1
|
Sun Y, Zhang M, Jiang X, Peng K, Yi Y, Meng Y, Wang H. Structural characterization and immunoregulatory mechanism of a low-molecular-weight polysaccharide from lotus root. Int J Biol Macromol 2024; 280:135957. [PMID: 39332552 DOI: 10.1016/j.ijbiomac.2024.135957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
The extraction of polysaccharide from lotus root was highly homogenized, and the structure of the polysaccharide was not clear. Herein, we report a hot water method combined with α-amylase that was applied to extract lotus root polysaccharide. After purified, a lotus root polysaccharide fraction LP60-a with high purity and low molecule weight was obtained. Systematic characterization of the structure of LP60-a was achieved by monosaccharide composition, methylation and NMR analysis, showing that LP60-a was composed of α-1,6-glucan linked with a small amount of arabinogalactan. Conformational determination showed that LP60-a was a three-helix polysaccharide with random coil conformation. Furtherly, the immunomodulatory activities of LP60-a were investigated in RAW264.7 macrophages. The data indicated that LP60-a could enhance the proliferation and phagocytosis of macrophages significantly, and induce the expression of NO and TNF-α in macrophages without causing inflammation. Moreover, LP60-a promoted the phosphorylation of MAPK p38 and JNK, as well as NF-κB p65, indicating that LP60-a could activate RAW264.7 cells through MAPK and NF-κB signaling pathways. In conclusion, the results imply that LP60-a could enhance the immune function of macrophages, presenting a possibility to play a role as an immunomodulatory agent in dietary supplements.
Collapse
Affiliation(s)
- Ying Sun
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Mengjie Zhang
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xueyu Jiang
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Kaidi Peng
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
2
|
Liu H, Wang S, Qiu K, Zheng C, Tan H. Preparation, structural characterization, and biological activities of lotus polysaccharides: A review. Int J Biol Macromol 2024; 279:135191. [PMID: 39216588 DOI: 10.1016/j.ijbiomac.2024.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Lotus (Nelumbo nucifera), belonging to the family of Nelumbonaceae, is a beautiful aquatic perennial plant. It has been used as an ancient horticulture plant and famous agricultural crop for thousands of years. Modern phytochemical and pharmacological experiments have proved that polysaccharide is one of the most pivotal bioactive constituents of lotus. Hence, the systematic review covering the fundamental research advances and developing prospects of N. nucifera polysaccharides (NNPs) is an urgent demand to provide theoretical basis for their further research and application. The present review summarizes current emerging research progresses on the polysaccharides isolated from lotus, and it focuses on advanced extraction and purification methods, unique structural features, engaging biological activities, potential molecular mechanisms, as well as the relationship of structure and activity of NNPs. This review sheds light on the potential values of NNPs in affording functionally bioactive agents in food industry or therapeutically effective medicines for health care. In addition, this review will provide valuable insights for further commercial product development and promising industrial application of NNPs in both of the fundamental research communities and food or pharmaceutical industries in future.
Collapse
Affiliation(s)
- Hongxin Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, China
| | - Kaidi Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Haibo Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Cao M, Cui X, Chen Y, Yan W, Zeng W, Zhang Y, Jia X. Purification, structural characterization and immunomodulatory activity of a polysaccharide isolated from Scutellaria baicalensis stem-leaf. Int J Biol Macromol 2024; 281:136409. [PMID: 39393739 DOI: 10.1016/j.ijbiomac.2024.136409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
In our research, a novel polysaccharide (named SSP-3a) with uniform molecular weight was extracted from Scutellaria baicalensis stem-leaf. The structural analysis revealed that SSP-3a was an acidic polysaccharide with a heavy average molecular weight of 1.83 × 105 Da. By HPLC, the primary constituents of SSP-3a were mannose (11.60 %), glucuronic acid (42.99 %), glucose (23.43 %), and xylose (22.04 %). According to FT-IR and 1H NMR analysis, it was confirmed to be a β-configuration pyranose with a CO stretching vibrational peak. The immunomodulation results also showed that SSP-3a not only significantly promoted RAW264.7 cell proliferation and phagocytosis, but also stimulated the release of NO and cytokines. Furthermore, mechanistic studies suggested that SSP-3a had the ability to trigger MAPKs and NF-κB immunological signaling pathways via TLR4 receptors. The findings suggested that SSP-3a might be a beneficial active component for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Minghui Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xuejiao Cui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yadong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wenwen Yan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Weimin Zeng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yanlong Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Xiangqian Jia
