1
|
Gao L, Qin Y, Zhou X, Jin W, He Z, Li X, Wang Q. Microalgae as future food: Rich nutrients, safety, production costs and environmental effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172167. [PMID: 38580118 DOI: 10.1016/j.scitotenv.2024.172167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
The improvement of food security and nutrition has attracted wide attention, and microalgae as the most promising food source are being further explored. This paper comprehensively introduces basic and functional nutrients rich in microalgae by elaborated tables incorporating a wide variety of studies and summarizes factors influencing their accumulation effects. Subsequently, multiple comparisons of nutrients were conducted, indicating that microalgae have a high protein content. Moreover, controllable production costs and environmental friendliness prompt microalgae into the list that contains more promising and reliable future food. However, microalgae and -based foods approved and sold are limited strictly, showing that safety is a key factor affecting dietary consideration. Notably, sensory profiles and ingredient clarity play an important role in improving the acceptance of microalgae-based foods. Finally, based on the bottleneck in the microalgae food industry, suggestions for its future development were discussed.
Collapse
Affiliation(s)
- Le Gao
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yujia Qin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Wenbiao Jin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongqi He
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Bhatnagar P, Gururani P, Parveen A, Gautam P, Chandra Joshi N, Tomar MS, Nanda M, Vlaskin MS, Kumar V. Algae: A promising and sustainable protein-rich food ingredient for bakery and dairy products. Food Chem 2024; 441:138322. [PMID: 38190793 DOI: 10.1016/j.foodchem.2023.138322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
The consumer demand for protein rich foods urges the exploration for novel products of natural origin. Algae can be considered as a gold mine of different bioactive compounds, among which protein is distributed in significant amounts i.e., around 30% and can even reach to 55-60% in some cyanobacteria. Bakery and dairy products are extensively consumed worldwide due to product diversification and innovation. However, incorporation of algae biomass can lead to the development of green colour and fishy flavour that usually is not accepted in such products. Therefore, isolation and application of algae-derived proteins opens a new door for food industry. The present review provides a comprehensive understanding of incorporation of algae as a protein-rich ingredient in bakery and dairy products. The paper provides a deep insight for all the possible recent trends related to production and extraction of algae proteins accompanied by their incorporation in bakery and dairy foods.
Collapse
Affiliation(s)
- Pooja Bhatnagar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| | - Afreen Parveen
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Pankaj Gautam
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Naveen Chandra Joshi
- Division of Research & Innovation, Uttaranchal University Dehradun, Uttarakhand, 248007, India
| | - Mahipal Singh Tomar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Manisha Nanda
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russian Federation
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation.
| |
Collapse
|
3
|
Elkot WF, Elmahdy A, El-Sawah TH, Alghamdia OA, Alhag SK, Al-Shahari EA, Al-Farga A, Ismail HA. Development and characterization of a novel flavored functional fermented whey-based sports beverage fortified with Spirulina platensis. Int J Biol Macromol 2024; 258:128999. [PMID: 38159692 DOI: 10.1016/j.ijbiomac.2023.128999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Spirulina platensis, a microalga known for its exceptional nutritional value, especially its bioactive compounds and protein content, holds promise for incorporation into functional food products. Ricotta cheese whey is a byproduct of the production of ricotta cheese that is difficult to use in industries due to its low pH and less favorable processing qualities. This research aimed to create a unique fermented ricotta cheese whey-based beverage supplemented with various Spirulina powder concentrations (0.25 %, 0.5 %, and 0.75 % w/w) cooperated with a mixture of lemon and peppermint juice 10 % and fermented by probiotic (ABT) culture. The physicochemical, rheological, bioactive compounds, microbiological, and sensory properties were evaluated over a storage period of 21 days at cold storage. Spirulina-fermented whey-based beverages with a mixture of lemon and peppermint juice increased the concentration of vitamins, minerals, antioxidants, and total phenolic compounds in the final product. The count of probiotic bacteria in all fermented beverage samples exceeded 7 log CFU/mL throughout storage, indicating that the fermented beverage kept its probiotic properties. The addition of 0.5 % Spirulina significantly improved the final product's structural qualities and sensory acceptance.
Collapse
Affiliation(s)
- Wael F Elkot
- Dairy Science and Technology Department, Faculty of Agriculture & Natural Resources, Aswan University, Aswan 81528, Egypt.
| | - Ahmed Elmahdy
- Department of Dairy Science, Faculty of Desert and Environmental Agriculture, Matrouh University, Matrouh, Egypt
| | - Talaat H El-Sawah
- Dairy Technology Research Department, Animal Production Research Institute, Agricultural Research Center, Dokky, Giza, Egypt
| | - Othman A Alghamdia
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 22233, Saudi Arabia
| | - Sadeq K Alhag
- Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser 61913, Saudi Arabia
| | - Eman A Al-Shahari
- Department of Biology, Faculty of Science and Arts, King Khalid University, Abha, Saudi Arabia
| | - Ammar Al-Farga
- Biochemistry Department, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Hesham A Ismail
- Dairy Science Department, Faculty of Agriculture, New Valley University, El Kharga 72511, Egypt.
