1
|
Oumeddour DZ, Al-Dalali S, Zhao L, Zhao L, Wang C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem Biophys Res Commun 2024; 729:150344. [PMID: 38976946 DOI: 10.1016/j.bbrc.2024.150344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Dounya Zad Oumeddour
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb, 70270, Yemen.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
2
|
Rossi I, Mignogna C, Del Rio D, Mena P. Health effects of 100% fruit and vegetable juices: evidence from human subject intervention studies. Nutr Res Rev 2024; 37:194-238. [PMID: 37655747 DOI: 10.1017/s095442242300015x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The health effects of 100% fruit and vegetable juices (FVJ) represent a controversial topic. FVJ contain notable amounts of free sugars, but also vitamins, minerals, and secondary compounds with proven biological activities like (poly)phenols and carotenoids. The review aimed to shed light on the potential impact of 100% FVJ on human subject health, comprehensively assessing the role each type of juice may have in specific health outcomes for a particular target population, as reported in dietary interventions. The effects of a wide range of FVJ (orange, grapefruit, mandarin, lemon, apple, white, red, and Concord grapes, pomegranate, cranberry, chokeberry, blueberry, other minor berries, sweet and tart cherry, plum, tomato, carrot, beetroot, and watermelon, among others) were evaluated on a series of outcomes (anthropometric parameters, body composition, blood pressure and vascular function, lipid profile, glucose homeostasis, biomarkers of inflammation and oxidative stress, cognitive function, exercise performance, gut microbiota composition and bacterial infections), providing a thorough picture of the contribution of each FVJ to a health outcome. Some juices demonstrated their ability to exert potential preventive effects on some outcomes while others on other health outcomes, emphasising how the differential composition in bioactive compounds defines juice effects. Research gaps and future prospects were discussed. Although 100% FVJ appear to have beneficial effects on some cardiometabolic health outcomes, cognition and exercise performance, or neutral effects on anthropometric parameters and body composition, further efforts are needed to better understand the impact of 100% FVJ on human subject health.
Collapse
Affiliation(s)
- Irene Rossi
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Heydarian A, Tahvilian N, Asbaghi O, Cheshmeh S, Nadery M, Aryaeian N. The effects of plum products consumption on lipid profile in adults: A systematic review and dose-response meta-analysis. Food Sci Nutr 2024; 12:3080-3096. [PMID: 38726435 PMCID: PMC11077222 DOI: 10.1002/fsn3.4000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 05/12/2024] Open
Abstract
Consumption of plum does not yet clearly affect the lipid profile. To ascertain the advantages of plum consumption on adult lipid profiles, we conducted a systematic review and meta-analysis. We used pertinent keywords to search the databases of PubMed, Scopus, and ISI Web of Science up to November 10th, 2022, in order to find trials that were eligible. According to the analyses, eating plum significantly lowers LDL levels compared to controls (WMD: -12.50 mg/dL, 95% CI: -22.06, -2.94, p = .010). Although plum consumption did not result in significant changes in TG (WMD: 0.56 mg/dL, 95% CI: -6.02, 7.15, p = .866), TC (WMD: -12.35 mg/dL, 95% CI: -25.05, 0.37, p = .057), and HDL concentrations (WMD: -0.39 mg/dL, 95% CI: -4.69, 3.89, p = .855) compared to the control group. Intake of plums, particularly the intervention type of dried plums, significantly decreased TC levels in unhealthy subjects, according to subgroup analysis. The consumption of plums had a notably statistically significant effect on LDL levels when the intervention type was dried plum and unhealthy subjects were enrolled. Due to the very low to moderate quality of meta-evidence, to show how eating plum improves lipid profile, further high-quality research are still essential.