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
4
|
Kakar MU, Karim H, Shabir G, Iqbal I, Akram M, Ahmad S, Shafi M, Gul P, Riaz S, Rehman R, Salari H. A review on extraction, composition, structure, and biological activities of polysaccharides from different parts of Nelumbo nucifera. Food Sci Nutr 2023; 11:3655-3674. [PMID: 37457175 PMCID: PMC10345683 DOI: 10.1002/fsn3.3376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 07/18/2023] Open
Abstract
Nelumbo nucifera (lotus plant) is an important member of the Nelumbonaceae family. This review summarizes the studies conducted on it since the past 15 years to provide an understanding on future areas of focus. Different parts of this plant, that is, leaves, roots, and seeds, have been used as food and for the treatment of various diseases. Polysaccharides have been extracted from different parts using different methods. The manuscript reviews the methods of extraction of polysaccharides used for leaves, roots, and seeds, along with their yield. Some methods can provide better yield while some provide better biological activity with low yield. The composition and structure of extracted polysaccharides have been determined in some studies. Although monosaccharide composition has been determined in various studies, too little information about the structure of polysaccharides from N. nucifera is available in the current literature. Different useful biological activities have been explored using in vivo and in vitro methods, which include antioxidant, antidiabetic, antitumor, anti-osteoporotic, immunomodulatory, and prebiotic activities. Antitumor activity from polysaccharides of lotus leaves is yet to be explored, besides lotus root has been underexplored as compared to other parts (leaves and seeds) according to our literature survey. Studies dedicated to the successful use of combination of extraction methods can be conducted in future. The plant provides a therapeutic as well as nutraceutical potential; however, antimicrobial activity and synergistic relationships of polysaccharides from different parts of the plant need further exploration.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Faculty of Marine SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Hammad Karim
- Sheikh Zayed Medical CollegeRahim Yar KhanPunjabPakistan
| | | | - Imran Iqbal
- Department of Information and Computational SciencesSchool of Mathematical Sciences and LMAMPeking UniversityBeijingChina
| | - Muhammad Akram
- Department of Life Sciences, School of ScienceUniversity of Management and Technology (UMT)LahorePakistan
| | - Sajjad Ahmad
- Faculty of Veterinary and Animal SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Muhammad Shafi
- Faculty of Marine SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Pari Gul
- Institute of BiochemistryUniversity of BalochistanQuettaPakistan
| | - Sania Riaz
- Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
| | - Rizwan‐ur‐ Rehman
- Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
| | - Hamid Salari
- Department of Horticulture, Faculty of AgricultureKabul UniversityKabulAfghanistan
| |
Collapse
|
5
|
Qiu J, Shi W, Miao J, Hu H, Gao Y. Extraction, Isolation, Screening, and Preliminary Characterization of Polysaccharides with Anti-Oxidant Activities from Oudemansiella raphanipies. Polymers (Basel) 2023; 15:2917. [PMID: 37447563 DOI: 10.3390/polym15132917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Response surface methodology (RSM) was used to find the optimal extraction process of Oudemansiella raphanipies polysaccharides (ORPs). The results showed that the optimal extraction parameters were an alkali concentration of 0.02 mol/L, a ratio of material to liquid of 1:112.7 g/mL, an extraction temperature of 66.0 °C, and an extraction time of 4.0 h. Under the optimal conditions, the yield of ORPs was raised to 16.2 ± 0.1%. The antioxidant activities of ORPs-I~V were determined and compared, and ORPs-V was further purified by chromatography, with an average molecular weight (Mw) of 18.86 kDa. The structure of ORPs-V was determined by Fourier transform-infrared spectroscopy (FT-IR), monosaccharide analysis, and nuclear magnetic resonance (NMR) spectroscopy. The ORPs-V comprised fucose, rhamnose, arabinose, glucose, galactose, mannose, xylose, fructose, galacturonic acid, and glucuronic acid at a ratio of 1.73:1.20:1.13:2.87:8.71:2.89:1.42:0.81. Compared to other ORPs, ORPs-V showed the strongest antioxidant activities (ABTS radical cation, hydroxyl radical and DPPH scavenging activities, and reducing power), and were able to significantly increase the activities of superoxide dismutase, catalase, lactate dehydrogenase, and glutathione peroxidase. However, they reduced the malondialdehyde content in mice fed a high-fat diet. These results indicate that ORPs-V may be good anti-oxidant agents to be applied in functional foods.