| |
Collapse
|
4
|
Nowruzi B, Ahmadi M, Bouaïcha N, Khajerahimi AE, Anvar SAA. Studying the impact of phycoerythrin on antioxidant and antimicrobial activity of the fresh rainbow trout fillets. Sci Rep 2024; 14:2470. [PMID: 38291237 PMCID: PMC10827737 DOI: 10.1038/s41598-024-52985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Marine cyanobacteria present a significant potential source of new bioactive compounds with vast structural diversity and relevant antimicrobial and antioxidant activities. Phycobiliproteins (PBPs) like phycocyanin (PC), phycoerythrin (PE), and water-soluble cyanobacterial photosynthetic pigments, have exhibited strong pharmacological activities and been used as natural food additives. In this study, phycoerythrin (PE) isolated from a marine strain of cyanobacterium Nostoc sp. Ft salt, was applied for the first time as a natural antimicrobial as well as an antioxidant to increase the shelf life of fresh rainbow trout i.e., (Oncorhynchus mykiss) fillets. Fresh trout fillets were marinated in analytical grade PE (3.9 μg/mL) prepared in citric acid (4 mg/mL), and stored at 4 °C and 8 °C for 21 days. Microbiological analysis, antioxidant activity and organoleptic evaluation of both control and treated fish fillets were then statistically compared. The results demonstrated noticeable (P < 0.05) differences in the microbial counts, antioxidant activity, and organoleptic characteristic values between PE-treated and non-treated groups. In addition, we observed that treating fresh fish fillets with a PE solution leads to a significant increase in shelf life by at least 14 days. Consequently, PE could be an alternative to synthetic chemical additives since it does not contain the potentially dangerous residues of the synthetic chemical additives and is thus healthier to the consumers.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Ahmadi
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Noureddine Bouaïcha
- Laboratory Ecology, Systematic and Evolution, UMR 8079, Universite Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91405, Orsay, France
| | - Amir Eghbal Khajerahimi
- Department of Aquatic animal health and disease, science and research branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Mostafa Mohammed D, El-Messery TM, Baranenko DA, Hashim MA, Tyutkov N, Marrez DA, Elmessery WM, El-Said MM. Effect of Spirulina maxima microcapsules to mitigate testicular toxicity induced by cadmium in rats: Optimization of in vitro release behavior in the milk beverage. J Funct Foods 2024; 112:105938. [DOI: 10.1016/j.jff.2023.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
|
6
|
Li Z, Zhou T, Zhang Q, Liu T, Lai J, Wang C, Cao L, Liu Y, Ruan R, Xue M, Wang Y, Cui X, Liu C, Ren Y. Influence of cold atmospheric pressure plasma treatment of Spirulina platensis slurry over biomass characteristics. BIORESOURCE TECHNOLOGY 2023; 386:129480. [PMID: 37437813 DOI: 10.1016/j.biortech.2023.129480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Cold atmospheric pressure plasma (CAPP) technique is an innovative non-thermal approach for food preservation and decontamination. This study aimed to evaluate the effect of CAPP power density on microorganism inactivation and quality of Spirulina platensis (S. platensis) slurry. 91.31 ± 1.61% of microorganism were inactivated within 2.02 ± 0.11 min by 26.67 W/g CAPP treatment under 50 ℃. Total phenolic, Chlorophyll-a (Chl-a), and carotenoids contents were increased by 20.51%, 63.55%, and 70.04% after 20.00 W/g CAPP treatment. Phycobiliproteins (PBPs), protein, intracellular polysaccharide, and moisture content of S. platensis was decreased, while vividness, lightness, color of yellow and green, antioxidant activity, Essential Amino Acid Index were enhanced after CAPP treatment. The nutrient release and filaments breakage of CAPP-treated S. platensis improved its bio-accessibility. The findings provided a deep understanding and insight into the influence of CAPP treatment on S. platensis, which were meaningful for optimizing its sterilization and drying processing condition.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qi Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Jiangling Lai
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Canbo Wang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul MN 55108, USA
| | - Mingxiong Xue
- Beihai Spd Science Technology Co., LTD, Beihai, Guangxi 530021, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cuixia Liu
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Yan Ren
- Zhejiang Suntown Environment Protection Co., LTD, Quzhou, Zhejiang 324000, China
| |
Collapse
|
7
|
Zhu S, Cheng Y, Wang J, Liu G, Luo T, Li X, Yang S, Yang R. Biohybrid magnetic microrobots: An intriguing and promising platform in biomedicine. Acta Biomater 2023; 169:88-106. [PMID: 37572981 DOI: 10.1016/j.actbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Biohybrid magnetic microrobots (BMMs) have emerged as an exciting class of microrobots and have been considered as a promising platform in biomedicine. Many microorganisms and body's own cells show intriguing properties, such as morphological characteristics, biosafety, and taxis abilities (e.g., chemotaxis, aerotaxis), which have made them attractive for the fabrication of microrobots. For remote controllability and sustainable actuation, magnetic components are usually incorporated onto these biological entities, and other functionalized non-biological components (e.g., therapeutic agents) are also included for specific applications. This review highlights the latest developments in BMMs with a focus on their biomedical applications. It starts by introducing the fundamental understanding of the propulsion system at the microscale in a magnetically driven manner, followed by a summary of diverse BMMs based on different microorganisms and body's own cells along with their relevant applications. Finally, the review discusses how BMMs contribute to the advancements of microrobots, the current challenges of using BMMs in practical clinical settings, and the future perspectives of this exciting field. STATEMENT OF SIGNIFICANCE: Biohybrid magnetic microrobots (BMMs), composed of biological entities and functional parts, hold great potential and serve as a novel and promising platform for biomedical applications such as targeted drug delivery. This review comprehensively summarizes the recent advancements in BMMs for biomedical applications, mainly focused on the representative propulsion modalities in a magnetically propelled manner and diverse designs of BMMs based on different biological entities, including microorganisms and body's own cells. We hope this review can provide ideas for the future design, development, and innovation of micro/nanorobots in the field of biomedicine.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Yifan Cheng
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Jian Wang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| | - Xiaojian Li
- Department of Management, Hefei University of Technology, Hefei 230009, China.
| | - Shanlin Yang
- Key Laboratory of Process Optimization and Intelligent Decision-Making (Ministry of Education), Hefei University of Technology, Hefei 230009, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
8
|
Benucci I, Flore M, Esti M. Partitioning Recovery of Natural Pigments from Spirulina platensis. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:557-565. [PMID: 37491584 DOI: 10.1007/s11130-023-01084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
In the last few decades, the recovery of high-added value compounds with high food potential using microalgae as feedstock has been one of the main challenges for both research and industry. This study provides a simple, affordable, and cost-saving approach for the selective recovery of C-phycocyanin (C-PC), chlorophyll a and carotenoids from Spirulina platensis biomass by using biocompatible and industrially approved solvents (such as CaCl2 and ethanol). The concentration and yield of each pigment in the liquid extract have been spectrophotometrically detected, whereas the decolorized protein-rich biomass has been analyzed by CIELab parameters. The most concentrated (566.4 μg/mL) and food-grade C-PC extract (purity index 0.7) was obtained by applying a biomass/solvent ratio (1:10) for the first round of extraction (20 min), followed by a second round at 1:5 using CaCl2 1.5% (w/v) aqueous solution. Additionally, the same trial enabled the production of the brightest decolorized protein-rich biomass (L* = 46.2), characterized by a yellow-orange tonality (h° values = 81.3°).
Collapse
Affiliation(s)
- Ilaria Benucci
- Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, via S. Camillo de Lellis snc, 01100, Viterbo, Italy.
| | - Manuela Flore
- Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Marco Esti
- Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| |
Collapse
|
9
|
Saberi M, Saremnezhad S, Soltani M, Faraji A. Functional stirred yogurt manufactured using co-microencapsulated or free forms of grape pomace and flaxseed oil as bioactive ingredients: Physicochemical, antioxidant, rheological, microstructural, and sensory properties. Food Sci Nutr 2023; 11:3989-4001. [PMID: 37457195 PMCID: PMC10345739 DOI: 10.1002/fsn3.3385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 07/18/2023] Open
Abstract
Functional stirred yogurt samples were manufactured with combinations of grape pomace (GP) and flaxseed oil (FO) in microencapsulated or free forms (2% w/w) and quality characteristics of yogurts were investigated during 21 days of storage. The incorporation of GP and FO in microencapsulated or free forms caused a significant decrease in pH, syneresis, and a significant increase in acidity, water holding capacity, and viscosity of stirred yogurt (p < .05). While stirred yogurt containing GP and FO in free form had the highest loss modulus (G″), all yogurt samples represented solid-like behavior. Stirred yogurts containing the microencapsulated form of GP and FO showed the highest amount of phenolics and antioxidant activity compared with the two other yogurt samples (p < .05). More compact structure and higher gel strength were observed in stirred yogurts formulated with the microencapsulated or free form of GP and FO, compared to the control yogurt sample. The overall sensory acceptability of stirred yogurt manufactured using the encapsulated form of GP and FO was not significantly different from the control yogurt sample (p > .05). In conclusion of this competitive study, GP and FO as bioactive compounds could be used in the microencapsulated form in order to develop functional stirred yogurt with specific quality characteristics.
