein and iron were used in the complexation process. The results have shown that higher concentrations, although permitting a faster and larger scale process, provide a significantly lower complexation yield, which deems the process less feasible. This is corroborated by fluorescence analysis, which shows a lower degree of complexation with higher protein concentration. In addition, varying the concentration of iron does not change the quality of formed complexes, as evidenced by Fourier transform infrared spectroscopy (FT-IR) analysis. The morphology of all samples was also evaluated using scanning electron microscopy (SEM). Therefore, further studies are needed to optimize the process and to evaluate the best conditions for an economically sound valorization process for iron–peptide complexes. Nonetheless, current results in the development of a new process for the valorisation of spent yeast, in the form of iron-peptide complexes, look promising.
Collapse
|
33
|
Calcium supplements and structure–activity relationship of peptide-calcium chelates: a review. Food Sci Biotechnol 2022; 31:1111-1122. [DOI: 10.1007/s10068-022-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022] Open
|
34
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
35
|
Shahrajabian MH, Cheng Q, Sun W. The Effects of Amino acids, Phenols and Protein Hydrolysates as Biostimulants on Sustainable Crop Production and Alleviate Stresses. Recent Pat Biotechnol 2022; 16:319-328. [PMID: 35418295 DOI: 10.2174/1872208316666220412133749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Biostimulants which contain substances or products including natural compounds, special formulation and microorganisms have gained a considerable attention as sustainable method for heavy metal detoxification, stimulate natural toxins, controlling diseases and pests, may increase both water and nutrient efficiency. Biostimulants are important products in modern agriculture which composed of different heterogenous classes of compounds with a broad spectrum of action to increase both qualitative and quantitative productions. Amino acids can be useful in stress defence, photosynthesis, increase nutrient uptake, pollination and fruit formation, precursors to hormones and growth parameters. Amino acids are considered as precursors and constituents of proteins, which are well-known for stimulation of cell growth. Because, they are the basic building blocks of proteins, amino acids are very important in plant growth, development and metabolite synthesis. One of the diverse, notable and the large group of secondary metabolites is phenolic compounds which have important function in regulation of the plants physiological activities, oxidation-reduction processes and photosynthesis. Protein hydrolysates contain amino acids and peptides which is one of the most important kinds of biostimulants. Protein hydrolysates have notable capability to increase crop performance, particularly under environmental stress conditions. This review article is aimed to introduce and found more about the roles of different types of biostimulants on plant growth and final yield production with considering sustainable agriculture.
Collapse
Affiliation(s)
| | - Qi Cheng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei 071000, China
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
36
|
Kheeree N, Kuptawach K, Puthong S, Sangtanoo P, Srimongkol P, Boonserm P, Reamtong O, Choowongkomon K, Karnchanatat A. Discovery of calcium-binding peptides derived from defatted lemon basil seeds with enhanced calcium uptake in human intestinal epithelial cells, Caco-2. Sci Rep 2022; 12:4659. [PMID: 35304505 PMCID: PMC8933469 DOI: 10.1038/s41598-022-08380-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/07/2022] [Indexed: 01/01/2023] Open
Abstract
It is anticipated that calcium-chelating peptides may serve to enhance the absorption of calcium. This research examined defatted lemon basil seeds (DLBS) which had been treated with Alcalase under optimized parameters for the degree of hydrolysis for proteolysis, discovering that the activity for calcium-binding in a competitive condition with phosphate ion was 60.39 ± 1.545%. The purification of the hydrolysates was performed via ultrafiltration along with reversed-phase high performance liquid chromatography (RP-HPLC). Determination of the purified peptide amino acid sequence was confirmed for both peptides and reported as Ala-Phe-Asn-Arg-Ala-Lys-Ser-Lys-Ala-Leu-Asn-Glu-Asn (AFNRAKSKALNEN; Basil-1), and Tyr-Asp-Ser-Ser-Gly-Gly-Pro-Thr-Pro-Trp-Leu-Ser-Pro-Tyr (YDSSGGPTPWLSPY; Basil-2). The respective activities for calcium-binding were 38.62 ± 1.33%, and 42.19 ± 2.27%. Fluorescence spectroscopy, and fourier transform infrared spectroscopy were employed in order to assess the chelating mechanism between calcium and the peptides. It was found that the calcium ions took place through the activity of the amino nitrogen atoms and the oxygen atoms on the carboxyl group. Moreover, both of these peptides served to improve calcium transport and absorption in Caco-2 cell monolayers, depending on the concentration involved. It was revealed that the peptide-calcium complexes offered an increased calcium absorption percentage when compared to free calcium at similar concentrations. It might be concluded that the peptide within the peptide-calcium complex can promote calcium absorption through both active and passive transport pathways by increasing calcium concentration and promoting cell membrane interaction. Accordingly, DLBS protein can be considered a strong potential source of protein which can be used to produce calcium-binding peptides and might therefore play a role in the production of nutraceutical foods as a bioactive ingredient.