Collapse
Affiliation(s)
- Junqiang Qiu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 570100, China
| | - Wang Shi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150010, China
| | - Jingnan Miao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 570100, China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Dai G, Wang J, Zheng J, Xia C, Wang Y, Duan B. Bioactive polysaccharides from lotus as potent food supplements: a review of their preparation, structures, biological features and application prospects. Front Nutr 2023; 10:1171004. [PMID: 37448668 PMCID: PMC10338014 DOI: 10.3389/fnut.2023.1171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Lotus is a famous plant of the food and medicine continuum for millennia, which possesses unique nutritional and medicinal values. Polysaccharides are the main bioactive component of lotus and have been widely used as health nutritional supplements and therapeutic agents. However, the industrial production and application of lotus polysaccharides (LPs) are hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of LPs. This review comprehensively comments on the extraction and purification methods and structural characteristics of LPs. The SARs, bioactivities, and mechanisms involved are further evaluated. The potential application and safety issues of LPs are discussed. This review provides valuable updated information and inspires deeper insights for the large scale development and application of LPs.
Collapse
Affiliation(s)
- Guona Dai
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiale Wang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yaping Wang
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
7
|
Wang S, Yang Y, Wang Q, Wu Z, Liu X, Chen S, Zhou A. Structural characterization and immunomodulatory activity of a polysaccharide from finger citron extracted by continuous phase-transition extraction. Int J Biol Macromol 2023; 240:124491. [PMID: 37076066 DOI: 10.1016/j.ijbiomac.2023.124491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
FCP-2-1, a water-soluble polysaccharide rich in galacturonic acid was isolated by continuous phase-transition extraction and purified with DEAE-52 cellulose and Sephadex G-100 column chromatography from finger citron with essential oil and flavonoids removed. The structural characterization and immunomodulatory activity of FCP-2-1 were further investigated in this work. FCP-2-1 with a Mw and Mn of 1.503 × 104 g/mol and 1.125 × 104 g/mol, respectively, was predominantly composed of galacturonic acid, galactose, and arabinose in a molar ratio of 0.685: 0.032: 0.283. The main linkage types of FCP-2-1 were proved to be →5)-α-L-Araf-(1→ and →4)-α-D-GalpA-(1→ based on methylation and NMR analysis. Moreover, FCP-2-1 was demonstrated to have significant immunomodulatory effects on macrophages in vitro by improving the cell viability, and enhancing phagocytic activity and secretion of NO and cytokines (IL-1β, IL-6, IL-10 and TNF-α), indicating that FCP-2-1 could be used as a natural agent in immunoregulation functional foods.
Collapse
Affiliation(s)
- Shuhui Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yujie Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqin Wu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuxi Chen
- Guangdong Zhancui Food Co., Ltd., Chaozhou 515634, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Liu Q, Zou X, Yi Y, Sun Y, Wang H, Jiang X, Peng K. Physicochemical and Functional Changes in Lotus Root Polysaccharide Associated with Noncovalent Binding of Polyphenols. Foods 2023; 12:foods12051049. [PMID: 36900568 PMCID: PMC10001286 DOI: 10.3390/foods12051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
To promote the functional applications of lotus root polysaccharides (LRPs), the effects of noncovalent polyphenol binding on their physicochemical properties, as well as antioxidant and immunomodulatory activities, were investigated. Ferulic acid (FA) and chlorogenic acid (CHA) were spontaneously bound to the LRP to prepare the complexes LRP-FA1, LRP-FA2, LRP-FA3, LRP-CHA1, LRP-CHA2 and LRP-CHA3, and their mass ratios of polyphenol to LRP were, respectively, 121.57, 61.18, 34.79, 2359.58, 1276.71 and 545.08 mg/g. Using the physical mixture of the LRP and polyphenols as a control, the noncovalent interaction between them in the complexes was confirmed by ultraviolet and Fourier-transform infrared spectroscopy. The interaction increased their average molecular weights by 1.11~2.27 times compared to the LRP. The polyphenols enhanced the antioxidant capacity and macrophage-stimulating activity of the LRP depending on their binding amount. Particularly, the DPPH radical scavenging activity and FRAP antioxidant ability were positively related to the FA binding amount but negatively related to the CHA binding amount. The NO production of the macrophages stimulated by the LRP was inhibited by the co-incubation with free polyphenols; however, the inhibition was eliminated by the noncovalent binding. The complexes could stimulate the NO production and tumor necrosis factor-α secretion more effectively than the LRP. The noncovalent binding of polyphenols may be an innovative strategy for the structural and functional modification of natural polysaccharides.