Collapse
Affiliation(s)
- Manaf Saberi
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition and Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Solmaz Saremnezhad
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition and Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mostafa Soltani
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition and Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Alireza Faraji
- Nutrition and Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
10
|
Diaz-Bustamante ML, Keppler JK, Reyes LH, Alvarez Solano OA. Trends and prospects in dairy protein replacement in yogurt and cheese. Heliyon 2023; 9:e16974. [PMID: 37346362 PMCID: PMC10279912 DOI: 10.1016/j.heliyon.2023.e16974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
There is a growing demand for nutritional, functional, and eco-friendly dairy products, which has increased the need for research regarding alternative and sustainable protein sources. Plant-based, single-cell (SCP), and recombinant proteins are being explored as alternatives to dairy proteins. Plant-Based Proteins (PBPs) are commonly used to replace total dairy protein. However, PBPs are generally mixed with dairy proteins to improve their functional properties, which makes them dependent on animal protein sources. In contrast, single-Cell Proteins (SCPs) and recombinant dairy proteins are promising alternatives for dairy protein replacement since they provide nutritional components, essential amino acids, and high protein yield and can use industrial and agricultural waste as carbon sources. Although alternative protein sources offer numerous advantages over conventional dairy proteins, several technical and sensory challenges must be addressed to fully incorporate them into cheese and yogurt products. Future research can focus on improving the functional and sensory properties of alternative protein sources and developing new processing technologies to optimize their use in dairy products. This review highlights the current status of alternative dairy proteins in cheese and yogurt, their functional properties, and the challenges of their use in these products.
Collapse
Affiliation(s)
- Martha L. Diaz-Bustamante
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Julia K. Keppler
- AFSG: Laboratory of Food Process Engineering, Wageningen University & Research, Wageningen, Netherlands
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Oscar Alberto Alvarez Solano
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
11
|
Yang S, Fan Y, Cao Y, Wang Y, Mou H, Sun H. Technological readiness of commercial microalgae species for foods. Crit Rev Food Sci Nutr 2023; 64:7993-8017. [PMID: 36999969 DOI: 10.1080/10408398.2023.2194423] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Microalgae have great potential as a future source to meet the increasing global demand for foods. Several microalgae are permitted as safety sources in different countries and regions, and processed as commercial products. However, edible safety, economic feasibility, and acceptable taste are the main challenges for microalgal application in the food industry. Overcome such challenges by developing technology accelerates transition of microalgae into sustainable and nutritious diets. In this review, edible safety of Spirulina, Chlamydomonas reinhardtii, Chlorella, Haematococcus pluvialis, Dunaliella salina, Schizochytrium and Nannochloropsis is introduced, and health benefits of microalgae-derived carotenoids, amino acids, and fatty acids are discussed. Technologies of adaptive laboratory evolution, kinetic model, bioreactor design and genetic engineering are proposed to improve the organoleptic traits and economic feasibility of microalgae. Then, current technologies of decoloration and de-fishy are summarized to provide options for processing. Novel technologies of extrusion cooking, delivery systems, and 3D bioprinting are suggested to improve food quality. The production costs, biomass values, and markets of microalgal products are analyzed to reveal the economic feasibility of microalgal production. Finally, challenges and future perspectives are proposed. Social acceptance is the major limitation of microalgae-derived foods, and further efforts are required toward the improvement of processing technology.
Collapse
Affiliation(s)
- Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Yuwei Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yue Cao
- Nanomaterials and Technology, Beijing Jiao Tong University, Beijing, China
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Determination of antioxidant capacity, citric acid, phenolic compounds, physicochemical and sensory properties of Pepino marmalade yogurts enriched with erythritol and amaranth flour at different concentrations. Food Sci Biotechnol 2023; 32:531-542. [PMID: 36911321 PMCID: PMC9992480 DOI: 10.1007/s10068-022-01215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
This work aimed to evaluate the feasibility of fortifying Pepino marmalade containing erythritol and amaranth flour (1, 2, and 3%) as the source of antioxidants, dietary fiber, and polyphenols in yogurt for increasing nutritional value and improving storability. Both Pepino marmalade and amaranth flour increased the phenolic content, citric acid value, viscosity, and WHC of the yogurt samples. The diphenyl-1 picrylhydrazyl scavenging activity (DPPH), radical cation (ABTS*+) scavenging assay, oxygen radical absorption capacity (ORAC), and ferric-reducing antioxidant capacity (FRAP) were found to be in the range of 4.5-46.6%, 166.2-1022 µg AAE/g, 2.61-4.49 µmol Trolox/g, and 4.9-23.88 µmol Fe2+/g respectively. As the concentration of marmalade and amaranth flour increased, the samples showed higher b* and lower a* and L* values. In addition, the panelists stated that they enjoyed the yogurt samples with Pepino marmalade and amaranth flour.
Collapse
|
13
|
Gelatin-maltodextrin microcapsules as carriers of vitamin D3 improve textural properties of synbiotic yogurt and extend its probiotics survival. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
14
|
Bioprocessing to Preserve and Improve Microalgae Nutritional and Functional Potential: Novel Insight and Perspectives. Foods 2023; 12:foods12050983. [PMID: 36900500 PMCID: PMC10001325 DOI: 10.3390/foods12050983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Microalgae are aquatic unicellular microorganisms and, although various species are approved for human consumption, Arthrospira and Chlorella are the most widespread. Several nutritional and functional properties have been bestowed to microalgae principal micro- and macro-nutrients, with antioxidant, immunomodulatory and anticancer being the most common. The many references to their potential as a food of the future is mainly ascribed to the high protein and essential amino acid content, but they are also a source of pigments, lipids, sterols, polysaccharides, vitamins, and phenolic compounds with positive effects on human health. Nevertheless, microalgae use is often hindered by unpleasant color and flavor and several strategies have been sought to minimize such challenges. This review provides an overview of the strategies so far proposed and the main nutritional and functional characteristic of microalgae and the foods made thereof. Processing treatments have been used to enrich microalgae-derived substrates in compounds with antioxidant, antimicrobial, and anti-hypertensive properties. Extraction, microencapsulation, enzymatic treatments, and fermentation are the most common, each with their own pros and cons. Yet, for microalgae to be the food of the future, more effort should be put into finding the right pre-treatments that can allow the use of the whole biomass and be cost-effective while bringing about features that go beyond the mere increase of proteins.
