1
|
Mottola S, Viscusi G, González-Garcinuño Á, Tabernero A, Cardea S, Martín Del Valle EM, Gorrasi G, De Marco I. Controlling particle size of levan in powder form with different technologies. Int J Biol Macromol 2024; 280:135768. [PMID: 39299431 DOI: 10.1016/j.ijbiomac.2024.135768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Levan is a fructose polysaccharide with multiple applications in different fields, but its obtaining in powdered form with a narrow particle size distribution is a complicated task. Two techniques, electrospraying and supercritical antisolvent (SAS) precipitation, were used to process levan that was first obtained enzymatically. The SAS process was able to micronize the polymer (at experimental conditions far above the mixture critical point of the solvent-antisolvent system) to obtain spherical particles between 0.30 and 0.50 μm with a proper particle size distribution. In this case, the Peng-Robinson equation of state was used to theoretically determine the mixture critical point. Bigger and elongated particles were obtained with electrospraying (0.60 μm). According to solution properties, mainly rheology, solubility and conductivity, the best solvent for levan electrospraying, in order to avoid problems of solvent evaporation and jet formation, was a mixture of water and ethanol with a polymer concentration of 50 mg·cm-3. Indeed, that solution has a viscous behavior (according to the oscillatory analysis), a low degree of pseudo-plasticity (based on the shear flow analysis), and the highest value of conductivity. Therefore, the particle size distribution of levan in powdered form can be tuned depending on the technique used.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Álvaro González-Garcinuño
- Department of Chemical Engineering, University of Salamanca, Plaza de los Caídos s/n, 37001, Salamanca, Spain
| | - Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza de los Caídos s/n, 37001, Salamanca, Spain.
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Eva M Martín Del Valle
- Department of Chemical Engineering, University of Salamanca, Plaza de los Caídos s/n, 37001, Salamanca, Spain
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
2
|
Lin P, Wang Q, Wang Q, Chen J, He L, Qin Z, Li S, Han J, Yao X, Yu Y, Yao Z. Evaluation of the anti-atherosclerotic effect for Allium macrostemon Bge. Polysaccharides and structural characterization of its a newly active fructan. Carbohydr Polym 2024; 340:122289. [PMID: 38858004 DOI: 10.1016/j.carbpol.2024.122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Allium Macrostemon Bge. (AMB) is a well-known homology of herbal medicine and food that has been extensively used for thousands of years to alleviate cardiovascular diseases. It contains a significant amount of polysaccharides, yet limited research exists on whether these polysaccharides are responsible for its cardiovascular protective effects. In this study, the anti-atherosclerosis effect of the crude polysaccharides of AMB (AMBP) was evaluated using ApoE-/- mice fed a high-fat diet, along with ox-LDL-induced Thp-1 foam cells. Subsequently, guided by the inhibitory activity of foam cells formation, a major homogeneous polysaccharide named AMBP80-1a was isolated and purified, yielding 11.1 % from AMB. The molecular weight of AMBP80-1a was determined to be 10.01 kDa. AMBP80-1a was firstly characterized as an agavin-type fructan with main chains consisting of →1)-β-d-Fruf-(2→ and →1,6)-β-d-Fruf-(2→ linked to an internal glucose moiety, with →6)-β-d-Fruf-(2→ and β-d-Fruf-(2→ serving as side chains. Furthermore, the bio-activity results indicated that AMBP80-1a reduced lipid accumulation and cholesterol contents in ox-LDL-induced Thp-1 foam cell. These findings supported the role of AMBP in alleviating atherosclerosis in vivo/vitro. AMBP80-1a, as the predominant homogeneous polysaccharide in AMB, was expected to be developed as a functional agent to prevent atherosclerosis.