Collapse
Affiliation(s)
- Qiulan Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoqin Zou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (Y.Y.); (Y.S.); Tel.: +86-138-8615-2207 (Y.Y.); +86-151-7150-7535 (Y.S.)
| | - Ying Sun
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (Y.Y.); (Y.S.); Tel.: +86-138-8615-2207 (Y.Y.); +86-151-7150-7535 (Y.S.)
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xueyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kaidi Peng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
9
|
Wu K, Li Y, Lin Y, Xu B, Yang J, Mo L, Huang R, Zhang X. Structural characterization and immunomodulatory activity of an exopolysaccharide from marine-derived Aspergillus versicolor SCAU141. Int J Biol Macromol 2023; 227:329-339. [PMID: 36535356 DOI: 10.1016/j.ijbiomac.2022.12.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Until now, relatively little is known about marine-derived fungal polysaccharides and their activities. Exopolysaccharide AVP141-A was isolated from the broth of marine-derived fungus Aspergillus versicolor SCAU141 and purified by Diethylaminoethyl-Sepharose Fast Flow and Sephadex G-100. The structural characteristics of AVP141-A was studied by chemical analysis together with high-performance gel permeation chromatography, ion chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. The results showed that AVP141-A with the molecular weight of 5.10 kDa was mainly composed of →4)-α-D-Glcp-(1→, branched by α-D-Glcp-(1→ and →6)-α-D-Glcp-(1→ at C-6 positions of the glucan backbone. In particular, sulfate ester (approximately 3.62 %) was found in AVP141-A, which was frequently considered to occur in marine-derived microbial polysaccharides rather than other microbial polysaccharides. Furthermore, AVP141-A significantly enhanced the activity of the inflammatory factors NO, COX-2 and TNF-α in RAW264.7 macrophages by activating the MAPK/p38 and NF-κB/p65 pathways. In addition, metabolomic analysis revealed that most of the pathways with significant changes in RAW264.7 macrophages treated with AVP141-A were amino acid-related pathways, and arginine was the characteristic metabolite. In conclusion, this study identified AVP141-A as a marine fungus-derived sulfated exopolysaccharide with potential for development as an immune activator.
Collapse
Affiliation(s)
- Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yiyang Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yuqi Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University-United International College, Zhuhai 519087, China
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Li Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
10
|
Wang M, Hu WJ, Wang QH, Yang BY, Kuang HX. Extraction, purification, structural characteristics, biological activities, and application of the polysaccharides from Nelumbo nucifera Gaertn. (lotus): A review. Int J Biol Macromol 2023; 226:562-579. [PMID: 36521698 DOI: 10.1016/j.ijbiomac.2022.12.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Nelumbo nucifera Gaertn. (lotus) is a widely distributed plant with a long history of cultivation and consumption. Almost all parts of the lotus can be used as foodstuff and nourishment, or as an herb. It is noteworthy that the polysaccharides obtained from lotus exhibit surprisingly and satisfying biological activities, which explains the various benefits of lotus to human health, including anti-diabetes, anti-osteoporosis, antioxidant, anti-inflammatory, anti-tumor, etc. Here, we systematically review the recent major studies on extraction and purification methods of polysaccharides from different parts (rhizome, seed, leaf, plumule, receptacle and stamen) of lotus, as well as the characterization of their chemical structure, biological activity and structure-activity relationship, and the applications of lotus polysaccharides in different fields. This article will give an updated and deeper understanding of lotus polysaccharides and provide theoretical basis for their further research and application in human health and manufacture development.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiu-Hong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
11
|
Hu TG, Zhu WL, Yu YS, Zou B, Xu YJ, Xiao GS, Wu JJ. The variation on structure and immunomodulatory activity of polysaccharide during the longan pulp fermentation. Int J Biol Macromol 2022; 222:599-609. [PMID: 36170929 DOI: 10.1016/j.ijbiomac.2022.09.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
In the current study, the effects of fermentation manners on the structure and immunomodulatory activity of polysaccharide in longan wine or vinegar were investigated. Compared to longan polysaccharide (CP1), polysaccharide in longan wine (CP2) or vinegar (CP3 and CP4) had smaller molecular weights, and was consisted of more mannose, arabinose, rhamnose, galactose and less glucose. After purification, the major fraction (P1-P4) was obtained from CP1-CP4, respectively. The structures and immunoregulatory activities of P1-P4 were characterized. Fermentation and purification were favorable to increase the immunoregulatory activities of P2-P4, which were contributed to their different structural features. The structure-activity relationship analysis indicated that molecular weight, mannose, rhamnose, glucuronic acid, glucose and arabinose were significantly associated with the cytokines secretion. Compared with other polysaccharides, P3 displayed better immunomodulatory activity due to its lower molecular weight, lower contents of rhamnose and glucose, and higher levels of mannose and arabinose by activating MAPK and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China; Huagongliya (Foshan) Technology Industry Co., Ltd, China
| | - Wei-Lin Zhu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Yuan-Shan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China; Huagongliya (Foshan) Technology Industry Co., Ltd, China.