Collapse
|
15
|
Mehra R, Kumar H, Rafiq S, Kumar N, Buttar HS, Leicht K, Okpala COR, Korzeniowska M. Enhancing yogurt products’ ingredients: preservation strategies, processing conditions, analytical detection methods, and therapeutic delivery—an overview. PeerJ 2022. [DOI: 10.7717/peerj.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a dairy product, yogurt delivers nourishing milk components through the beneficial microbial fermentation process, improved by bioavailability and bioaccessibility–an exclusive combined food asset. In recent decades, there has been considerable attention to yogurt product development particularly in areas like influence by antioxidant-rich fruits, different factors affecting its probiotic viability, and the functionality of inulin and probiotics. Essentially, many published reviews frequently focus on the functionalities associated with yogurt products, however, those articulating yogurt ingredients specific to associated preservation strategies, processing conditions, and analytical detection techniques are very few, to the best of our knowledge. The knowledge and understanding of preservation strategies that enhance the ingredients in yogurt products, and their function as modern drug delivery systems are essential, given the opportunities it can provide for future research. Therefore, this overview discussed how yogurt product ingredients have been enhanced, from preservation strategies, processing conditions, analytical detection methods, and therapeutic delivery standpoints. The survey methodology involved major stages, from the brainstorming of research questions, search strategy, effective utilization of databases, inclusion and exclusion criteria, etc. The innovative successes of yogurts would be enhanced via the physicochemical, nutritional and therapeutic aspects of the ingredients/products. Besides processing conditions to influence the yogurt constituents, overall acceptability, quality, and shelf-life, the analytical assays would help detect the hidden product constituents, toxins, and other storage-related changes. The therapeutic role of yogurt-a modern drug delivery system, would be demonstrated via the supplementation (of yogurt) either alone or with bioactive ingredients. The future of yogurt requires the collective action of stakeholders to formulate unique variants with different natural blends, where synthetic ingredients become completely replaced by the plant’s derivatives, which enhance the acidification rate and extend shelf life.
Collapse
Affiliation(s)
- Rahul Mehra
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
- MMICT & BM(HM), Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, Haryana, India
| | - Harish Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Shafiya Rafiq
- Division of Food Science & Technology, Sher-e-Kashmir University of Agricultural Science & Technology, Jammu, India
| | - Naveen Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katarzyna Leicht
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
16
|
Bodbodak S, Nejatian M, Ghandehari Yazdi AP, Kamali Rousta L, Rafiee Z, Jalali-Jivan M, Kharazmi MS, Jafari SM. Improving the thermal stability of natural bioactive ingredients via encapsulation technology. Crit Rev Food Sci Nutr 2022; 64:2824-2846. [PMID: 36178297 DOI: 10.1080/10408398.2022.2127145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds (bioactives) such as phenolic acids, coumarins, flavonoids, lignans and carotenoids have a marked improvement effect on human health by acting on body tissues or cells. Nowadays, with increasing levels of knowledge, consumers prefer foods that can provide bioactives beside the necessary nutrients (e.g., vitamins, essential fatty acids and minerals). However, an important barrier for incorporating bioactives into foods is their low thermal stability. Nevertheless, thermal processing is widely used by the food industries to achieve food safety and desired texture. The aim of this work is to give an overview of encapsulation technology to improve thermal stability of bioactives incorporated into different food products. Almost all thermal analysis and non-thermal methods in the literature suggest that incorporation of bioactives into different walls can effectively improve the thermal stability of bioactives. The level of such thermal enhancement depends on the strength of the bioactive interaction and wall molecules. Furthermore, contradictory results have been reported in relation to the effect of encapsulation technique using the same wall on thermal stability of bioactives. To date, the potential to increase the thermal resistance of various bioactives by gums, carbohydrates, and proteins have been extensively studied. However, further studies on the comparison of walls and encapsulation methods to form thermally stable carriers seem to be needed. In this regard, the same nature of bioactives and the specific protocol in the report of study results should be considered to compare the data and select the optimum conditions of encapsulation to achieve maximum thermal stability.
Collapse
Affiliation(s)
- Samad Bodbodak
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran
| | - Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Leila Kamali Rousta
- Department of Food Research and Development, Zar Research and Industrial Development Group, Alborz, Iran
| | - Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
17
|
Li Y, Li X, Liang ZP, Chang XY, Li FT, Wang XQ, Lian XJ. Progress of Microencapsulated Phycocyanin in Food and Pharma Industries: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185854. [PMID: 36144588 PMCID: PMC9505125 DOI: 10.3390/molecules27185854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/22/2022]
Abstract
Phycocyanin is a blue fluorescent protein with multi-bioactive functions. However, the multi-bioactivities and spectral stability of phycocyanin are susceptible to external environmental conditions, which limit its wide application. Here, the structure, properties, and biological activity of phycocyanin were discussed. This review highlights the significance of the microcapsules' wall materials which commonly protect phycocyanin from environmental interference and summarizes the current preparation principles and characteristics of microcapsules in food and pharma industries, including spray drying, electrospinning, electrospraying, liposome delivery, sharp-hole coagulation baths, and ion gelation. Moreover, the major technical challenge and corresponding countermeasures of phycocyanin microencapsulation are also appraised, providing insights for the broader application of phycocyanin.
Collapse
|
18
|
Spirulina (Arthrospira platensis) protein-rich extract as a natural emulsifier for oil-in-water emulsions: Optimization through a sequential experimental design strategy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Tang PL, Cham XY, Hou X, Deng J. Potential use of waste cinnamon leaves in stirred yogurt fortification. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Garavand F, Daly DF, Gómez-Mascaraque LG. The consequence of supplementing with synbiotic systems on free amino acids, free fatty acids, organic acids, and some stability indexes of fermented milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Thevarajah B, Nishshanka GKSH, Premaratne M, Nimarshana P, Nagarajan D, Chang JS, Ariyadasa TU. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Chen C, Tang T, Shi Q, Zhou Z, Fan J. The potential and challenge of microalgae as promising future food sources. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Investigation of Bioavailability and Food-Processing Properties of Arthrospira platensis by Enzymatic Treatment and Micro-Encapsulation by Spray Drying. Foods 2022; 11:foods11131922. [PMID: 35804738 PMCID: PMC9265850 DOI: 10.3390/foods11131922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Due to its high-protein content of 60–70% on dry weight, Arthrospira platensis, has been considered as one of the most sought-after protein alternatives. However, the processing of Arthrospira platensis extract (spirulina, SP) in food is usually limited due to the strong green colour and taste, as well as the lack of bioavailability of plant proteins. Therefore, this study aimed to increase its use in food applications through technologies such as microencapsulation by spray drying and enzymatic treatment. The effect of different combinations of maltodextrin (MD) and gum arabic (GA) as coating material were tested in ratios of 1:2 and 1:4 for Arthrospira platensis, core to wall material, respectively. Additionally, enzymatic treatment was used to investigate whether digestibility, protein solubility and powder solubility can be improved. Thermal stability was examined by differential scanning calorimetry (DSC), and colour intensity was analysed over L* a* b* colour system. The sample SP-MD1:2 showed the highest heat stability with a denaturation peak at 67 °C, while the samples SP-MD1:4 and ESP-MD1:4 revealed the best brightening effects. The crude protein content stated by the manufacturer of 67% was confirmed. Encapsulation and enzymatic hydrolysis enhance the protein solubility, under which ESP-MD1:4 had the greatest solubility at around 83%. The protein digestibility peaks were around 99% with sample SP-MD1:2.
