1
|
Martins-Gomes C, Nunes FM, Silva AM. Thymus spp. Aqueous Extracts and Their Constituent Salvianolic Acid A Induce Nrf2-Dependent Cellular Antioxidant Protection Against Oxidative Stress in Caco-2 Cells. Antioxidants (Basel) 2024; 13:1287. [PMID: 39594429 PMCID: PMC11591053 DOI: 10.3390/antiox13111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
The increasing incidence of colorectal cancer and inflammatory diseases poses a major health concern, with oxidative stress playing a significant role in the onset of these pathologies. Factors such as excessive consumption of sugar-rich and fatty foods, synthetic food additives, pesticides, alcohol, and tobacco contribute to oxidative stress and disrupt intestinal homeostasis. Functional foods arise as a potential tool to regulate redox balance in the intestinal tract. Herbs (such as Thymus spp.) have long been screened for their antioxidant properties, but their use as antioxidants for medicinal purposes requires validation in biological models. In this study, we addressed the potential antioxidant protection and preventive effects of extracts from two thyme species at the intestinal level, as well as their molecular mechanisms of action. Caco-2 cells were pre-exposed (4 h) to aqueous (AD) and hydroethanolic (HE) extracts of Thymus carnosus and Thymus capitellatus, followed by a recovery period in culture medium (16 h), and then treated with tert-butyl-hydroperoxide (TBHP; 4 h), before analyzing cell viability. The effect of the extracts' main components was also analysed. Cellular oxidative stress, cell-death markers, and the expression of antioxidant-related proteins were evaluated using flow cytometry on cells pre-exposed to the AD extracts and salvianolic acid A (SAA). Results showed that pre-exposure to AD extracts or SAA reduced TBHP-induced oxidative stress and cell death, mediated by increased levels of nuclear factor erythroid 2-related factor 2 (Nrf2) protein. The protective activity of T. capitellatus AD extract was shown to be dependent on NAD(P)H quinone dehydrogenase 1 (NQO1) protein expression and on increased glutathione (GSH) content. Furthermore, ursolic acid induced cytotoxicity and low cellular antioxidant activity, and thus the presence of this triterpenoid impaired the antioxidant effect of HE extracts. Thus, AD extracts show high potential as prophylactic dietary agents, while HE extracts arise as a source of nutraceuticals with antioxidant potential.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Martins-Gomes C, Nunes FM, Silva AM. Linking Variability in Phytochemical Composition with Safety Profile of Thymus carnosus Boiss. Extracts: Effect of Major Compounds and Evaluation of Markers of Oxidative Stress and Cell Death. Int J Mol Sci 2024; 25:5343. [PMID: 38791385 PMCID: PMC11120720 DOI: 10.3390/ijms25105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Natural products are generally considered safe for human consumption, but this classification is often based on ethnobotanical surveys or their use in traditional medicine over a long period of time. However, edaphoclimatic factors are known to produce different chemotypes, which may affect the safety profile and bioactivities, and are not commonly considered for plants exploited as crops worldwide. Thymus carnosus Boiss., a thyme species with various health-promoting effects, has potential pharmaceutical applications, but edaphoclimatic factors were found to significantly impact its phytochemical composition. Thus, we aimed to assess the safety profile of T. carnosus extracts obtained from plants harvested in two locations over three consecutive years and to establish an association with specific components, an essential study in the search for new sources of nutraceuticals. Thus, the antiproliferative effect of an aqueous decoction (AD), hydroethanolic (HE) extracts, and major extracts' components of T. carnosus was evaluated on intestinal (Caco-2) and hepatic (HepG2) cell models, revealing effects dependent on extract type, cell line, and tested compounds. Flavonoids induced different cytotoxic patterns, which could