| | - Bo Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China; Huagongliya (Foshan) Technology Industry Co., Ltd, China
| | - Yu-Juan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China
| | | | - Ji-Jun Wu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China.
| |
Collapse
|
12
|
Yang Y, Li J, Hong Q, Zhang X, Liu Z, Zhang T. Polysaccharides from Hericium erinaceus Fruiting Bodies: Structural Characterization, Immunomodulatory Activity and Mechanism. Nutrients 2022; 14:nu14183721. [PMID: 36145096 PMCID: PMC9503163 DOI: 10.3390/nu14183721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Five fractions from crude Hericium erinaceus polysaccharides (HEPs), including HEP-1, HEP-2, HEP-3, HEP-4 and HEP-5, were obtained through column chromatography with a DEAE Cellulose-52 column and Sephadex G-100 column. The contents of total carbohydrates and uronic acid in HEPs were 53.36% and 32.56%, respectively. HEPs were mainly composed of Fuc, Gal and Glu in a molar ratio of 7.9:68.4:23.7. Its chemical structure was characterized by sugar and methylation analysis, along with 1H and 13C NMR spectroscopy. HEP-1 contains the backbone composed of (1→6)-linked-galactose with branches attached to O-2 of some glucose. The immunological activity assay indicated that HEP-1 significantly promoted the production of nitric oxide, interleukin-6, interleukin-10, interferon-γ and tumor necrosis factor-α and the phosphorylation of signaling molecules. Collectively, these results suggested that HEP-1 could improve immunity via NF-κB, MAPK and PI3K/Akt pathways. Hericium erinaceus polysaccharides might be explored as an immunomodulatory agent for use in dietary supplements.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Jihong Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
- Correspondence: (Z.L.); (T.Z.); Tel.: +86-021-66553178 (Z.L.); +86-0431-87836361 (T.Z.)
| | - Tiehua Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 5333 Xi’an Road, Changchun 130062, China
- Correspondence: (Z.L.); (T.Z.); Tel.: +86-021-66553178 (Z.L.); +86-0431-87836361 (T.Z.)
| |
Collapse
|
13
|
Wu H, Shu L, Liang T, Li Y, Liu Y, Zhong X, Xing L, Zeng W, Zhao R, Wang X. Extraction optimization, physicochemical property, antioxidant activity, and α-glucosidase inhibitory effect of polysaccharides from lotus seedpods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4065-4078. [PMID: 34997594 DOI: 10.1002/jsfa.11755] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/27/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lotus seedpods are an agricultural by-product of lotus (Nelumbo nucifera Gaertn.), which is widely cultivated in Southeast Asia and Australia. Most lotus seedpods are considered waste and are abandoned or incinerated, resulting in significant waste of resources and heavy environmental pollution. For recycling lotus seedpods, the extraction optimization, physicochemical properties, antioxidant activity, and α-glucosidase inhibitory effect of the polysaccharides contained therein were investigated in this study. RESULTS Hot water extraction of lotus seedpod polysaccharides was optimized by using a response surface methodology combined with a Box-Behnken design, with the optimum conditions being as follows: a liquid/solid ratio of 25.0 mL g-1 , an extraction temperature of 98.0 °C, and an extraction time of 138.0 min. Under these conditions, an experimental yield of 5.88 ± 0.06% was obtained. Physicochemical analyses suggested that lotus seedpod polysaccharides belong to acidic heteropolysaccharides and are principally composed of rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid. The polysaccharides content has a broad molecular weight distribution (2.15 × 105 to 1.77 × 107 Da), an α-configuration, and mainly possesses smooth and sheet-like structures. Biological evaluations showed that the polysaccharides possessed good scavenging activity on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 1,1-diphenyl-2-picryl-hydrozyl, and hydroxyl radicals, and exerted an obvious inhibitory effect on α-glucosidase activity. Moreover, the polysaccharides content was determined to be a mixed-type noncompetitive inhibitor of α-glucosidase. CONCLUSION The results indicate that lotus seedpod polysaccharides have potential as natural antioxidants and hypoglycaemic substitutes. This study provides the theoretical bases for the exploitation and application of polysaccharides from lotus seedpod by-product resources. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huwei Wu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Linping Shu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yanping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Yuanxiang Liu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Xiuli Zhong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Lingyu Xing
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Wei Zeng
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Rui Zhao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoyin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| |