Collapse
|
24
|
Rigi M, Ojagh SM, Alishahi A, Hasani S. Characterizing and Developing the Antioxidant and Antimicrobial Properties of the Nano-Encapsulated Bioactive Compounds of Spirulina platensis in Liposome. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2081951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mahin Rigi
- Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Mahdi Ojagh
- Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Alireza Alishahi
- Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Shirin Hasani
- Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
25
|
Hosseinkhani N, McCauley JI, Ralph PJ. Key challenges for the commercial expansion of ingredients from algae into human food products. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Montoya-Arroyo A, Lehnert K, Lux PE, Jiménez VM, Esquivel P, Silva-Benavides AM, Vetter W, Frank J. 11'-α-Tocomonoenol is the major α-tocomonoenol isomer in cyanobacteria and microalgae from Costa Rica. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Hernández H, Nunes MC, Prista C, Raymundo A. Innovative and Healthier Dairy Products through the Addition of Microalgae: A Review. Foods 2022; 11:755. [PMID: 35267388 PMCID: PMC8909392 DOI: 10.3390/foods11050755] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, the development of healthier foods, richer in nutraceutical or functional compounds, has been in great demand. Microalgae are attracting increasing attention, as their incorporation in foods and beverages can be a promising strategy to develop sustainable foods with improved nutritional profiles and a strong positive impacts on health. Despite the increasing market demand in plant-based foods, the popularity of fermented dairy foods has increased in the recent years since they are a source of microorganisms with health-promoting effects. In this context, the incorporation of microalgae in cheeses, fermented milks and other dairy products represents an interesting approach towards the development of innovative and added-value hybrid products based on animal proteins and enriched with vegetable origin ingredients recognized as extremely valuable sources of bioactive compounds. The effect of the addition of microalgal biomass (Chlorella vulgaris, Arthrospira platensis, Pavlova lutheri, and Diacronema vlkianum, among others) and its derivates on the physicochemical composition, colorimetric and antioxidant properties, texture and rheology behavior, sensory profile, and viability of starter cultures and probiotics in yogurt, cheese and ice cream is discussed in the current work. This review of the literature on the incorporation of microalgae in dairy products aims to contribute to a better understanding of the potential use of these unique food ingredients in the development of new sustainable products and of their beneficial effects on health. Considering the importance of commercialization, regulatory issues about the use of microalgae in dairy products are also discussed.
Collapse
Affiliation(s)
| | - Maria Cristiana Nunes
- LEAF (Linking Landscape Environment Agriculture and Food), Research Unit Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (H.H.); (C.P.); (A.R.)
| | | | | |
Collapse
|
28
|
Garavand F, Daly DF, Gómez-Mascaraque LG. Biofunctional, structural, and tribological attributes of GABA-enriched probiotic yoghurts containing Lacticaseibacillus paracasei alone or in combination with prebiotics. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Guarienti C, Bender LE, Frota EG, Bertolin TE, Costa JAV, Richards NSPDS. Effects of microencapsulation on the preservation of thermal stability and antioxidant properties of Spirulina. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01140-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Silva JPS, Veloso CRR, de Souza Barrozo MA, Vieira LGM. Indirect solar drying of Spirulina platensis and the effect of operating conditions on product quality. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Lima KO, da Rocha M, Alemán A, López-Caballero ME, Tovar CA, Gómez-Guillén MC, Montero P, Prentice C. Yogurt Fortification by the Addition of Microencapsulated Stripped Weakfish ( Cynoscion guatucupa) Protein Hydrolysate. Antioxidants (Basel) 2021; 10:antiox10101567. [PMID: 34679702 PMCID: PMC8533301 DOI: 10.3390/antiox10101567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of the present work was to fortify yogurt by adding a stripped weakfish (Cynoscion guatucupa) protein hydrolysate obtained with the enzyme Protamex and microencapsulated by spray drying, using maltodextrin (MD) as wall material. The effects on the physicochemical properties, syneresis, texture, viscoelasticity, antioxidant and ACE inhibitory activities of yogurt after 1 and 7 days of storage were evaluated. In addition, microbiological and sensory analyses were performed. Four yogurt formulations were prepared: control yogurt (without additives, YC), yogurt with MD (2.1%, YMD), with the free hydrolysate (1.4%, YH) and the microencapsulated hydrolysate (3.5%, YHEn). Yogurts to which free and microencapsulated hydrolysates were added presented similar characteristics, such as a slight reduction in pH and increased acidity, with a greater tendency to present a yellow color compared with the control yogurt. Moreover, they showed less syneresis, the lowest value being that of YHEn, which also showed a slight increase in cohesiveness and greater rheological stability after one week of storage. All yogurts showed high counts of the microorganisms used as starters. The hydrolysate presence in both forms resulted in yogurts with antioxidant activity and potent ACE-inhibitory activity, which were maintained after 7 days of storage. The incorporation of the hydrolysate in the microencapsulated form presented greater advantages than the direct incorporation, since encapsulation masked the fishy flavor of the hydrolysate, resulting in stable and sensorily acceptable yogurts with antioxidant and ACE inhibitory activities.
Collapse
Affiliation(s)
- Karina Oliveira Lima
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande (FURG), Rio Grande 96203-900, RS, Brazil; (K.O.L.); (C.P.)
| | - Meritaine da Rocha
- Laboratory of Microbiology, School of Chemistry and Food, Federal University of Rio Grande (FURG), Santo Antônio da Patrulha 95500-000, RS, Brazil;
| | - Ailén Alemán
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (A.A.); (M.C.G.-G.)
| | - María Elvira López-Caballero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (A.A.); (M.C.G.-G.)
- Correspondence: (M.E.L.-C.); (P.M.)
| | - Clara A. Tovar
- Department of Applied Physics, University of Vigo, As Lagoas, 32004 Ourense, Spain;
| | - María Carmen Gómez-Guillén
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (A.A.); (M.C.G.-G.)
| | - Pilar Montero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (A.A.); (M.C.G.-G.)