Collapse
Affiliation(s)
- Azadeh Heydarian
- Student Research Committee, Faculty of Public Health BranchIran University of Medical SciencesTehranIran
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Negin Tahvilian
- Department of Nutrition, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Nutrition and Food Security Research CenterShahid Sadoughi University of Medical SciencesYazdIran
| | - Omid Asbaghi
- Cancer Research CenterShahid Beheshti University of Medical sciencesTehranIran
- Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Sahar Cheshmeh
- Molecular and Experimental Nutritional Medicine DepartmentUniversity of PotsdamPotsdamGermany
| | - Maryam Nadery
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social WorkFlorida International UniversityMiamiFloridaUSA
| | - Naheed Aryaeian
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
May N, de Sousa Alves Neri JL, Clunas H, Shi J, Parkes E, Dongol A, Wang Z, Jimenez Naranjo C, Yu Y, Huang XF, Charlton K, Weston-Green K. Investigating the Therapeutic Potential of Plants and Plant-Based Medicines: Relevance to Antioxidant and Neuroprotective Effects. Nutrients 2023; 15:3912. [PMID: 37764696 PMCID: PMC10535096 DOI: 10.3390/nu15183912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is a common characteristic of psychiatric, neurological, and neurodegenerative disorders. Therefore, compounds that are neuroprotective and reduce oxidative stress may be of interest as novel therapeutics. Phenolic, flavonoid and anthocyanin content, ORAC and DPPH free radical scavenging, and Cu2+ and Fe2+ chelating capacities were examined in variations (fresh/capsule) of Queen Garnet plum (QGP, Prunus salicina), black pepper (Piper nigrum) clove (Syzygium aromaticum), elderberry (Sambucus nigra), lemon balm (Melissa officinalis) and sage (Salvia officinalis), plus two blends (Astralagus membranaceus-lemon balm-rich, WC and R8). The ability of samples to prevent and treat H2O2-induced oxidative stress in SH-SY5Y cells was investigated. Pre-treatment with WC, elderberry, QGP, and clove prevented the oxidative stress-induced reduction in cell viability, demonstrating a neuroprotective effect. Elderberry increased cell viability following oxidative stress induction, demonstrating treatment effects. Clove had the highest phenolic and flavonoid content, DPPH, and Cu2+ chelating capacities, whereas QGP and elderberry were highest in anthocyanins. Black pepper had the highest ORAC and Fe2+ chelating capacity. These findings demonstrate that plant extracts can prevent and treat oxidative stress-induced apoptosis of neuron-like cells in vitro. Further research into phytochemicals as novel therapeutics for oxidative stress in the brain is needed.
Collapse
Affiliation(s)
- Naomi May
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Julianna Lys de Sousa Alves Neri
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Helen Clunas
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Jiahua Shi
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ella Parkes
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anjila Dongol
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zhizhen Wang
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Carlos Jimenez Naranjo
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Yinghua Yu
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu-Feng Huang
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Karen Charlton
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katrina Weston-Green
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
5
|
Nastasi JR, Daygon VD, Kontogiorgos V, Fitzgerald MA. Qualitative Analysis of Polyphenols in Glycerol Plant Extracts Using Untargeted Metabolomics. Metabolites 2023; 13:metabo13040566. [PMID: 37110224 PMCID: PMC10146371 DOI: 10.3390/metabo13040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Glycerol is a reliable solvent for extracting polyphenols from food and waste products. There has been an increase in the application of glycerol over benchmark alcoholic solvents such as ethanol and methanol for natural product generation because of its non-toxic nature and high extraction efficiency. However, plant extracts containing a high glycerol concentration are unsuitable for mass spectrometry-based investigation utilising electrospray ionization, inhibiting the ability to analyse compounds of interest. In this investigation, a solid phase extraction protocol is outlined for removing glycerol from plant extracts containing a high concentration of glycerol and their subsequent analysis of polyphenols using ultra-performance liquid chromatography coupled with quadrupole time of flight tandem mass spectrometry. Using this method, glycerol-based extracts of Queen Garnet Plum (Prunus salicina) were investigated and compared to ethanolic extracts. Anthocyanins and flavonoids in high abundance were found in both glycerol and ethanol extracts. The polyphenol metabolome of Queen Garnet Plum was 53% polyphenol glycoside derivatives and 47% polyphenols in their aglycone forms. Furthermore, 56% of the flavonoid derivates were found to be flavonoid glycosides, and 44% were flavonoid aglycones. In addition, two flavonoid glycosides not previously found in Queen Garnet Plum were putatively identified: Quercetin-3-O-xyloside and Quercetin-3-O-rhamnoside.