Collapse
Affiliation(s)
- Norhameemee Kheeree
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kittisak Kuptawach
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Patamalai Boonserm
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Tungkru, Bangkok, 10140, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Aphichart Karnchanatat
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand. .,Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
37
|
Ramesh L, B V Latha L, Kumar Mukunda C. Identification and characterization of metal-chelating bioenhancer peptide derived from fermented Citrullus lanatus seed milk. J Food Biochem 2022; 46:e14102. [PMID: 35150146 DOI: 10.1111/jfbc.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/12/2023]
Abstract
In the present investigation, a metal-chelating bioactive peptide was derived from Citrullus lanatus seed milk fermented with Lactococcus lactis. The cationic fermented milk peptide (FMP) thus obtained was purified using the HiTrap-chelating column followed by rpHPLC. The FMP possessed the ability to chelate multiple divalent cations like Cu2+ , Ca2+ , and Fe2+ with 86.81%, 61.04%, and 24.32% of chelation respectively and further it exhibited 78.03% of DPPH free radical scavenging activity. Interaction of FMP with metal ions was assessed by change in the absorption spectra and was analyzed by ultraviolet-visible and fluorescence spectroscopy. The FMP-metal complexes were found stable at simulated gastric conditions. In vitro analysis using intestinal Caco-2 cell lines revealed that there was an increase in metal bioavailability in the presence of the FMP and was least influenced by the addition of a dietary inhibitor, phytic acid. By LC-MS analysis the molecular mass of FMP was found to be 11.6 kD and it contains oxygen-rich and nitrogen-rich amino acids that favor the metal chelation. In our study, we have found that the fermented C. lanatus seed milk can serve as a potential functional food with bioenhancer peptides that increase metal bioavailability and enhance human health. PRACTICAL APPLICATIONS: Chelated metals are preferred over non-chelated ones by most nutritionists for their better absorption rate. Chelation protects the minerals from the digestive process and increases their bioavailability. Fermentation with lactic acid bacteria produces bioactive peptides with metal-chelating and antioxidant ability which provides additional health benefits beyond supplying basic nutrients. Lactococcus lactis fermented milk acts as a probiotic product with bioenhancer peptide that increases mineral bioavailability. Consumption of metals in chelated form can reduce excess intake of metal. Fermented watermelon seed milk can be a promising probiotic drink rich in bioenhancer peptides and can enhance the bioavailability of divalent cations of a high therapeutic index.