Collapse
Affiliation(s)
- Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qiqi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiayun Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zifei Qin
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Yang Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Alugoju P, Tencomnao T. Effect of levan polysaccharide on chronological aging in the yeast Saccharomyces cerevisiae. Int J Biol Macromol 2024; 266:131307. [PMID: 38574907 DOI: 10.1016/j.ijbiomac.2024.131307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Levan is a fructose-based biopolymer with diverse applications in the medicinal, pharmaceutical, and food industries. However, despite its extensive biological and pharmacological actions, including antioxidant, anti-inflammatory, and antidiabetic properties, research on its anti-aging potential is limited. This study explored levan's impact on the chronological lifespan (CLS) of yeast Saccharomyces cerevisiae for the first time. The results show that levan treatment significantly extended the CLS of wild-type (WT) yeast by preventing the accumulation of oxidative stress markers (reactive oxygen species, malondialdehyde, and protein carbonyl content) and ameliorating apoptotic features such as reduced mitochondrial membrane potential, loss of plasma membrane integrity, and externalization of phosphatidylserine. By day 40 of the CLS, a significant increase in yeast viability of 6.8 % (p < 0.01), 11.9 % (p < 0.01), and 20.8 % (p < 0.01) was observed at 0.25, 0.5, and 1 mg/mL of levan concentrations, respectively, compared to control (0 %). This study's results indicate that levan treatment substantially modulates the expression of genes involved in the TORC1/Sch9 pathway. Moreover, levan treatment significantly extended the CLS of yeast antioxidant-deficient mutant sod2Δ and antiapoptotic gene-deficient mutant pep4Δ. Levan also extended the CLS of signaling pathway gene-deficient mutants such as pkh2Δ, rim15Δ, atg1, and ras2Δ, while not affecting the CLS of tor1Δ and sch9Δ.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Araújo CM, de Albuquerque TMR, Sampaio KB, de Oliveira JN, da Silva JYP, Lima MDS, do Nascimento YM, da Silva EF, da Silva MS, Tavares JF, de Souza EL, de Oliveira MEG. Fermenting Acerola ( Malpighia emarginata D.C.) and Guava ( Psidium guayaba L.) Fruit Processing Co-Products with Probiotic Lactobacilli to Produce Novel Potentially Synbiotic Circular Ingredients. Foods 2024; 13:1375. [PMID: 38731747 PMCID: PMC11083529 DOI: 10.3390/foods13091375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
This study evaluated the effects of acerola and guava fruit processing co-products fermented with probiotic Lactobacillus acidophilus LA-05 and Lacticaseibacillus paracasei L-10 on the abundance of different intestinal bacterial groups and microbial metabolic activity during 48 h of in vitro fecal fermentation. Digested fermented fruit co-products increased the relative abundance of beneficial bacterial groups while overall decreasing or maintaining the relative abundance of non-beneficial bacterial groups, suggesting selective stimulatory effects on beneficial bacterial intestinal populations. The fermented co-products stimulated microbial metabolic activity due to decreased pH, sugar consumption, short-chain fatty acid production, phenolic compound and metabolic profile alteration, and high antioxidant capacity during fecal fermentation. Acerola and guava co-products have high nutritional value and bioactive compounds whose fermentation with probiotics improves their potential functionalities. The results show that fermented fruit co-products could induce beneficial changes in the relative abundance of several bacterial groups as well as in the metabolic activity of the human intestinal microbiota. These results highlight their potential as novel and circular candidates for use as synbiotic ingredients.
Collapse
Affiliation(s)
- Caroliny M. Araújo
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Thatyane Mariano R. de Albuquerque
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Karoliny B. Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Jordana N. de Oliveira
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Jaielison Yandro P. da Silva
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Marcos dos S. Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina 56302-100, Brazil;
| | - Yuri M. do Nascimento
- Institute for Research in Drugs and Medicines—IPeFarM, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (Y.M.d.N.); (E.F.d.S.); (M.S.d.S.); (J.F.T.)
| | - Evandro F. da Silva
- Institute for Research in Drugs and Medicines—IPeFarM, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (Y.M.d.N.); (E.F.d.S.); (M.S.d.S.); (J.F.T.)