Collapse
Affiliation(s)
- Joseph Robert Nastasi
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Venea Dara Daygon
- Queensland Metabolomics and Proteomics Facility, Metabolomics Australia, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vassilis Kontogiorgos
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Melissa A Fitzgerald
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Popiolek-Kalisz J, Glibowski P. Apple Peel Supplementation Potential in Metabolic Syndrome Prevention. Life (Basel) 2023; 13:life13030753. [PMID: 36983908 PMCID: PMC10056680 DOI: 10.3390/life13030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
(1) Introduction: Apples are a source of bioactive substances, e.g., anthocyanidins and flavonols, and dietary fiber. Their highest concentrations are observed in the skin. Metabolic syndrome (MetS) is a set of conditions originally associated with obesity. Excessive adipose tissue accompanying obesity leads to chronic inflammation and metabolic disorders, which result in the development of dyslipidemia, elevated blood pressure, and glucose levels. Thus, supplementation of apple peels, a source of antioxidant substances and fiber, could potentially be a method supporting the prevention of MetS. This paper summarizes the results of available research on the potential impact of apple peel supplementation on the components of MetS. (2) Results: The results from in vitro and animal model studies indicate a positive effect of apple peel supplementation on lipid profile, glucose levels, and blood pressure regulation mediators. Only one human study was performed, and it showed that the consumption of apple peels had an effect on endothelial function but not on other clinical parameters. At the moment, there are no results from observations on large groups of people available. (3) Conclusions: The results of in vitro and animal-model studies indicate the potential of apple peel supplementation in MetS prevention, but it has not been clinically confirmed in human studies. Conducting large human studies could allow a definite clarification of the role of apple peel supplementation in MetS prevention.
Collapse
Affiliation(s)
- Joanna Popiolek-Kalisz
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, 20-093 Lublin, Poland
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland
- Department of Cardiology, Cardinal Wyszynski Hospital in Lublin, 20-718 Lublin, Poland
- Correspondence:
| | - Paweł Glibowski
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland
| |
Collapse
|
7
|
Plum supplementation and lipid profile: a systematic review and meta-analysis of randomised controlled trials. J Nutr Sci 2023; 12:e6. [PMID: 36721717 PMCID: PMC9869099 DOI: 10.1017/jns.2022.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023] Open
Abstract
Plums are abundant in bioactive compounds which have been associated with numerous health benefits. In the present study, we aimed at examining the impact of plum supplementation on lipid profile of individuals. Electronic bibliographical databases were searched for relevant randomised clinical trials. Articles meeting our eligibility criteria were included for data extraction and final analysis. Weighted mean difference (WMD) was estimated using a random-effect model. Of the total articles retrieved in the initial search, nine articles were found to be eligible to be included in the analysis. Our results show that plum supplementation significantly improves total cholesterols levels in the unhealthy individuals. Moreover, plum supplementation reduces the LDL-c levels in the pooled sample (WMD = -11⋅52 mg/dl; 95 % CI -21⋅93, -1⋅11, P = 0⋅03, I 2 = 98⋅7 %) and also in some of the subgroups of individuals (dried plum, unhealthy subjects, duration more than 8 weeks). Moreover, it had a significant reducing effect on TC levels just in unhealthy subjects. Although plum supplementation did not have any significant impact on serum levels of TG nor HDL-c. Our results show that supplementation with plums is potentially effective in reducing serum total cholesterol and LDL-c.