Collapse
Affiliation(s)
- Likhitha Ramesh
- LSRB-DRDO Project, JSS College of Arts, Commerce and Science, Mysuru, India
| | - Latha B V Latha
- Postgraduate Department of Biochemistry, JSS College of Arts, Commerce and Science, Mysuru, India
| | - Chethan Kumar Mukunda
- Postgraduate Department of Biochemistry, JSS College of Arts, Commerce and Science, Mysuru, India
| |
Collapse
|
38
|
Qu W, Feng Y, Xiong T, Li Y, Wahia H, Ma H. Preparation of corn ACE inhibitory peptide-ferrous chelate by dual-frequency ultrasound and its structure and stability analyses. ULTRASONICS SONOCHEMISTRY 2022; 83:105937. [PMID: 35144194 PMCID: PMC8844830 DOI: 10.1016/j.ultsonch.2022.105937] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 05/03/2023]
Abstract
In order to improve iron chelating ability and retain the activity of functional peptide, corn peptide was chelated with iron to form corn ACE inhibitory peptide-ferrous chelate (CP-Fe) treated by dual-frequency ultrasound. Furthermore, the chelating mechanism was revealed by analyzing various structural changes, and the stability was further evaluated. Under this study condition, the iron-binding capacity of corn ACE inhibitory peptide (CP) and chelate yield reached 66.39% and 82.87%, respectively. Ultrasound-treated CP exhibited a high iron chelating ability, meanwhile, chelation reaction had no significant effect on the ACE inhibition activity (82.21%) of the peptide. CP-Fe was formed by binding the peptides amino, carbonyl and carboxyl groups with Fe2+ demonstrated by Ultra-violet spectroscopy, Fourier transform infrared characterization, X-ray diffraction, energy dispersion spectrum, zeta potential, amino acid composition and other multi-angle analyses. Moreover, ultrasound-treated CP-Fe chelate exhibited porous surface and uniform nanoparticle shape. Furthermore, ultrasound-treated CP-Fe chelate exhibited an excellent stability towards various pH (retention rate ≥ 95.47% at pH 6-10), temperatures (retention rate ≥ 85.10% at 25-70 °C), and gastrointestinal digestion (retention rate 79.18%). Overall, ultrasound-treated CP-Fe chelate possessed high iron-chelating ability, ACE inhibition activity and stability. This study provides a novel synthesis method of the iron-chelating corn ACE inhibitory peptide, which is promising to be applied as iron supplements with high efficiency, bioactivity, and stability.
Collapse
Affiliation(s)
- Wenjuan Qu
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yiting Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
39
|
B V L, R L, M CK. Copper chelating protein hydrolysate from Salvia hispanica L. by pepsin-pancreatin treatment. Curr Res Food Sci 2021; 4:829-839. [PMID: 34888529 PMCID: PMC8636727 DOI: 10.1016/j.crfs.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022] Open
Abstract
Salvia hispanica L. (Chia) seeds are good source of proteins with diverse health benefits. The seed protein was extracted through alkaline solubilisation followed by acid precipitation to separate fibres and are digested sequentially by pepsin and pancreatin. Enzyme-substrate ratio, temperature and contact time had high impact on degree of hydrolysis affecting their chelating ability. Maximum degree of hydrolysis (14.06%) and maximum copper chelation (74.98%) was obtained at 4% w/w enzyme-substrate ratio at 37 °C for 4 h. Copper chelating enzymatic hydrolysate was isolated by HiTrap chelating column and purified further by rpHPLC. Out of nine fractions obtained by rpHPLC the sixth fraction with 93.09 ± 0.16% of copper chelating activity and 82.91 ± 0.52% of antioxidant activity was further characterized as Copper chelating Chia Protein Hydrolysate (CCPH). Ultraviolet spectroscopy and fluorescence spectroscopic studies revealed the interaction of the major chelating sites of the CCPH with the copper divalent ion. The purified CCPH was subjected to LC-MS/ESI-TOF analysis from which six major intense peaks obtained with m/z value ranging from 0.4 kDa to 2.5 kDa were identified and sequenced using Mascot database. The functional behaviour and the binding capacity of these peptides were analysed by their amino acid composition. The CCPH was stable in a simulated gastric condition and its chelating ability remained unaltered. These results explored an informative bioactive peptides with varied activity and one valuable among is the copper chelating with antioxidant property. Furthermore, these Chia seed protein hydrolysates can be useful as dietary supplements to enhance mineral bioavailability. Optimization of Pepsin-Pancreatin hydrolysis of Salvia hispanica L. (Chia) seed protein. Purification of Copper Chelating Protein Hydrolysate (CCPH) using affinity chromatography and rpHPLC. The structure-function analysis of purified CCPH by UV/Vis and Fluorescence spectroscopic analysis and mass determination by LC-MS/ESI-TOF. In vitro gastro-intestinal simulation studies of CCPH indicated its structural stability with constant chelating property. Hence CCPH can be a promising, safe alternative of metal salts for mineral fortification.