be attributed to molecular structural differences. Flow cytometry analysis showed apoptosis and necrosis induction, mediated by the modulation of intracellular reactive oxygen species and mitochondrial membrane potential, effects that were dependent on the cell line and phytochemical composition and on the synergism between extracts components, rather than on the activity of an isolated compound. While ursolic acid was the component with the strongest impact on the difference between extraction methods, flavonoids assumed a pivotal role in the response of different cell lines to the extracts. We report for the first time, for Thymus spp. extracts, that variations in the phytochemical composition clearly influence the cellular response, thus highlighting the need for extract standardization for medicinal applications.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Frazão DF, Martins-Gomes C, Díaz TS, Delgado F, Gonçalves JC, Silva AM. Labdanum Resin from Cistus ladanifer L. as a Source of Compounds with Anti-Diabetic, Neuroprotective and Anti-Proliferative Activity. Molecules 2024; 29:2222. [PMID: 38792084 PMCID: PMC11124373 DOI: 10.3390/molecules29102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Labdanum resin or "gum" can be obtained from Cistus ladanifer L. by two different extraction methods: the Zamorean and the Andalusian processes. Although its main use is in the fragrance and perfumery sectors, ethnobotanical reports describe its use for medicinal purposes in managing hyperglycemia and mental illnesses. However, data concerning the bioactivities and pharmacological applications are scarce. In this work, it was found that the yield of labdanum resin extracted by the Andalusian process was 25-fold higher than the Zamorean one. Both resins were purified as absolutes, and the Andalusian absolute was purified into diterpenoid and flavonoid fractions. GC-EI-MS analysis confirmed the presence of phenylpropanoids, labdane-type diterpenoids, and methylated flavonoids, which are already described in the literature, but revealed other compounds, and showed that the different extracts presented distinct chemical profile. The potential antidiabetic activity, by inhibition of α-amylase and α-glucosidase, and the potential neuroprotective activity, by inhibition of acetylcholinesterase, were investigated. Diterpenoid fraction produced the higher α-amylase inhibitory effect (~30% and ~40% at 0.5 and 1 mg/mL, respectively). Zamorean absolute showed the highest α-glucosidase inhibitory effect (~14% and ~24%, at 0.5 and 1 mg/mL, respectively). Andalusian absolute showed the highest acetylcholinesterase inhibitory effect (~70% and ~75%, at 0.5 and 1 mg/mL, respectively). Using Caco-2 and HepG2 cell lines, Andalusian absolute and its purified fractions showed moderate cytotoxic/anti-proliferative activity at 24 h exposure (IC50 = 45-70 µg/mL, for Caco-2; IC50 = 60-80 µg/mL, for HepG2), whereas Zamorean absolute did not produce cytotoxicity (IC50 ≥ 200.00 µg/mL). Here we show, for the first time, that labdanum resin obtained by the Andalusian process, and its fractions, are composed of phytochemicals with anti-diabetic, neuroprotective and anti-proliferative potential, which are worth investigating for the pharmaceutical industry. However, toxic side-effects must also be addressed when using these products by ingestion, as done traditionally.
Collapse
Affiliation(s)
- David F. Frazão
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.)
- Mediterranean Institute for Agriculture, Environment and Development (MED), Centre of Agronomic and Agro-Industrial Biotechnology of Alentejo (CEBAL), 7801-908 Beja, Portugal
| | - Carlos Martins-Gomes
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
| | - Teresa Sosa Díaz
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain;
| | - Fernanda Delgado
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.)
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Castelo Branco (IPCB), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal
| | - José C. Gonçalves
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.)