- Correspondence: (M.E.L.-C.); (P.M.)
| | - Carlos Prentice
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande (FURG), Rio Grande 96203-900, RS, Brazil; (K.O.L.); (C.P.)
| |
Collapse
|
32
|
Kahraman G, Özdemir KS. Effects of black elderberry and spirulina extracts on the chemical stability of cold pressed flaxseed oil during accelerated storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Li J, Zhang Y, Yang S, Lu Z, Li G, Liu J, Zhou B, Wu D, Wang L. Isolation, Purification, Characterization, and Immunomodulatory Activity Analysis of α-Glucans from Spirulina platensis. ACS OMEGA 2021; 6:21384-21394. [PMID: 34471742 PMCID: PMC8387993 DOI: 10.1021/acsomega.1c02175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/04/2021] [Indexed: 05/08/2023]
Abstract
Crude polysaccharides from Spirulina platensis (SP) were isolated by maceration with a hot alkali solution and further fractionated by DEAE-52 cellulose and Sephadex G-100 chromatography into two purified fractions PSP-1 and PSP-2. The monosaccharide composition analysis indicated that SP was mainly composed of rhamnose and glucose, while PSP-1 and PSP-2 were composed only of glucose. The composition analysis of PSP-1 and PSP-2 by HPLC, FT-IR, and NMR showed that PSP-1 and PSP-2 were branching dextran, and their structures were (1 → 4)-linked-α-D-Glcp as the main chain, and C-6 replaced the single α-D-Glcp as the linear structure of the branch chain. The glucans (SP/PSP-1/PSP-2) can significantly improve the phagocytic ability of macrophages, enhance iNOS activity, promote NO production, and increase IL-6 mRNA expression, so they may possess certain immunomodulatory activity.
Collapse
Affiliation(s)
- Jian Li
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Yaqi Zhang
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
| | - Shen Yang
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Zhenhua Lu
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Guiling Li
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Jingwen Liu
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Bo Zhou
- Department
of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, P. R. China
| | - Daren Wu
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
- Fujian
Provincial Engineering Technology Research Center of Marine Functional
Food, Xiamen 361021, P. R. China
| | - Li Wang
- College
of Food and Biological Engineering, Jimei
University, Xiamen 361021, P. R. China
| |
Collapse
|
34
|
Matos J, Afonso C, Cardoso C, Serralheiro ML, Bandarra NM. Yogurt Enriched with Isochrysis galbana: An Innovative Functional Food. Foods 2021; 10:1458. [PMID: 34202539 PMCID: PMC8306745 DOI: 10.3390/foods10071458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
Microalgae are a valuable and innovative emerging source of natural nutrients and bioactive compounds that can be used as functional ingredients in order to increase the nutritional value of foods to improve human health and to prevent disease. The marine microalga Isochrysis galbana has great potential for the food industry as a functional ingredient, given its richness in ω3 long chain-polyunsaturated fatty acids (LC-PUFAs), with high contents of oleic, linoleic, alpha-linolenic acid (ALA), stearidonic, and docosahexaenoic (DHA) acids. This study focuses on the formulation of a functional food by the incorporation of 2% (w/w) of I. galbana freeze-dried biomass and 2% (w/w) of I. galbana ethyl acetate lipidic extract in solid natural yogurts preparation. In the functional yogurt enriched with microalgal biomass, the ω3 LC-PUFA's content increased (to 60 mg/100 g w/w), specifically the DHA content (9.6 mg/100 g ww), and the ω3/ω6 ratio (augmented to 0.8). The in vitro digestion study showed a poor bioaccessibility of essential ω3 LC-PUFAs, wherein linoleic acid (18:2 ω6) presented a bioaccessibility inferior to 10% and no DHA or eicosapentaenoic acid (EPA) was detected in the bioaccessible fraction of the functional yogurts, thus indicating a low accessibility of lipids during digestion. Notwithstanding, when compared to the original yogurt, an added value novel functional yogurt with DHA and a higher ω3 LC-PUFAs content was obtained. The functional yogurt enriched with I. galbana can be considered important from a nutritional point of view and a suitable source of essential FAs in the human diet. However, this needs further confirmation, entailing additional investigation into bioavailability through in vivo assays.
Collapse
Affiliation(s)
- Joana Matos
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- Faculty of Sciences, BioISI—Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal;
| | - Cláudia Afonso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Carlos Cardoso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Maria L. Serralheiro
- Faculty of Sciences, BioISI—Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal;
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|
35
|
Oliveira Lima K, Alemán A, López-Caballero ME, Gómez-Guillén MDC, Montero MP, Prentice C, Taipe Huisa AJ, Monserrat JM. Characterization, stability, and in vivo effects in Caenorhabditis elegans of microencapsulated protein hydrolysates from stripped weakfish (Cynoscion guatucupa) industrial byproducts. Food Chem 2021; 364:130380. [PMID: 34167008 DOI: 10.1016/j.foodchem.2021.130380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to microencapsulate protein hydrolysates from stripped weakfish (Cynoscion guatucupa) industrial byproducts produced by Alcalase (HA) and Protamex (HP) by spray drying, using maltodextrin as wall material. The physicochemical characteristics, and in vitro antioxidant and Angiotensin-I converting enzyme-inhibitory activities were evaluated during storage. Both microencapsulated hydrolysates showed spherical shape (~3.6 µm particle diameter), low water activity (<0.155) during storage and reduced hygroscopicity (~30%) compared to the free hydrolysate. Infrared spectroscopy evidenced the maltodextrin-hydrolysate interaction. Based on the in vitro results, nematoid C. elegans in L1 larval stage were treated with free and microencapsulated HP, which demonstrated a protective effect on nematoid exposed to oxidative stress (survival ~ 13% control, 77% free HP, and 85% microencapsulated HP) and improved their growth and reproduction rate. Thus, microencapsulation appears to be a good alternative to maintain hydrolysates stability during storage, showing bioactivity in C. elegans.
Collapse
Affiliation(s)
- Karina Oliveira Lima
- Food Engineering and Science Post Graduation Program, School of Chemistry and Food (EQA), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Ailén Alemán
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | | | | | - María Pilar Montero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain.
| | - Carlos Prentice
- Food Engineering and Science Post Graduation Program, School of Chemistry and Food (EQA), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Andy Joel Taipe Huisa
- Physiological Sciences Post Graduation Program, Institute of Biological Sciences (ICB), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil
| | - José Maria Monserrat
- Physiological Sciences Post Graduation Program, Institute of Biological Sciences (ICB), Federal University of Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
36
|
Paula da Silva S, Ferreira do Valle A, Perrone D. Microencapsulated Spirulina maxima biomass as an ingredient for the production of nutritionally enriched and sensorially well-accepted vegan biscuits. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Nutritional and Technological Quality of High Protein Pasta. Foods 2021; 10:foods10030589. [PMID: 33799656 PMCID: PMC8001520 DOI: 10.3390/foods10030589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Pasta has an important role in human nutrition for its high content of complex carbohydrates and its widespread use. It can be an efficient delivery system or carrier of non-traditional raw material, including additional health-promoting ingredients. The partial replacement of semolina with high-protein raw materials leads to the improvement of the biological value of pasta proteins. In order to obtain pasta with high nutritional protein value and with excellent cooking properties, various recipes have been formulated with different percentages of semolina and unconventional high-protein raw materials (peas and soy isolate proteins, egg white, whey proteins and Spirulina platensis). High-protein pasta was produced using a pasta making pilot plant and the nutritional quality (protein content and quality) and sensorial properties were assessed. All experimental pastas showed optimal performances. Pasta prepared with pea protein isolate, whey proteins and Spirulina platensis showed improved chemical score and digestible indispensable amino acid scores, an eye-catching color, and an excellent cooking quality.