Collapse
|
14
|
Guan X, Feng Y, Jiang Y, Hu Y, Zhang J, Li Z, Song C, Li F, Hou J, Shen T, Hu W. Simulated digestion and in vitro fermentation of a polysaccharide from lotus (Nelumbo nucifera Gaertn.) root residue by the human gut microbiota. Food Res Int 2022; 155:111074. [DOI: 10.1016/j.foodres.2022.111074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/08/2023]
|
15
|
Effect of Pretreatment and High Hydrostatic Pressure on Soluble Dietary Fiber in Lotus Root Residues. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5565538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High hydrostatic pressure (HHP) can enhance the physicochemical properties of soluble dietary fiber (SDF) from fruit and vegetable residues including hydration properties, emulsibility, and rheological properties, while the pretreatment methods such as solid-water suspension status are ignored all along. Here, three groups of lotus root residue (LRR) for HHP treatment (400 MPa, 15 min) were prepared: the fresh lotus root residue (FLRR), FLRR mixed with water (FLRR + W), and dried FLRR suspended in water at the same solid/water level with FLRR + W (DLRR + W). As a control, non-HHP-treated FLRR was tested. Results showed that FLRR + W obtained the highest SDF yield and presented a honeycomb structure which was not observed in other LRR samples. In addition, properties of SDF extract from FLRR + W changed most significantly, including not only the enhancement of SDF yield, the improvement of hydration properties, and the reduction of molecular weight but also the increase of thermal and rheological stability. Principal component analysis (PCA) profile illustrated that the difference of LRR-water system contributed 27.6% to the SDF physicochemical changes, and SDF from DLRR + W distinguished it from the other samples with mannose, ribose, and glucuronic acid, indicating that the drying procedure also played a role in the HHP treatment focusing on the sugar constitution. Therefore, the solid-water suspension status is a noteworthy issue before HHP treatment aiming at SDF modification.
Collapse
|
16
|
Li X, Guo Y, Chen L, Liu K, Gong K. Texture and bio-functional characteristics of a Chinese steamed bread prepared from lotus root powder partially replacing wheat flour. Sci Rep 2021; 11:16338. [PMID: 34381161 PMCID: PMC8357799 DOI: 10.1038/s41598-021-95926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/28/2021] [Indexed: 11/09/2022] Open
Abstract
Making low GI of the Chinese steamed bread (CSB) with acceptable eating quality is a challenge. A CSB prepared from wheat flour partially substituted by lotus root powder (LRP) showed good prospects. RVA profile and texture profile were determined to evaluate the texture, while animal test were used to confirm the bio-functional attributes. The addition of LRP effectively changed the RVA profile of lotus-wheat incorporated flour (LWIF). CSB prepared from 30% LWIF showed acceptable eating quality with higher springiness, cohesiveness, and recovery while lower hardness. After 12 weeks of 30% LWIF administrating, the fast blood glucose of diabetic rat decreased from 17.6 to 5.8 mmol/L together with the reduction of serum TC, TG and LDL-C. The hepatic histopathological examination and serum levels changes of SOD, CAT and FFA confirmed LWIF could effectively protect the liver of the diabetic rats from damage caused by oxidative stress.
Collapse
Affiliation(s)
- Xiaoyue Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuqiu Guo
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lirong Chen
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kaichang Liu
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kuijie Gong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
17
|
Comprehensive characterization of lotus root polysaccharide-phenol complexes. Food Chem 2021; 366:130693. [PMID: 34358960 DOI: 10.1016/j.foodchem.2021.130693] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
To explore the effects of phenolic binding on the structure and activity of lotus root polysaccharides (LRPs), five LRP-phenol complexes containing catechin (61.22 mg/g), gallic acid (9.37 mg/g), ferulic acid (29.28 mg/g), chlorogenic acid (83.80 mg/g) or caffeic acid (14.80 mg/g) were prepared via noncovalent intermolecular interaction, respectively. The interaction was confirmed by the differences among LRPs, phenols and their complexes in ultraviolet-visible and Fourier-transform infrared spectra. The phenolic binding caused significant changes in the molecular weight (MW) distribution and aggregation behavior of LRPs, particularly their average MW (34.49 kDa) increased by 3.73-8.30 times. Compared to LRPs, the complexes all showed stronger antioxidant activities. Notably, the binding of catechin improved the macrophage-stimulating effect of LRPs, specifically promoting the NO production at normal condition and inhibiting the NO overproduction induced by lipopolysaccharide. The noncovalent interaction with phenolic compounds is a promising method for the structural and functional improvement of LRPs.