Collapse
|
8
|
Ghalandari H, Askarpour M, Setayesh L, Ghaedi E. Effect of plum supplementation on blood pressure, weight indices, and C-reactive protein: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2022; 52:285-295. [PMID: 36513468 DOI: 10.1016/j.clnesp.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/13/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Metabolic syndrome and its components are major health concerns around the world. Among various factors, overweight/obesity, its consequent inflammation, and hypertension are of special importance. Plums are anti-oxidant-rich fruits which have long been investigated for their health benefits. In this systematic review and meta-analysis, we investigated the possible impact of plum supplementation on obesity, inflammation, and blood pressure. METHODS All of the major databases (PubMed, Scopus, Cochrane, and Web of Science, Google Scholar and EMBASE) were searched to obtain the articles eligible for the review. Relevant data was extracted for the final analysis. Weighted mean difference (WMD) was obtained using fixed and random effect models. The main outcomes included systolic and diastolic blood pressure, body weight, body mass index (BMI), body fat percentage, waist circumference (WC) and blood C-reactive protein (CRP) levels. The effect sizes were expressed as weighted mean difference (WMD) and 95% confidence intervals (CI). RESULTS Crude search provided 3121 articles, among which 11 were eligible to be included. After crude and subgroup analysis, we were unable to detect any significant impact of plum supplementation on body weight (weight mean difference (WMD) of 0.04 kg; 95% CI: -1.55, 1.63, p = 0.959), BMI (WMD 0.39 kg/m2; 95% CI: -0.11, 0.90, p = 0.125), body fat percentage (WMD = 0.59%; 95% CI: -0.41, 1.59, p = 0.249), waist circumference (WMD = 0.60 cm; 95% CI: -1.83, 3.04, p = 0.627), systolic blood pressure (WMD -1.24 mmHg; 95% CI: -3.08, 0.59, p = 0.185), diastolic blood pressure (WMD -4.32 mmHg (95% CI: -9.29, 0.65, p = 0.089), or inflammation indicated by C-reactive protein (CRP) levels (WMD = 0.23 mg/l; 95% CI: -0.27, 0.73, p = 0.371). CONCLUSION Our results show that plum supplementation has no positive effect on factors of metabolic syndrome. We recommend that further research in the form of clinical trials be conducted to make a clear conclusion as of the effectiveness of plum supplementation on parameters of metabolic syndrome.
Collapse
Affiliation(s)
- Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Setayesh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ghaedi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Quarta S, Massaro M, Carluccio MA, Calabriso N, Bravo L, Sarria B, García-Conesa MT. An Exploratory Critical Review on TNF-α as a Potential Inflammatory Biomarker Responsive to Dietary Intervention with Bioactive Foods and Derived Products. Foods 2022; 11:2524. [PMID: 36010524 PMCID: PMC9407274 DOI: 10.3390/foods11162524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
This review collects and critically examines data on the levels of tumour necrosis factor-alpha (TNF-α) in lean, overweight and obese subjects, and the effects of intervention with different foods and food products containing bioactive constituents in overweight/obese individuals. We additionally explore the influence of different single nucleotide polymorphisms (SNPs) on TNF-α levels and compare the response to food products with that to some anti-obesity drugs. Our aim was to provide an overview of the variability, consistency, and magnitude of the reported effects of dietary factors on TNF-α, and to envisage the reliability of measuring changes in the levels of this cytokine as a biomarker responsive to food intervention in association with the reduction in body weight. Regarding the circulating levels of TNF-α, we report: (i) a large intra-group variability, with most coefficients of variation (CV%) values being ≥30% and, in many cases, >100%; (ii) a large between-studies variability, with baseline TNF-α values ranging from <1.0 up to several hundred pg/mL; (iii) highly variable effects of the different dietary approaches with both statistically significant and not significant decreases or increases of the protein, and the absolute effect size varying from <0.1 pg/mL up to ≈50 pg/mL. Within this scenario of variability, it was not possible to discern clear differentiating limits in TNF-α between lean, overweight, and obese individuals or a distinct downregulatory effect on this cytokine by any of the different dietary approaches reviewed, i.e., polyunsaturated fatty acids (PUFAs), Vitamin-D (VitD), mixed (micro)nutrients, (poly)phenols or other phytochemicals. Further, there was not a clear relationship between the TNF-α responses and body weight changes. We found similarities between dietary and pharmacological treatments in terms of variability and limited evidence of the TNF-α response. Different factors that contribute to this variability are discussed and some specific recommendations are proposed to reinforce the need to improve future studies looking at this cytokine as a potential biomarker of response to dietary approaches.