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Castelo Branco (IPCB), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal
| | - Amélia M. Silva
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
4
|
Akman TÇ, Şimşek S, Akşit Z, Akşit H, Aydin A, Tüfekçi AR, Adem S, Yilmaz MA. Liquid chromatography-tandem mass spectrometry profile and antioxidant, antimicrobial, antiproliferative, and enzyme activities of Thymus pectinatus and Thymus convolutus: in vitro and in silico approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4039-4049. [PMID: 38376445 DOI: 10.1002/jsfa.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The objective of this study is to investigate the antiproliferative, antioxidant, antimicrobial, and enzyme activity capacities and phytochemical compositions of Thymus pectinatus (TP), Thymus convolutus (TC), which are endemic to Türkiye. Quantitative analysis of phenolic compounds in the extracts was conducted using liquid chromatography-tandem mass spectrometry, targeting 53 phenolic compounds. RESULTS Rosmarinic acid, quinic acid, and cynaroside were identified as the major compounds, exhibiting quantitative variation in both extracts. The extracts had a high total phenolic content, with 113.57 ± 0.58 mg gallic acid equivalents (GAE)/g extract for TP and 130.52 ± 1.05 mg GAE/g extract for TC. Furthermore, although both extracts exhibited high total flavonoid content; the TP extract (75.12 ± 1.65 mg quercitin equivalents (QE)/g extract) displayed a higher flavonoid content than the TC extract (30.24 ± 0.74 mg QE/g extract) did. The extracts had a promising antiproliferative effect on C6, HeLa, and HT29 cancer cell lines with a less cytotoxic effect (10.5-14.2%) against normal cells. Both extracts exhibited very potent inhibitory activity against the xanthine oxidase enzyme, with half-maximal inhibitory concentration values of respectively 2.07 ± 0.03 μg mL-1 and 2.76 ± 0.06 μg mL-1 and moderate activity against tyrosinase and α-glucosidase. Docking simulations proved that rosmarinic acid and cynaroside, the major components of the extracts, were the most potent inhibitors of xanthine oxidase. According to antimicrobial activity results, the TC extract exhibited moderate activity against Staphylococcus aureus, and the TP extract had strong activity against both Enterococcus faecium and S. aureus. CONCLUSION These findings emphasize the beneficial effects of the two endemic Thymus species on human health and suggest their potential use as plant-derived bioactive agents. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tuğrul Çağrı Akman
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Samed Şimşek
- Department of Medical Services and Techniques, Çayırlı Vocational School, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Zeynep Akşit
- Department of Hotel, Restaurant and Service, Tourism and Hospitality Vocational School, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Hüseyin Akşit
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Ali Aydin
- Department of Basic Medical Science, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Ali Riza Tüfekçi
- Department of Chemistry, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| | - Sevki Adem
- Department of Chemistry, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| | - Mustafa Abdullah Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
5
|
Martins-Gomes C, Steck J, Keller J, Bunzel M, Santos JA, Nunes FM, Silva AM. Phytochemical Composition and Antioxidant, Anti-Acetylcholinesterase, and Anti-α-Glucosidase Activity of Thymus carnosus Extracts: A Three-Year Study on the Impact of Annual Variation and Geographic Location. Antioxidants (Basel) 2023; 12:antiox12030668. [PMID: 36978915 PMCID: PMC10045533 DOI: 10.3390/antiox12030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Thymus carnosus Boiss. is a near-threatened species, and, as for many species, its potential for medicinal purposes may be lost if measures towards plant protection are not taken. A way of preserving these species is to increase knowledge about their medicinal properties and economic potential. Thus, with the objective of studying the potentiality of introducing T. carnosus as a crop, the stability of the phytochemical profile of T. carnosus was studied during a period of three years by comparing the phytochemical profile of extracts obtained from plants harvested in two different edaphoclimatic locations, as well as by comparing the respective bioactivities, namely, antioxidant, antidiabetic, antiaging, and neuroprotective activities. It was reported, for the first time, the effect of annual variation and geographic location in the phytochemical composition of aqueous decoction and hydroethanolic extracts of T. carnosus. In addition, the presence of two salvianolic acid B/E isomers in T. carnosus extracts is here described for the first time. Despite the variations in phytochemical composition, according to harvesting location or year, T. carnosus extracts maintain high antioxidant activity, assessed by their capacity to scavenge ABTS•+, •OH , NO•, O2•- radicals, as well as to prevent β-carotene bleaching. All extracts presented significant potential to inhibit acetylcholinesterase (AChE), tyrosinase, and α-glucosidase, denoting neuroprotective, anti-aging, and anti-diabetic potential. In conclusion, the vegetative stage and location of harvest are key factors to obtain the maximum potential of this species, namely, a phytochemical profile with health benefit bioactivities.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Jan Steck
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Judith Keller
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - João A Santos