Collapse
|
18
|
Liu Y, Li QZ, Li LDJ, Zhou XW. Immunostimulatory effects of the intracellular polysaccharides isolated from liquid culture of Ophiocordyceps sinensis (Ascomycetes) on RAW264.7 cells via the MAPK and PI3K/Akt signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114130. [PMID: 33892066 DOI: 10.1016/j.jep.2021.114130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese Cordyceps (DongChong XiaCao), a parasitic complex of a fungus Ophiocordyceps sinensis and a caterpillar, is a traditional Chinese medicine. Polysaccharides extracted from O. sinensis have immunomodulatory effects on macrophages. However, the mechanism of polysaccharides on macrophage and the composition of polysaccharides are not known. AIM OF STUDY We aimed to investigate composition and structure of the intracellular polysaccharides from O. sinensis mycelia (designed as OSP), and evaluate its the immunomodulatory effect on macrophages and its underlying mechanism. MATERIALS AND METHODS We performed a liquid-state fermentation of O. sinensis to produce mycelia. The DEAE-Sephadex-A25 cellulose column and Sephadex-G100 gel column chromatography were employed to purify and character the intracellular OSP. Macrophages RAW264.7 cells were employed to evaluate OSP's immunomodulatory activity and the possible mechanism responsible for the activation of macrophages in vitro. RESULTS The average molecular weight of OSP was distributed at 27,972 Da, OSP was composed of xylose, mannose, glucose, and galactose with the ratio of 2.9 : 6.6 : 166 : 2.6, with a trace amount of fucose, arabinose and rhamnose. The phagocytosis of RAW264.7 cells was improved significantly and remarkable changes were observed in the morphology with OSP-treated cells. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that OSP had an ability to regulate the mRNA expression of pro-inflammatory and anti-inflammatory cytokines, and to induce the mRNA expression level of iNOS in a concentration dependent manner in RAW264.7 cells. Western blotting analysis showed that the regulation of NO and cytokines was mediated through mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. CONCLUSION This study demonstrated that OSP was with a capacity to activate macrophage cells RAW264.7 for an improvement of immunomodulation activities, which was through regulation of inflammatory mediators via MAPK and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Yan Liu
- School of Agriculture and Biology, And Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qi-Zhang Li
- School of Agriculture and Biology, And Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Liu-Ding-Ji Li
- School of Agriculture and Biology, And Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, And Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
19
|
Barbosa JR, de Carvalho Junior RN. Polysaccharides obtained from natural edible sources and their role in modulating the immune system: Biologically active potential that can be exploited against COVID-19. Trends Food Sci Technol 2021; 108:223-235. [PMID: 33424125 PMCID: PMC7781518 DOI: 10.1016/j.tifs.2020.12.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/20/2020] [Accepted: 12/25/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The global crisis caused by the outbreak of severe acute respiratory syndrome caused by the SARS-CoV-2 virus, better known as COVID-19, brought the need to improve the population's immunity. The foods rich in polysaccharides with immunomodulation properties are among the most highly rated to be used as immune response modulators. Thus, the use of polysaccharides obtained from food offers an innovative strategy to prevent serious side effects of viral infections. SCOPE AND APPROACH This review revisits the current studies on the pathophysiology of SARS-CoV-2, its characteristics, target cell interactions, and the possibility of using polysaccharides from functional foods as activators of the immune response. Several natural foods are explored for the possibility of being used to obtain polysaccharides with immunomodulatory potential. And finally, we address expectations for the use of polysaccharides in the development of potential therapies and vaccines. KEY FINDINGS AND CONCLUSIONS The negative consequences of the SARS-CoV-2 pandemic across the world are unprecedented, thousands of lives lost, increasing inequalities, and incalculable economic losses. On the other hand, great scientific advances have been made regarding the understanding of the disease and forms of treatment. Polysaccharides, due to their characteristics, have the potential to be used as potential drugs with the ability to modulate the immune response. In addition, they can be used safely, as they have no toxic effects, are biocompatible and biodegradable. Finally, these biopolymers can still be used in the development of new therapies and vaccines.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900, Belém, PA, Brazil
- LABTECS (Supercritical Technology Laboratory), PCT-Guamá (Guamá Science and Technology Park), UFPA (Federal University of Para), Avenida Perimetral da Ciência km 01,Guamá, Belém, PA, 66075-750, Brazil