Collapse
Affiliation(s)
- Latha B V
- JSS College of Arts, Commerce and Science, Mysuru, 570025, Karnataka, India
| | - Likhitha R
- LSRB-DRDO Project, JSS College of Arts, Commerce and Science, Mysuru, 570025, Karnataka, India
| | - Chethan Kumar M
- JSS College of Arts, Commerce and Science, Mysuru, 570025, Karnataka, India
| |
Collapse
|
40
|
Kusumah SH, Andoyo R, Rialita T. ISOLASI PROTEIN KACANG MERAH DAN KACANG HIJAU MENGGUNAKAN METODE ASAM BASA DIKOMBINASIKAN DENGAN PROSES ENZIMATIS. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2021. [DOI: 10.6066/jtip.2021.32.2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Red beans (Phaseolus vulgaris L.) and greens beans (Phaseolus raditus L.) proteins contain high amount of essential amino acids lysine and leucine. The study aimed to determine the optimum conditions for protein isolation process from red beans and green beans flour to produce the highest protein content. Additionally, an enzymatic hydrolysis was aimed to produce isolates or protein concentrates of red beans and green beans with good digestibility. The research method used was the Response Surface Methodology (RSM) Box-Behnken Design with Design Expert 10. The variables used in this process were extraction temperature (30-50°C), extraction pH (8.50-9.50), and time extraction (30-60 minutes). The results showed that the optimum conditions for the extraction of red beans protein were extraction pH of 8.60, temperature of 30°C, and time of 30.1 minutes, with the resulting protein content of 86.88±1.38% with and a validity value of 0.91. Meanwhile, the optimum conditions for the green beans protein extraction process were extraction pH of 8.83, extraction temperature of 30°C, extraction time of 30 minutes which yielded protein content of 88.27±1.08% and a validity value of 0.97. Enzymatic hydrolysis using of 3% (w/w) bromelain enzyme on red bean and mung bean protein concentrate powder was able to increase protein digestibility by 15.61 and 14.51%, respectively.
Collapse
|
41
|
Samtiya M, Acharya S, Pandey KK, Aluko RE, Udenigwe CC, Dhewa T. Production, Purification, and Potential Health Applications of Edible Seeds' Bioactive Peptides: A Concise Review. Foods 2021; 10:foods10112696. [PMID: 34828976 PMCID: PMC8621896 DOI: 10.3390/foods10112696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Edible seeds play a significant role in contributing essential nutritional needs and impart several health benefits to improve the quality of human life. Previous literature evidence has confirmed that edible seed proteins, their enzymatic hydrolysates, and bioactive peptides (BAPs) have proven and potential attributes to ameliorate numerous chronic disorders through the modulation of activities of several molecular markers. Edible seed-derived proteins and peptides have gained much interest from researchers worldwide as ingredients to formulate therapeutic functional foods and nutraceuticals. In this review, four main methods are discussed (enzymatic hydrolysis, gastrointestinal digestion, fermentation, and genetic engineering) that are used for the production of BAPs, including their purification and characterization. This article’s main aim is to provide current knowledge regarding several health-promoting properties of edible seed BAPs in terms of antihypertensive, anti-cancer, antioxidative, anti-inflammatory, and hypoglycemic activities.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
| | - Sovon Acharya
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Kush Kumar Pandey
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (R.E.A.); (T.D.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
- Correspondence: (R.E.A.); (T.D.)