Collapse
|
38
|
Barros de Medeiros VP, da Costa WKA, da Silva RT, Pimentel TC, Magnani M. Microalgae as source of functional ingredients in new-generation foods: challenges, technological effects, biological activity, and regulatory issues. Crit Rev Food Sci Nutr 2021; 62:4929-4950. [PMID: 33544001 DOI: 10.1080/10408398.2021.1879729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microalgae feasibility as food ingredients or source of nutrients and/or bioactive compounds and their health effects have been widely studied. This review aims to provide an overview of the use of microalgae biomass in food products, the technological effects of its incorporation, and their use as a source of health-promoting bioactive compounds. In addition, it presents the regulatory aspects of commercialization and consumption, and the main trends and market challenges Microalgae have stood out as sources of nutritional compounds (polysaccharides, proteins, lipids, vitamins, minerals, and dietary fiber) and biologically active compounds (asthaxanthin, β-carotene, omega-3 fatty acids). The consumption of microalgae biomass proved to have several health effects, such as hypoglycemic activity, gastroprotective and anti-steatotic properties, improvements in neurobehavioral and cognitive dysfunction, and hypolipidemic properties. Its addition to food products can improve the nutritional value, aroma profile, and technological properties, with important alterations on the syneresis of yogurts, meltability in cheeses, overrun values and melting point in ice creams, physical properties and mechanical characteristics in crisps, and texture, cooking and color characteristics in pastas. However, more studies are needed to prove the health effects in humans, expand the market size, reduce the cost of production, and tighter constraints related to regulations.
Collapse
Affiliation(s)
- Viviane Priscila Barros de Medeiros
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Whyara Karoline Almeida da Costa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
39
|
Effects of yam (Dioscorea opposita Thunb.) juice on fermentation and textural attributes of set-style skimmed yoghurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00830-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
40
|
Effect of Sea Buckthorn (Hippophae rhamnoides L.) Mousse on Properties of Probiotic Yoghurt. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The stability of the physico-chemical and sensory characteristics of yoghurts during refrigerated storage is important for industry and the consumer. The aim of the study was to evaluate the nutritional value, microbiological quality, sensory properties, and structure of natural probiotic yoghurts made with the addition of sea buckthorn fruit mousse during refrigerated storage. In this study, we produced natural, probiotic organic yoghurts with the addition of superfoods, i.e., sea buckthorn (Hippophae rhamnoides L.) fruit mousse, using ABT-1 probiotic yoghurt starter culture based on Lactobacillus acidophilus LA-5, Bifidobacterium lactis BB-12, and Streptococcus thermophilus. Physico-chemical (acidity, nutritional value, and structure) as well as microbiological and sensory changes occurring during 21-day refrigerated storage were determined. The yoghurts were characterized by high sanitary and hygienic quality during the whole refrigerated storage. Fourier-Transform Infrared (FTIR) spectra were also used in the analyses of the obtained yoghurt samples. The applied yoghurt additive was visible at the spectral level as an increase in the intensity of the characteristic bands for vibrations related to protein, fat, and polysaccharide structures. Sea buckthorn can be used as a modern and unconventional addition to yoghurts with health-promoting properties. Micrographic studies have shown that the addition of sea buckthorn mousse significantly changes the microstructure of the yoghurt. The structure of sea buckthorn to yoghurt seems to be more susceptible to the influence of damaging factors, which is also confirmed by the FTIR test conducted during the storage.
Collapse
|
41
|
The effects of fermentation with lactic acid bacteria on the antioxidant and anti-glycation properties of edible cyanobacteria and microalgae. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Vieira MV, Pastrana LM, Fuciños P. Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Mar Drugs 2020; 18:E644. [PMID: 33333921 PMCID: PMC7765346 DOI: 10.3390/md18120644] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Microalgae are microorganisms with a singular biochemical composition, including several biologically active compounds with proven pharmacological activities, such as anticancer, antioxidant and anti-inflammatory activities, among others. These properties make microalgae an interesting natural resource to be used as a functional ingredient, as well as in the prevention and treatment of diseases, or cosmetic formulations. Nevertheless, natural bioactives often possess inherent chemical instability and/or poor solubility, which are usually associated with low bioavailability. As such, their industrial potential as a health-promoting substance might be severely compromised. In this context, encapsulation systems are considered as a promising and emerging strategy to overcome these shortcomings due to the presence of a surrounding protective layer. Diverse systems have already been reported in the literature for natural bioactives, where some of them have been successfully applied to microalgae compounds. Therefore, this review focuses on exploring encapsulation systems for microalgae biomass, their extracts, or purified bioactives for food, pharmaceutical, and cosmetic purposes. Moreover, this work also covers the most common encapsulation techniques and types of coating materials used, along with the main findings regarding the beneficial effects of these systems.
Collapse
Affiliation(s)
| | | | - Pablo Fuciños
- Food Processing and Nutrition Group, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (M.V.V.); (L.M.P.)
| |
Collapse
|
43
|
Improving functionality, bioavailability, nutraceutical and sensory attributes of fortified foods using phenolics-loaded nanocarriers as natural ingredients. Food Res Int 2020; 137:109555. [DOI: 10.1016/j.foodres.2020.109555] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
44
|
Vieira MV, Oliveira SM, Amado IR, Fasolin LH, Vicente AA, Pastrana LM, Fuciños P. 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105893] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Elsonbaty SM, Ismail AFM. Nicotine encourages oxidative stress and impairment of rats' brain mitigated by Spirulina platensis lipopolysaccharides and low-dose ionizing radiation. Arch Biochem Biophys 2020; 689:108382. [PMID: 32343976 DOI: 10.1016/j.abb.2020.108382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022]
Abstract
Nicotine is a psychoactive alkaloid of tobacco, which is ingested during cigarettes or electronic cigarette smoking. Extensive consumption of nicotine induced oxidative stress. Accordingly, it is implicated in many pathophysiology brain disorders and triggers neurodegeneration. In this study, we investigated the protective role of Spirulina platensis-lipopolysaccharides (S.LPS) and the low dose-ionizing radiation (LD-IR) against the induced neurotoxicity in the rats' brain due to the prolonged administration of high nicotine levels. Rats treated with nicotine for two months showed alterations in the oxidative stress markers (malondialdehyde (MDA), reduced glutathione (GSH) and oxidized glutathione disulfide (GSSG)), antioxidant enzymes (superoxide dismutase (SOD), catalase (Cat), glutathione enzymes (GPx and GST)) as well as several pro-inflammatory markers (Tumor Necrosis Factor-alpha (TNF-α), Interleukin-17 (IL-17), and Nuclear Factor-kappa B (NF-κB)), and induced apoptosis through Caspase-3 activity. Nicotine also upregulated the mRNA gene expression of cytochrome P450 enzymes (CYP2B1 and CYP2E1), Cyclin-dependent kinase 5 (CDK5), Toll-Like Receptor 4 (TLR4), and phospho-Tau (p-Tau) protein expression. Besides, it downregulated the alpha-7 nicotinic receptor (α7nAChR) mRNA gene expression accompanied by a decline in the calcium (Ca2+) level. S.LPS exhibited antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities, which counteracting the detrimental effects of chronic nicotine administration. LD-IR demonstrated comparable effects to S.LPS. Exposure of rats to LD-IR enhanced the neuroprotective effects of S.LPS against nicotine toxicity. The light microscopic examination of the brain tissues was in agreement with the biochemical investigations. These findings display that S.LPS and LD-IR mitigated the oxidative stress and the impairment of rats' brain induced by nicotine, due to regulation of the mRNA gene expression of cytochrome P450 enzymes (CYP2B1 and CYP2E1) and the signaling pathway of Tau protein phosphorylation.