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Physics, School of Sciences and Technology, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Fernando M Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life and Environmental Sciences (ECVA), UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Amélia M Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, ECVA, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
6
|
Martins-Gomes C, Nunes FM, Silva AM. Modulation of Cell Death Pathways for Cellular Protection and Anti-Tumoral Activity: The Role of Thymus spp. Extracts and Their Bioactive Molecules. Int J Mol Sci 2023; 24:ijms24021691. [PMID: 36675206 PMCID: PMC9864824 DOI: 10.3390/ijms24021691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Natural products used for their health-promoting properties have accompanied the evolution of humanity. Nowadays, as an effort to scientifically validate the health-promoting effects described by traditional medicine, an ever-growing number of bioactivities are being described for natural products and the phytochemicals that constitute them. Among them, medicinal plants and more specifically the Thymus genus spp., arise as products already present in the diet and with high acceptance, that are a source of phytochemicals with high pharmacological value. Phenolic acids, flavonoid glycoside derivatives, and terpenoids from Thymus spp. have been described for their ability to modulate cell death and survival pathways, much-valued bioactivities in the pharmaceutical industry, that continually sought-after new formulations to prevent undesired cell death or to control cell proliferation. Among these, wound treatment, protection from endogenous/exogenous toxic molecules, or the induction of selective cell death, such as the search for new anti-tumoral agents, arise as main objectives. This review summarizes and discusses studies on Thymus spp., as well as on compounds present in their extracts, with regard to their health-promoting effects involving the modulation of cell death or survival signaling pathways. In addition, studies regarding the main bioactive molecules and their cellular molecular targets were also reviewed. Concerning cell survival and proliferation, Thymus spp. present themselves as an option for new formulations designed for wound healing and protection against chemicals-induced toxicity. However, Thymus spp. extracts and some of their compounds regulate cell death, presenting anti-tumoral activity. Therefore Thymus spp. is a rich source of compounds with nutraceutical and pharmaceutical value.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
7
|
Martins-Gomes C, Steck J, Keller J, Bunzel M, Nunes FM, Silva AM. Molecular Characterization of Thymus capitellatus Extracts and Their Antioxidant, Neuroprotective and Anti-Proliferative Activities. Int J Mol Sci 2022; 23:15187. [PMID: 36499513 PMCID: PMC9738728 DOI: 10.3390/ijms232315187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Thymus capitellatus Hoffmanns & Link is an endemic species of the Iberian Peninsula listed as near-threatened, due to its restricted geographical distribution, occurring mainly in Portugal's mainland. In this work, we detail for the first time T. capitellatus extracts' phytochemical composition, as well as an evaluation of bioactivities to point out potential health benefits. Aqueous decoction (AD) and hydroethanolic (HE) extracts were obtained, both rich in flavonoids. However, quercetin-(?)-O-hexoside was identified as the main compound in T. capitellatus HE extract, while the phenolic acid rosmarinic acid was the main component of AD extracts. In addition, HE extract presents significant amounts of salvianolic acids and of the terpenoids oleanolic and ursolic acid. Both extracts showed antioxidant activity, evaluated by their capacity to scavenge ABTS and superoxide radicals, as well as an ability to prevent lipid peroxidation. AD extracts were also effective in scavenging hydroxyl and nitric oxide radicals. As potential functional foods, T. capitellatus extracts presented neuroprotective and anti-diabetic activity, in addition to time- and dose-dependent anti-proliferative activity against Caco-2 (colorectal adenocarcinoma) and HepG2 (hepatic carcinoma) cells. HE extract presented higher cytotoxicity than AD extract, and HepG2 cells were more resistant than Caco-2 cells. After 24 h exposure to HE extract, the IC50 values were 330 μg/mL and 447 μg/mL for Caco-2 and HepG2 cells, respectively. T. capitellatus has potential as a functional food or as a source of bioactive molecules. These results also highlight the need to preserve species with as yet unknown molecular compositions and potential medicinal applications.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab., University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Jan Steck
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Judith Keller
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab., University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
8
|
Ferreira SS, Martins-Gomes C, Nunes FM, Silva AM. Elderberry (Sambucus nigra L.) extracts promote anti-inflammatory and cellular antioxidant activity. Food Chem X 2022; 15:100437. [PMID: 36211754 PMCID: PMC9532789 DOI: 10.1016/j.fochx.2022.100437] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Extracts of Sambucus nigra berries have anti-inflammatory and antioxidant effects. Elderberries prevented the oxidative damage induced by tert-butyl-hydroperoxide. Elderberries protect HepG2 and Caco-2 cells from t-BOOH-induced oxidative stress. Elderberry extracts prevented GSH depletion, ROS production, and DNA fragmentation. Elderberries can be considered a functional food or a sources of nutraceuticals.