| | - Raul Nunes de Carvalho Junior
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900, Belém, PA, Brazil
- LABTECS (Supercritical Technology Laboratory), PCT-Guamá (Guamá Science and Technology Park), UFPA (Federal University of Para), Avenida Perimetral da Ciência km 01,Guamá, Belém, PA, 66075-750, Brazil
| |
Collapse
|
20
|
Yang M, Yan T, Yu M, Kang J, Gao R, Wang P, Zhang Y, Zhang H, Shi L. Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minmin Yang
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Tao Yan
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Meng Yu
- The Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jie Kang
- Physical Education Institute Shaanxi Normal University Xi'an China
| | - Ruoxi Gao
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Peng Wang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Yuhuan Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Huafeng Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
| | - Lin Shi
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
- Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
21
|
Dong XD, Feng YY, Liu YN, Ji HY, Yu SS, Liu A, Yu J. A novel polysaccharide from Castanea mollissima Blume: Preparation, characteristics and antitumor activities in vitro and in vivo. Carbohydr Polym 2020; 240:116323. [PMID: 32475583 DOI: 10.1016/j.carbpol.2020.116323] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
A new water-soluble polysaccharide, CMP90, with a molecular weight of 23.9 kDa was isolated from Castanea mollissima Blume and the preliminary structural characteristics and antitumor effects of CMP90 in vitro and in vivo were investigated in the research. CMP90 consists of arabinose, galactose, glucose, xylose and mannose (molar ratio: 0.08:0.11:5.14:0.12:0.08) with α- and β-anomeric units. The results of in vitro experiments indicated that CMP90 exhibited a significant inhibitory effect on the proliferation of HL-60 cells with typical apoptotic characteristics by inducing cell cycle arrested at G1/M phase. Additionally, the results in vivo suggested CMP90 was able to inhibit the growth of S180 solid tumors via protecting immune organs, improving the levels of serum cytokines (TNF-α, IL-2 and IFN-γ), enhancing the activities of immune cells (macrophages, lymphocytes and NK cells) and inducing cell apoptosis or death. Taken together, these combined data clearly indicated that CMP90 may be used as a potential candidate agent for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Dan Dong
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Ying-Ying Feng
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Yi-Ning Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Hai-Yu Ji
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Sha-Sha Yu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Anjun Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Juan Yu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
22
|
Effects of freeze drying and hot-air drying on the physicochemical properties and bioactivities of polysaccharides from Lentinula edodes. Int J Biol Macromol 2020; 145:476-483. [DOI: 10.1016/j.ijbiomac.2019.12.222] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
|
23
|
Dong XD, Yu J, Feng YY, Ji HY, Yu SS, Liu AJ. Alcohol-soluble polysaccharide from Castanea mollissima blume: Preparation, characteristics and antitumor activity. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
24
|
Ma Z, Huang Y, Huang W, Feng X, Yang F, Li D. Separation, Identification, and Antioxidant Activity of Polyphenols from Lotus Seed Epicarp. Molecules 2019; 24:E4007. [PMID: 31694314 PMCID: PMC6864829 DOI: 10.3390/molecules24214007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Lotus seed epicarp, the main by-product of lotus seed processing, is abundant in polyphenols. In this study, polyphenols in lotus seed epicarp were separated by Sephadex LH-20 gel filtration chromatography to yield Fraction-I (F-I), Fraction-II (F-II), and Fraction-III (F-III). The polyphenol compounds in the three fractions were identified by UPLC-MI-TOF-MS. Six kinds of polyphenol compounds including cyanidin-3-O-glucoside, procyanidin trimer, and phlorizin were identified in F-I, and prodelphinidin dimer B, procyanidin dimer, and quercetin hexoside isomer were found in F-II. However, there was only procyanidin dimer identified in F-III. The in vitro antioxidant activities of the three fractions were also investigated. We found F-I, F-II, and F-III had strong potential antioxidant activities in the order of F-III > F-II > F-I. Our results suggested that polyphenols from lotus seed epicarp might be suitable for use as a potential food additive.
Collapse
Affiliation(s)
- Zhili Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China;
| | - Yi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; (Y.H.); (W.H.)
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; (Y.H.); (W.H.)
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, California State University, San Jose, CA 95192, USA;
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China;
| | - Deyuan Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China;
| |
Collapse
|