Collapse
Affiliation(s)
- Sawsan M Elsonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11787, Cairo, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11787, Cairo, Egypt.
| |
Collapse
|
46
|
Lafarga T, Fernández-Sevilla JM, González-López C, Acién-Fernández FG. Spirulina for the food and functional food industries. Food Res Int 2020; 137:109356. [PMID: 33233059 DOI: 10.1016/j.foodres.2020.109356] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/05/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Humans are no strangers to the consumption of microalgae as already in the sixteenth century Spirulina was harvested from Lake Texcoco and consumed in markets in Tenochtitlan (today Mexico City). Nowadays, microalgae are being incorporated into many food formulations. Most of these use microalgae as a marketing strategy or as a colouring agent. However, Spirulina (and compounds derived thereof) show potential for being used as ingredients in the development of novel functional foods, which are one of the top trends in the food industry. Several human intervention studies demonstrated the potential of Spirulina for being used in the prevention or treatment of disorders related to metabolic syndrome. The aim of the current paper was to review current and potential applications of this microalga in the food and functional food industries. Health benefits associated with consuming Spirulina and/or some of the most important compounds derived from Spirulina were also discussed.
Collapse
Affiliation(s)
- Tomas Lafarga
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain.
| | | | | | | |
Collapse
|
47
|
Aquino RP, Auriemma G, Conte GM, Esposito T, Sommella E, Campiglia P, Sansone F. Development of Chitosan/Mannitol Microparticles as Delivery System for the Oral Administration of a Spirulina Bioactive Peptide Extract. Molecules 2020; 25:molecules25092086. [PMID: 32365705 PMCID: PMC7248919 DOI: 10.3390/molecules25092086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/03/2022] Open
Abstract
Spirulina platensis contains several compounds showing nutritional and therapeutic benefits. Recently, a series of peptides able to reduce the blood pressure level and to enhance the endothelial vasorelaxation was isolated from the hydrolyzed highly water-soluble Spirulina extract (HSE). However, HSE shows critical organoleptic characteristics also having poor intestinal permeability, limiting absorption when orally delivered. This research aims to overcome the critical issues through the encapsulation of HSE in Chitosan/Mannitol—(CM)-based microparticles by spray drying. The produced powders (CM-HSE) showed good process yield (≈70%) and encapsulation efficiency (≈100%) also having good derived flow properties as well as stability up to six months storage. The microparticles constituting the spray-dried powder resulted in an amorphous micrometric state (d50 ≈ 14 µm) able to retain dark colour and unpleasant smell of raw HSE. Moreover, the in vitro permeation study by Franz cell indicated that the engineered microparticles are able to enhance the permeation of HSE through an intestinal biomimetic barrier (551.13 μg/cm2 CM-HSE vs. 315.46 μg/cm2 HSE at 270 min).
Collapse
|
48
|
Zen CK, Tiepo CBV, da Silva RV, Reinehr CO, Gutkoski LC, Oro T, Colla LM. Development of functional pasta with microencapsulated Spirulina: technological and sensorial effects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2018-2026. [PMID: 31858600 DOI: 10.1002/jsfa.10219] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spirulina microalgae have been added to food; however, there have been few reports on the methods used to protect the antioxidant potential against process conditions, and the effects on the sensory characteristics of products need to be better described. The aim of this study was to evaluate the influence on the technological properties, sensory profile, and acceptability of the pasta with free or microencapsulated Spirulina biomass added. Pasta formulations included: free Spirulina (FSP), microencapsulated Spirulina (MSP), and empty microspheres (EMP), which were compared with the control pasta (CP). RESULTS The microencapsulation protected the antioxidant potential of Spirulina in 37.8% of the pasta cooking conditions. The microspheres presented low solubility in water (86 g.kg-1 ) and high encapsulation efficiency (87.6%), this being appropriate for addition to products that need cooking in water. The technological properties of pasta (water absorption, weight gain, firmness, and adhesiveness) were affected, but the overall acceptability index (85.13%) was not influenced by the addition of microspheres, despite changes observed in the sensory profile obtained by the CATA (check-all-that-apply). CONCLUSIONS Spirulina could be added to pasta even without microencapsulation but the microencapsulation in alginate allows for the protection of the antioxidant potential of the biomass, representing a potential alternative for the bakery industry. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cindiele Karen Zen
- Graduation Program in Food Science and Technology, University of Passo Fundo, Passo Fundo, Brazil
| | | | | | | | - Luiz Carlos Gutkoski
- Graduation Program in Food Science and Technology, University of Passo Fundo, Passo Fundo, Brazil
| | - Tatiana Oro
- Graduation Program in Food Science and Technology, University of Passo Fundo, Passo Fundo, Brazil
| | - Luciane Maria Colla
- Graduation Program in Food Science and Technology, University of Passo Fundo, Passo Fundo, Brazil
| |
Collapse
|
49
|
Djaoud K, Boulekbache‐Makhlouf L, Yahia M, Mansouri H, Mansouri N, Madani K, Romero A. Dairy dessert processing: Effect of sugar substitution by date syrup and powder on its quality characteristics. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kahina Djaoud
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algérie
| | - Lila Boulekbache‐Makhlouf
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algérie
| | - Massinissa Yahia
- Laboratory of Pharmacology University of Naples Federico II Naples Italy
| | - Hafid Mansouri
- Laboratoire de contrôle de qualité et de conformité (QualiLab) Bejaia Algerie
| | - Nassima Mansouri
- Laboratoire de contrôle de qualité et de conformité (QualiLab) Bejaia Algerie
| | - Khodir Madani
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algérie
- Centre de recherche en technologie agro‐alimentaire Bejaia Algerie
| | - Alberto Romero
- Department of Chemical Engineering Universidad de Sevilla Sevilla Spain
| |
Collapse
|