| |
Collapse
|
42
|
Zhang YY, Stockmann R, Ng K, Ajlouni S. The role of legume peptides released during different digestion stages in modulating the bioaccessibility of exogenous iron and zinc: An in-vitro study. Curr Res Food Sci 2021; 4:737-745. [PMID: 34729500 PMCID: PMC8545669 DOI: 10.1016/j.crfs.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
The effects of legume protein fractions on Fe and Zn bioaccessibility remain equivocal to date, largely due to the protein’s structure and the presence of anti-nutritional compounds. We administered Fe and Zn salts with legume concentrates consisting mainly of albumin or globulin from lupin, pea and faba to in vitro gastrointestinal digestion. Under the fasted intestinal state, faba globulins were found to enhance Fe2+ and Zn solubility compared to control salts without legume proteins. Meanwhile, other fractions had no effect or significantly lowered Fe and Zn solubility. Under the fed intestinal state, the presence globulins enhanced Fe solubility versus the control, where protein solubilization due to high bile concentration likely played a role in circumventing precipitation. The lupin albumin fraction significantly enhanced Fe2+ and Zn solubility, whilst other fractions generally reduced Zn solubility under fed state. Our results highlight the complex role of legume proteins towards Fe and Zn solubility. Bioaccessibility of Fe/Zn mineral salts were examined with and without legume protein fractions. Bile concentrations and/or digestion time affected Fe3+/Fe2+ and Zn solubility in presence of legume protein fractions. Globulins consistently enhanced Fe2+, but not Fe3+ solubility during the high-bile (fed state) intestinal digestion phase. Both enhancements and reductions in Zn solubility were reflected by different legume fractions. A non-linear relationship was observed between soluble protein and Fe/Zn bioaccessibility during simulated digestion.
Collapse
Affiliation(s)
- Yianna Y Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3052, Australia.,CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - Regine Stockmann
- CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3052, Australia
| |
Collapse
|
43
|
Hadidi M, Jafarzadeh S, Ibarz A. Modified mung bean protein: Optimization of microwave-assisted phosphorylation and its functional and structural characterizations. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Chang GRL, Tu MY, Chen YH, Chang KY, Chen CF, Lai JC, Tung YT, Chen HL, Fan HC, Chen CM. KFP-1, a Novel Calcium-Binding Peptide Isolated from Kefir, Promotes Calcium Influx Through TRPV6 Channels. Mol Nutr Food Res 2021; 65:e2100182. [PMID: 34477300 DOI: 10.1002/mnfr.202100182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/25/2021] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Kefir is an acidic and alcoholic fermented milk product with multiple health-promoting benefits. A previous study demonstrated that kefir enhanced calcium absorption in intestinal Caco-2 cells. In this study, kefir-fermented peptide-1 (KFP-1) is isolated from the kefir peptide fraction, and its function as a calcium-binding peptide is characterized. METHODS AND RESULTS KFP-1 was identified as a 17-residue peptide with a sequence identical to that of κ-casein (residues 138-154) in milk protein. KFP-1 is demonstrated to promote calcium influx in Caco-2 and IEC-6 small intestinal cells in a concentration-dependent manner. TRPV6, but not L-type voltage-gated calcium channels, is associated with the calcium influx induced by KFP-1. An in vitro calcium binding assay indicates that the full-length KFP-1 peptide has a higher calcium-binding capacity than the two truncated KFP-1 peptides, KFP-1∆C5 and KFP-1C5. Alexa Fluor 594 labeling shows that KFP-1 is taken up by Caco-2 cells and interacts with calcium ions and TRPV6 protein. Moreover, KFP-1 is found moderately resistant to pepsin and pancreatin digestions and enhanced calcium uptake by intestinal enterocytes in vivo. CONCLUSION These data suggest that KFP-1, a novel calcium-binding peptide, binds extracellular calcium ions and enters Caco-2 and IEC-6 cells, and promotes calcium uptake through TRPV6 calcium channels. The present study is of great importance for developing kefir-derived metal ion-binding peptides as functional nutraceutical additives.