Collapse
Affiliation(s)
- Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Laura Bravo
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - Beatriz Sarria
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
10
|
Ngamsamer C, Sirivarasai J, Sutjarit N. The Benefits of Anthocyanins against Obesity-Induced Inflammation. Biomolecules 2022; 12:biom12060852. [PMID: 35740977 PMCID: PMC9230453 DOI: 10.3390/biom12060852] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity has become a serious public health epidemic because of its associations with chronic conditions such as type 2 diabetes mellitus, hypertension, cardiovascular disease, and cancer. Obesity triggers inflammation marked by the secretion of low-grade inflammatory cytokines including interleukin-6, C-reactive protein, and tumor necrosis factor-α, leading to a condition known as “meta-inflammation”. Currently, there is great interest in studying the treatment of obesity with food-derived bioactive compounds, which have low toxicity and no severe adverse events compared with pharmacotherapeutic agents. Here, we reviewed the beneficial effects of the bioactive compounds known as anthocyanins on obesity-induced inflammation. Foods rich in anthocyanins include tart cherries, red raspberries, black soybeans, blueberries, sweet cherries, strawberries and Queen Garnet plums. These anthocyanin-rich foods have been evaluated in cell culture, animal, and clinical studies, and found to be beneficial for health, reportedly reducing inflammatory markers. One factor in the development of obesity-related inflammation may be dysbiosis of the gut microbiome. Therefore, we focused this review on the in vitro and in vivo effects of anthocyanins on inflammation and the gut microbiota in obesity.
Collapse
Affiliation(s)
- Chanya Ngamsamer
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, 10400, Thailand;
| | - Jintana Sirivarasai
- Graduate Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand;
| | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand;
- Correspondence:
| |
Collapse
|
11
|
Panchal SK, John OD, Mathai ML, Brown L. Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients 2022; 14:2161. [PMID: 35631301 PMCID: PMC9142943 DOI: 10.3390/nu14102161] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are mainly purple-coloured phenolic compounds of plant origin that as secondary metabolites are important in plant survival. Understanding their health benefits in humans requires sourcing these unstable compounds in sufficient quantities at a reasonable cost, which has led to improved methods of extraction. Dark-coloured fruits, cereals and vegetables are current sources of these compounds. The range of potential sustainable sources is much larger and includes non-commercialised native plants from around the world and agri-waste containing anthocyanins. In the last 5 years, there have been significant advances in developing the therapeutic potential of anthocyanins in chronic human diseases. Anthocyanins exert their beneficial effects through improvements in gut microbiota, oxidative stress and inflammation, and modulation of neuropeptides such as insulin-like growth factor-1. Their health benefits in humans include reduced cognitive decline; protection of organs such as the liver, as well as the cardiovascular system, gastrointestinal tract and kidneys; improvements in bone health and obesity; and regulation of glucose and lipid metabolism. This review summarises some of the sources of anthocyanins and their mechanisms and benefits in the treatment of chronic human diseases.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Penrith, NSW 2753, Australia;
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2753, Australia
| | - Oliver D. John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; or
| | - Michael L. Mathai
- Institute of Health and Sport, College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia;
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
12
|
Tropical fruits from Australia as potential treatments for metabolic syndrome. Curr Opin Pharmacol 2022; 63:102182. [PMID: 35149297 DOI: 10.1016/j.coph.2022.102182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
Australia has a unique and diverse flora, including indigenous fruits, used by Australian Aboriginals for food and medicines for up to 45,000 years as well as recently introduced fruits for commercial production. However, this range of fruits has not led to the development of functional foods, for example for chronic inflammatory diseases such as metabolic syndrome including obesity, hypertension, fatty liver and diabetes. This review examines the potential of tropical and subtropical fruits from Australia to be used as functional foods for metabolic syndrome, including Davidson's plum, Queen Garnet plum, durian, litchi, breadfruit, jackfruit, mangosteen, papaya, jabuticaba, coffee and seaweed. Preclinical studies have defined potential responses of these functional foods in metabolic syndrome but the usefulness in humans with metabolic syndrome requires clinical studies which are scarce in the relevant literature. Overall, these Australian examples show that tropical fruits can provide functional foods to decrease chronic inflammatory diseases.