Despite the high value of Portuguese elderberries, recognized for decades by European markets, only a few studies address their beneficial effects at cellular level. Aiming to explore the anti-inflammatory and the cellular antioxidant potential characterized extracts from the three main Portuguese elderberry cultivars (Sabugueiro, Sabugueira, Bastardeira) were used. Lipopolysaccharide-stimulated RAW 264.7 cells pre-exposed to elderberry extracts exhibited dose-dependent inhibition of nitric oxide release, evidencing anti-inflammatory activity. Concerning cellular antioxidant protection, HepG2 and Caco-2 cells pre-exposure to elderberry extracts (50 µg/mL) prevented up-to 90 % of tert-butyl hydroperoxide (t-BOOH)-induced toxicity. In Caco-2 cells, elderberry extracts prevented glutathione depletion, reactive oxygen species production, abnormal morphological changes and DNA fragmentation, in response to t-BOOH oxidative insult. Results demonstrated that elderberries have high potential in reducing cellular oxidative stress as well as in preventing inflammatory processes. Thus, elderberries have high potential as health promoters, acting as functional foods or as sources of nutraceuticals.
Collapse
Affiliation(s)
- Sandrine S. Ferreira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Center – Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Center – Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Center – Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Chemistry, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Corresponding authors at: Chemistry Department, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (F.M. Nunes). Department of Biology and Environment (DeBA), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal (A.M. Silva).
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Corresponding authors at: Chemistry Department, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (F.M. Nunes). Department of Biology and Environment (DeBA), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal (A.M. Silva).
| |
Collapse
|
9
|
Silva AM, Martins-Gomes C, Ferreira SS, Souto EB, Andreani T. Molecular Physicochemical Properties of Selected Pesticides as Predictive Factors for Oxidative Stress and Apoptosis-Dependent Cell Death in Caco-2 and HepG2 Cells. Int J Mol Sci 2022; 23:ijms23158107. [PMID: 35897683 PMCID: PMC9331544 DOI: 10.3390/ijms23158107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, three pesticides of different physicochemical properties: glyphosate (GLY, herbicide), imidacloprid (IMD, insecticide), and imazalil (IMZ, fungicide), were selected to assess their cytotoxicity against Caco-2 and HepG2 cells. Cell viability was assessed by the Alamar Blue assay, after 24 and 48 h exposure to different concentrations, and IC50 values were calculated. The mechanisms underlying toxicity, namely cellular reactive oxygen species (ROS), glutathione (GSH) content, lipid peroxidation, loss of mitochondrial membrane potential (MMP), and apoptosis/necrosis induction were assessed by flow cytometry. Cytotoxic profiles were further correlated with the molecular physicochemical parameters of pesticides, namely: water solubility, partition coefficient in an n-octanol/water (Log Pow) system, topological polar surface area (TPSA), the number of hydrogen-bonds (donor/acceptor), and rotatable bonds. In vitro outputs resulted in the following toxicity level: IMZ (Caco-2: IC50 = 253.5 ± 3.37 μM, and HepG2: IC50 = 94 ± 12 μM) > IMD (Caco-2: IC50 > 1 mM and HepG2: IC50 = 624 ± 24 μM) > GLY (IC50 >>1 mM, both cell lines), after 24 h treatment, being toxicity time-dependent (lower IC50 values at 48 h). Toxicity is explained by oxidative stress, as IMZ induced a higher intracellular ROS increase and lipid peroxidation, followed by IMD, while GLY did not change these markers. However, the three pesticides induced loss of MMP in HepG2 cells while in Caco-2 cells only IMZ produced significant MMP loss. Increased ROS and loss of MMP promoted apoptosis in Caco-2 cells subjected to IMZ, and in HepG2 cells exposed to IMD and IMZ, as assessed by Annexin-V/PI. The toxicity profile of pesticides is directly correlated with their Log Pow, as affinity for the lipophilic environment favours interaction with cell membranes governs, and is inversely correlated with their TPSA; however, membrane permeation is favoured by lower TPSA. IMZ presents the best molecular properties for membrane interaction and cell permeation, i.e., higher Log Pow, lower TPSA and lower hydrogen-bond (H-bond) donor/acceptor correlating with its higher toxicity. In conclusion, molecular physicochemical factors such as Log Pow, TPSA, and H-bond are likely to be directly correlated with pesticide-induced toxicity, thus they are key factors to potentially predict the toxicity of other compounds.