Collapse
Affiliation(s)
- Gary Ro-Lin Chang
- Department of Pediatrics, Department of Medical Research, Tungs' Taichung Metroharbor Hospital, Taichung, 435, Taiwan.,Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Min-Yu Tu
- Aviation Physiology Research Laboratory, Kaohsiung Armed Forces General Hospital Gangshan Branch, Kaohsiung, 820, Taiwan.,Department of Health Business Administration, Meiho University, Pingtung, 912, Taiwan.,Institute of Biomedical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yu-Hsuan Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Health Research Institutes and National Chung Hsing University, Taichung, 402, Taiwan
| | - Ku-Yi Chang
- Department of Orthopedic Surgery, Jen-Ai Hospital, Dali Branch, Taichung, 402, Taiwan
| | - Chien-Fu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Jen-Chieh Lai
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, 411, Taiwan
| | - Yu-Tang Tung
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hsiao-Ling Chen
- Department of Biomedical Sciences, and Department of Bioresources, Da-Yeh University, Changhwa, 515, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Department of Medical Research, Tungs' Taichung Metroharbor Hospital, Taichung, 435, Taiwan.,Department of Rehabilitation, Jen-Teh Junior College of Medicine, Miaoli, 356, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
45
|
Zhang Y, Tian X, Jiao Y, Liu Q, Li R, Wang W. An out of box thinking: the changes of iron-porphyrin during meat processing and gastrointestinal tract and some methods for reducing its potential health hazard. Crit Rev Food Sci Nutr 2021; 63:1390-1405. [PMID: 34387535 DOI: 10.1080/10408398.2021.1963946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron-porphyrin is a very important substance in organisms, especially in animals. It is not only the source of iron in human body, but is also the catalytic center of many reactions. Previous studies suggested that adequate intake of iron was important for the health of human, especially for children and pregnant women. However, associated diseases caused by iron over-intake and excessive meat consumption suggested its potential harmfulness for human health. During meat processing, Iron-porphyrin will cause the oxidation of proteins and fatty acids. In the gastrointestinal tract, iron-porphyrin can induce the production of malondialdehyde, fats oxidation, and indirectly cause oxidation of amino acids and nitrates etc. Iron-porphyrin enters the intestinal tract and disturbs the balance of intestinal flora. Finally, some common measures for inhibiting its activity are introduced, including the use of chelating agent, antioxidants, competitive inhibitor, etc., as well as give the hypothesis that sodium chloride increases the catalytic activity of iron-porphyrin. The purpose of this review is to present an overview of current knowledge about the changes of iron-porphyrin in the whole technico- and gastrointesto- processing axis and to provide ideas for further research in meat nutrition.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qiubo Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
46
|
Mohammadian M, Salami M, Moghadam M, Amirsalehi A, Emam-Djomeh Z. Mung bean protein as a promising biopolymeric vehicle for loading of curcumin: Structural characterization, antioxidant properties, and in vitro release kinetics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Zhang Y, Ding X, Li M. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chem 2021; 349:129101. [PMID: 33540219 DOI: 10.1016/j.foodchem.2021.129101] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/24/2020] [Accepted: 01/10/2021] [Indexed: 01/20/2023]
Abstract
Mung bean protein was enzymatically hydrolyzed with either alcalase, neutral protease, or papain. The mung bean protein hydrolysates (MPH) showed good ability to chelate ferrous ions, and the chelates had high stability in vitro. The hydrolysates prepared by alcalase showed the highest degree of hydrolysis and the highest ferrous chelating rate. Single factor tests showed that the pH and the material ratio had significant effects on ferrous chelating rates. The optimal MPH to FeCl2·4H2O material ratio was 8:1 (w/w) and the optimal pH of the reaction was 7.0, which yielded a chelating rate of 96.19 ± 0.94%. The fraction 3 with the highest ferrous chelating activity up to 61.25 ± 1.02 μg/mg was obtained from MPH by affinity chromatography. Meanwhile, the MPH-Fe complex had higher digestive stability than just MPH in both in vitro and acid-alkali tolerance assays. The characterization results showed that ferrous ions mainly combined with the amino, carboxyl, imidazole and other chelating active groups in mung bean peptides to form peptide-iron chelates. Scanning electron microscopy (SEM) analysis showed that mung bean peptide chelated ferrous ions to form polymer particles. These results provided insight into ways to develop functional foods such as iron-fortified cereals.