Collapse
|
13
|
Ghattamaneni NKR, Brown L. Functional foods from the tropics to relieve chronic normobaric hypoxia. Respir Physiol Neurobiol 2020; 286:103599. [PMID: 33333240 DOI: 10.1016/j.resp.2020.103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Functional foods with antioxidant and anti-inflammatory properties are regarded as a complementary therapy to improve chronic diseases such as obesity and inflammatory bowel disease (IBD). Obesity is a chronic low-grade inflammatory state leading to organ damage with increased risk of common diseases including cardiovascular and metabolic disease, non-alcoholic fatty liver disease, osteoarthritis and some cancers. IBD is a chronic intestinal inflammation categorised as Crohn's disease and ulcerative colitis depending on the location of inflammation. These inflammatory states are characterised by normobaric hypoxia in adipose and intestinal tissues, respectively. Tropical foods especially from Australia and South America are discussed in this review to show their potential in attenuation of these chronic diseases. The phytochemicals from these foods have antioxidant and anti-inflammatory activities to reduce chronic normobaric hypoxia in the tissues. These health benefits of the tropical foods are relevant not only for health economy but also in providing a global solution by improving the sustainability of their cultivation and assisting the local economies.
Collapse
Affiliation(s)
- Naga K R Ghattamaneni
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia.
| |
Collapse
|
14
|
|
15
|
Sivamaruthi BS, Kesika P, Chaiyasut C. The Influence of Supplementation of Anthocyanins on Obesity-Associated Comorbidities: A Concise Review. Foods 2020; 9:foods9060687. [PMID: 32466434 PMCID: PMC7353506 DOI: 10.3390/foods9060687] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Anthocyanins are water-soluble plant pigments, and based on their chemical structure (nature, position, and the number of sugar moieties attached; the number of hydroxyl groups; acylation of sugars with acids) about 635 different anthocyanins have been identified and reported from plants. Cyanidin, peonidin, pelargonidin, petunidin, and malvidin are the commonly found anthocyanidins (aglycon forms of anthocyanins) in edible plants out of almost 25 anthocyanidins that are identified (based on the position of methoxyl and hydroxyl groups in the rings) in nature. Anthocyanins are known for numerous health benefits including anti-diabetes, anti-obesity, anti-inflammatory bowel disease, anti-cancer, etc. Obesity can be defined as excessive or abnormal adipose tissue and body mass, which increases the risk of developing chronic diseases such as diabetes, cardiovascular diseases, cancers, etc. The manuscript summarizes the recent updates in the effects of anthocyanins supplementation on the health status of obese subjects, and briefly the results of in vitro and in vivo studies. Several studies confirmed that the consumption of anthocyanins-rich food improved obesity-associated dysbiosis in gut microbiota and inflammation in adipose tissue. Anthocyanin consumption prevents obesity in healthy subjects, and aids in maintaining or reducing the body weight of obese subjects, also improving the metabolism and energy balance. Though preclinical studies proved the beneficial effects of anthocyanins such as the fact that daily intake of anthocyanin rich fruits and vegetables might aid weight maintenance in every healthy individual, Juҫara pulp might control the inflammatory status of obesity, Queen garnet plum juice reduced the blood pressure and risk factors associated with metabolic disorders, and highbush organic blueberries improved the metabolism of obese individuals, we don't have an established treatment procedure to prevent or manage the over-weight condition and its comorbidities. Thus, further studies on the optimum dose, duration, and mode of supplementation of anthocyanins are required to develop an anthocyanins-based clinical procedure.
Collapse
|
16
|
de Mejia EG, Zhang Q, Penta K, Eroglu A, Lila MA. The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annu Rev Food Sci Technol 2020; 11:145-182. [PMID: 32126181 DOI: 10.1146/annurev-food-032519-051729] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is an increasing consumer demand for natural colors in foods. However, there is a limited number of available natural food sources for use by the food industry because of technical and regulatory limitations. Natural colors are less stable and have less vibrant hues compared to their synthetic color counterparts. Natural pigments also have known health benefits that are seldom leveraged by the food industry. Betalains, carotenoids, phycocyanins, and anthocyanins are major food colorants used in the food industry that have documented biological effects, particularly in the prevention and management of chronic diseases such as diabetes, obesity, and cardiovascular disease. The color industry needs new sources of stable, functional, and safe natural food colorants. New opportunities include sourcing new colors from microbial sources and via the use of genetic biotechnology. In all cases, there is an imperative need for toxicological evaluation to pave the way for their regulatory approval.
Collapse
Affiliation(s)
- Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois 61801, USA;
| | - Qiaozhi Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kayla Penta
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Mary Ann Lila
- Department of Food, Bioprocessing & Nutrition Sciences and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| |
Collapse
|