Collapse
Affiliation(s)
- Amélia M. Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (S.S.F.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Correspondence: ; Tel.: +351-259-350-921
| | - Carlos Martins-Gomes
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (S.S.F.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Sandrine S. Ferreira
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (S.S.F.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tatiana Andreani
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- GreenUPorto—Sustainable Agrifood Production Research Centre and Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
10
|
Investigating anticancer potency of in vitro propagated endemic Thymus cilicicus Boiss. & Bal. extract on human lung, breast, and prostate cancer cell lines. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Elemental Profiles of Wild Thymus L. Plants Growing in Different Soil and Climate Conditions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plants of the genus Thymus L. are traditionally used in medicine and cooking due to the presence of biologically active compounds in them that have fungicidal, antibacterial and other medicinal properties and original taste qualities. Genetic features and growing conditions cause the elemental composition, responsibly of the synthesised medicinal compounds. However, information on the contents and distributions of elements in the organs of Thymus L. is very limited. This study was to set and compare the elements in organs of wild thyme for different soil and climatic conditions. Two species of wild Thymus L. from Mongolian steppe and on the coast of Lake Baikal were collected during flowering. Twenty-four elements, including Si, in soils, roots, stems, leaves and flowers were simultaneously determined by atomic emission spectrometry. Elemental profiles of two species of wild Thymus L. are described. It is assumed that Si is a necessary element of the plant. The predominance of the genetic resistance of plants over the influence of soil and climatic conditions is shown.
Collapse
|
12
|
Taghouti M, Martins-Gomes C, Félix LM, Schäfer J, Santos JA, Bunzel M, Nunes FM, Silva AM. Polyphenol composition and biological activity of Thymus citriodorus and Thymus vulgaris: Comparison with endemic Iberian Thymus species. Food Chem 2020; 331:127362. [PMID: 32590268 DOI: 10.1016/j.foodchem.2020.127362] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
The polyphenol compositions of Thymus × citriodorus and Thymus vulgaris extracts as obtained by exhaustive hydroethanolic (HE) extraction and aqueous decoction (AD) were compared. In addition, their compositions and bioactivities were compared to those of Thymus pulegioides and Thymus mastichina, grown under the same edaphoclimatic conditions, and Thymus carnosus. Rosmarinic acid was the most abundant polyphenol followed by luteolin-hexuronide, salvianolic acids I and K. Cluster analysis suggests a similarity of the polyphenol composition of T. citriodorus and T. vulgaris. A significant antioxidant activity was observed and correlated with their polyphenol levels. The same being observed for the higher anti-proliferative activity/cytotoxicity of HE extracts on Caco-2 and HepG2 cells as compared to AD extracts. Significant association between the total phenolic compounds with the anti-proliferative activity, for both cell lines, was observed. These results support the importance of salvianolic acids levels in Thymus extracts and their in vitro anti-proliferative/cytotoxic activities.
Collapse
Affiliation(s)
- Meriem Taghouti
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Food and Wine Chemistry Lab, Chemistry Research Centre Vila Real (CQ-VR), UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Food and Wine Chemistry Lab, Chemistry Research Centre Vila Real (CQ-VR), UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Luís M Félix
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Judith Schäfer
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - João A Santos
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Department of Physics, School of Sciences and Technology, UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Fernando M Nunes
- Food and Wine Chemistry Lab, Chemistry Research Centre Vila Real (CQ-VR), UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal; Department of Chemistry, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal.
| | - Amélia M Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Department of Biology and Environment, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal.