Collapse
Affiliation(s)
- Yijun Zhang
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China
| | - Xiangjun Ding
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China; College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Meiqing Li
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China; College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
48
|
Yang X, Yu X, Yagoub AG, Chen L, Wahia H, Osae R, Zhou C. Structure and stability of low molecular weight collagen peptide (prepared from white carp skin) -calcium complex. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Wang M, Zheng Z, Liu C, Sun H, Liu Y. Investigating the calcium binding characteristics of black bean protein hydrolysate. Food Funct 2020; 11:8724-8734. [PMID: 32945323 DOI: 10.1039/d0fo01708f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The black bean protein has been widely utilized to prepare hydrolysates with different bioactive properties. Herein, we hydrolyzed the black bean protein to prepare hydrolysate with calcium binding activity and characterized its behavior. Our results showed that ficin was superior in obtaining hydrolysate with calcium binding capacity in comparison with trypsin, alcalase and bromelain. In particular, the optimal capacity of ficin hydrolysate reached 77.54 ± 1.61 μg mg-1, where the optimal hydrolysis conditions of ficin were a temperature of 70 °C, a pH value of 6.2, an enzyme concentration of 1.61% and a time of 3 h. This might be due to high proportions of aspartic acid and glutamic acid (35.59%). Further spectral analysis evidenced the formation of hydrolysate-calcium complexes, demonstrating that the interaction between hydrolysate and calcium ions primarily occur on carboxyl oxygen atoms and amino nitrogen atoms. These findings provide a possible utilization of black bean hydrolysate to serve as a calcium supplement nutraceutical to enhance the absorption and bioavailability.
Collapse
Affiliation(s)
- Man Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Chunhuan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hong Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
50
|
Chunkao S, Youravong W, Yupanqui CT, Alashi AM, Aluko RE. Structure and Function of Mung Bean Protein-Derived Iron-Binding Antioxidant Peptides. Foods 2020; 9:foods9101406. [PMID: 33022976 PMCID: PMC7600763 DOI: 10.3390/foods9101406] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
An iron-binding mung bean protein hydrolysate (MBPH) was prepared using a continuous enzymatic membrane reactor followed by peptide separation on anion-exchange (AEC) and reverse-phase HPLC (RP-HPLC) columns. Amino acid sequences of peptides present in the RP-HPLC fraction with the strongest iron-binding capacity were identified using mass spectrometry, and ten peptides of 5-8 amino acids synthesized for antioxidant characterization. Five fractions (AF1- AF5) with higher iron-binding capacity (88.86 ± 6.43 to 153.59 ± 2.18 mg/g peptide) when compared to the MBPH (36.81 ± 0.93 mg/g peptide) were obtained from AEC. PAIDL had the significantly (p < 0.05) highest iron-binding capacity, but LLLLG and LLGIL showed the strongest metal chelating activity. However, PAIDL (46.63%) and LLGIL (81.27%) had significantly (p < 0.05) better DPPH radical scavenging activity than the other peptides. PAIDL and LLGIL were also the most effective (p < 0.05) hydroxyl radical neutralizers with an effective concentration that scavenged 50% (EC50) values of 0.09 and 0.37 mM, respectively. PAIDL and AIVIL showed the lowest EC50 values of 0.07 mM each for superoxide radical scavenging activity. We conclude that short chain length in combination with leucine as the C-terminal amino acid residue contributed to the strong antioxidant properties of peptides in this study.
Collapse
Affiliation(s)
- Siriporn Chunkao
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Membrane Science and Technology Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wirote Youravong
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Membrane Science and Technology Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Correspondence: (W.Y.); (R.E.A.); Tel.: +1-204-474-9555 (R.E.A.)
| | - Chutha T. Yupanqui
- Centre of Excellence in Functional Foods and Nutraceuticals, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Correspondence: (W.Y.); (R.E.A.); Tel.: +1-204-474-9555 (R.E.A.)
| |
Collapse
|