| |
Collapse
|
13
|
Iftikhar M, Iftikhar A, Zhang H, Gong L, Wang J. Transport, metabolism and remedial potential of functional food extracts (FFEs) in Caco-2 cells monolayer: A review. Food Res Int 2020; 136:109240. [PMID: 32846508 DOI: 10.1016/j.foodres.2020.109240] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
Abstract
Caco-2, a human intestinal carcinoma cell line, has been used to test the absorption and transport mechanism of functional foods and drugs across the intestinal epithelium in order to study their antioxidant, anticancer and anti-inflammatory activities. Caco-2 cells represent the morphological and functional characteristics of small intestinal cells and capable of expressing brush borders, tight junctions, intestinal efflux and uptake transporters which regulate permeation of drugs and functional food extracts from intestinal lumen to systemic circulation. The integrity of the Caco-2 monolayer is controlled by establishing the TEER between 200 and 1000 O per cm2. FFEs affect intestinal permeability by adjusting the tight junction proteins between the cells in order to maintain the epithelial barrier function. Because of the side effects of medicines, there is an increased interest in functional food extracts (FFEs) as drug substitutes. Functional foods undergo intricate transport processes and biotransformation after oral administration. Metabolism and transport studies of FFEs in Caco-2 cells are very important for determining their bioavailability. Functional foods and their constituents produce anti-proliferative and anti-cancer effects through apoptosis, cell cycle arrest and inhibition of various signal transduction pathways across Caco-2 cell lines. The current review has summarized the anti-inflammation, anticancer, antioxidant and cholesterol lowering potential of FFEs using Caco-2 cells through reducing local inflammatory signals, production of ROS and lipid accumulation. The transport, bioavailability, metabolism, mechanisms of actions, cellular pathways adopted by FFEs across Caco-2 cell lines are predominantly affected by their molecular weight, structures and physicochemical properties. These studies are beneficial for investigating the different mechanisms of action of FFEs in the human body.
Collapse
Affiliation(s)
- Maryam Iftikhar
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad (TUF), Faisalabad 38000, Pakistan
| | - Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China.
| | - Lingxiao Gong
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
14
|
Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051594] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skin aging is described as dermatologic changes either naturally occurring over the course of years or as the result of the exposure to environmental factors (e.g., chemical products, pollution, infrared and ultraviolet radiations). The production of collagen and elastin, the main structural proteins responsible for skin strength and elasticity, is reduced during aging, while their role in skin rejuvenation can trigger a wrinkle reversing effect. Elasticity loss, wrinkles, dry skin, and thinning are some of the signs that can be associated with skin aging. To overcome skin aging, many strategies using natural and synthetic ingredients are being developed aiming to reduce the signs of aging and/or to treat age-related skin problems (e.g., spots, hyper- or hypopigmentation). Among the different approaches in tissue regeneration, the use of nanomaterials loaded with cosmeceuticals (e.g., phytochemicals, vitamins, hyaluronic acid, and growth factors) has become an interesting alternative. Based on their bioactivities and using different nanoformulations as efficient delivery systems, several cosmeceutical and pharmaceutical products are now available on the market aiming to mitigate the signs of aged skin. This manuscript discusses the state of the art of nanomaterials commonly used for topical administration of active ingredients formulated in nanopharmaceuticals and nanocosmeceuticals for skin anti-aging.
Collapse
|
15
|
Chemical Characterization and Bioactivity of Extracts from Thymus mastichina: A Thymus with a Distinct Salvianolic Acid Composition. Antioxidants (Basel) 2019; 9:antiox9010034. [PMID: 31906063 PMCID: PMC7022745 DOI: 10.3390/antiox9010034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 01/20/2023] Open
Abstract
Thymus mastichina, also called mastic thyme or Spanish marjoram, is endemic to the Iberian Peninsula, where it is widely used in folk medicine especially for treating digestive and respiratory systems disorders, and as a condiment to season olives. This work describes for the first time the detailed phenolic composition of exhaustive hydroethanolic extracts and aqueous decoctions of Thymus mastichina. Unlike other species of the Thymus genera, Thymus mastichina extracts contain high amounts of salvianolic acid derivatives, with salvianolic acid A isomer being the main derivative. This isomer was identified in extracts from Thymus mastichina for the first time. Also, an undescribed salvianolic acid derivative in Thymus mastichina was identified and its structure was tentatively described. Extracts from Thymus mastichina showed significant scavenging activity of 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical cation, hydroxyl, and nitric oxide radicals. The anti-proliferative effect of both T. mastichina extracts were tested against Caco-2 and HepG2 cells; the hydroethanolic extract showed a high anti-proliferative activity against Caco-2 cells compared to HepG2 cells (at 24 h exposure, the concentration that inhibits 50% of proliferation, IC50, was 71.18 ± 1.05 µg/mL and 264.60 ± 11.78 µg/mL for Caco-2 and HepG2, respectively). Thus, these results make this species a promising candidate for further investigation of its anti-tumoral potential. Therefore, Thymus mastichina can be potentially used as a functional food (used as a decoction or herbal tea) or as a source of bioactive ingredients with antioxidant and anti-proliferative properties.
Collapse
|
16
|
Li X, He T, Wang X, Shen M, Yan X, Fan S, Wang L, Wang X, Xu X, Sui H, She G. Traditional Uses, Chemical Constituents and Biological Activities of Plants from the Genus Thymus. Chem Biodivers 2019; 16:e1900254. [PMID: 31381251 DOI: 10.1002/cbdv.201900254] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
The genus Thymus (Lamiaceae) comprises about 214 species throughout the world, mainly found in North Africa, Europe, and temperate Asia zone. They are traditionally used as food additives and folk medicines. This review comprehensively summarizes information about traditional uses, chemical constituents, and biological activities of this genus and provides recommendations for future investigations. All information was gathered from scientific databases including Google Scholar, Sci-Finder, Web of Science, ScienceDirect, and CNKI. Volatile oils are the most concerned constituents of this genus. Flavonoids, phenylpropanoids, tannins, organic acids, terpenoids, and phytosterols were also summarized. This genus plants possessed a variety of activities including antimicrobial, antioxidant, anti-inflammatory, cytotoxic, analgesic, and antidiabetic. In brief, this review will be helpful to provide valuable data for explorations and create more interests towards Thymus genus in the future.
Collapse
Affiliation(s)
- Xiao Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, P. R. China
| | - Ting He
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, P. R. China
| | - Xiuhuan Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, P. R. China
| | - Meng Shen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, P. R. China
| | - Xin Yan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, P. R. China
| | - Shusheng Fan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, P. R. China
| | - Le Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, P. R. China
| | - Xiaoping Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, P. R. China
| | - Xiao Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, P. R. China
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Ningxia, 750004, P. R. China
| | - Gaimei She
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, P. R. China
| |
Collapse
|
17
|
Silva AM, Alvarado HL, Abrego G, Martins-Gomes C, Garduño-Ramirez ML, García ML, Calpena AC, Souto EB. In Vitro Cytotoxicity of Oleanolic/Ursolic Acids-Loaded in PLGA Nanoparticles in Different Cell Lines. Pharmaceutics 2019; 11:pharmaceutics11080362. [PMID: 31344882 PMCID: PMC6723971 DOI: 10.3390/pharmaceutics11080362] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Oleanolic (OA) and ursolic (UA) acids are recognized triterpenoids with anti-cancer properties, showing cell-specific activity that can be enhanced when loaded into polymeric nanoparticles. The cytotoxic activity of OA and UA was assessed by Alamar Blue assay in three different cell lines, i.e., HepG2 (Human hepatoma cell line), Caco-2 (Human epithelial colorectal adenocarcinoma cell line) and Y-79 (Human retinoblastoma cell line). The natural and synthetic mixtures of these compounds were tested as free and loaded in polymeric nanoparticles in a concentration range from 2 to 32 µmol/L. The highest tested concentrations of the free triterpene mixtures produced statistically significant cell viability reduction in HepG2 and Caco-2 cells, compared to the control (untreated cells). When loaded in the developed PLGA nanoparticles, no differences were recorded for the tested concentrations in the same cell lines. However, in the Y-79 cell line, a decrease on cell viability was observed when testing the lowest concentration of both free triterpene mixtures, and after their loading into PLGA nanoparticles.
Collapse
Affiliation(s)
- Amélia M Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal.
- Department of Biology and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal.
| | - Helen L Alvarado
- Department of Biology and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Guadalupe Abrego
- Department of Biology and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemical and Instrumental Analysis, Faculty of Chemistry and Pharmacy, University of El Salvador, Final 25 Ave. Norte, 3026 San Salvador, El Salvador
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Maria L Garduño-Ramirez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, 62209 Cuernavaca, Mexico
| | - María L García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Ana C Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|