| | - Marcelo S. da Silva
- Institute for Research in Drugs and Medicines—IPeFarM, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (Y.M.d.N.); (E.F.d.S.); (M.S.d.S.); (J.F.T.)
| | - Josean F. Tavares
- Institute for Research in Drugs and Medicines—IPeFarM, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (Y.M.d.N.); (E.F.d.S.); (M.S.d.S.); (J.F.T.)
| | - Evandro L. de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (T.M.R.d.A.); (K.B.S.); (J.N.d.O.); (J.Y.P.d.S.); (E.L.d.S.)
| | - Maria Elieidy G. de Oliveira
- Laboratory of Food Bromatology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| |
Collapse
|
5
|
Ni D, Zhang S, Liu X, Zhu Y, Xu W, Zhang W, Mu W. Production, effects, and applications of fructans with various molecular weights. Food Chem 2024; 437:137895. [PMID: 37924765 DOI: 10.1016/j.foodchem.2023.137895] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Fructan, a widespread functional polysaccharide, has been used in the food, pharmaceutical, cosmetic, and material production fields because of its versatile physicochemical properties and biological activities. Inulin from plants and levan from microorganisms are two of the most extensively studied fructans. Fructans from different plants or microorganisms have inconsistent molecular weights, and the molecular weight of fructan affects its properties, functions, and applications. Recently, increasing attention has been paid to the production and application of fructans having various molecular weights, and biotechnological processes have been explored to produce tailor-made fructans from sucrose. This review encompasses the introduction of extraction, enzymatic transformation, and fermentation production processes for fructans with diverse molecular weights. Notably, it highlights the enzymes involved in fructan biosynthesis and underscores their physiological effects, with a special emphasis on their prebiotic properties. Moreover, the applications of fructans with varying molecular weights are also emphasized.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
González-Torres M, Hernández-Rosas F, Pacheco N, Salinas-Ruiz J, Herrera-Corredor JA, Hernández-Martínez R. Levan Production by Suhomyces kilbournensis Using Sugarcane Molasses as a Carbon Source in Submerged Fermentation. Molecules 2024; 29:1105. [PMID: 38474615 DOI: 10.3390/molecules29051105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The valorization of byproducts from the sugarcane industry represents a potential alternative method with a low energy cost for the production of metabolites that are of commercial and industrial interest. The production of exopolysaccharides (EPSs) was carried out using the yeast Suhomyces kilbournensis isolated from agro-industrial sugarcane, and the products and byproducts of this agro-industrial sugarcane were used as carbon sources for their recovery. The effect of pH, temperature, and carbon and nitrogen sources and their concentration in EPS production by submerged fermentation (SmF) was studied in 170 mL glass containers of uniform geometry at 30 °C with an initial pH of 6.5. The resulting EPSs were characterized with Fourier-transform infrared spectroscopy (FT-IR). The results showed that the highest EPS production yields were 4.26 and 44.33 g/L after 6 h of fermentation using sucrose and molasses as carbon sources, respectively. Finally, an FT-IR analysis of the EPSs produced by S. kilbournensis corresponded to levan, corroborating its origin. It is important to mention that this is the first work that reports the production of levan using this yeast. This is relevant because, currently, most studies are focused on the use of recombinant and genetically modified microorganisms; in this scenario, Suhomyces kilbournensis is a native yeast isolated from the sugar production process, giving it a great advantage in the incorporation of carbon sources into their metabolic processes in order to produce levan sucrose, which uses fructose to polymerize levan.
Collapse
Affiliation(s)
- Mariana González-Torres
- Colegio de Postgraduados, Campus Córdoba, Carretera Federal Córdoba-Veracruz Federal Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, Veracruz 94946, Mexico
| | - Francisco Hernández-Rosas
- Colegio de Postgraduados, Campus Córdoba, Carretera Federal Córdoba-Veracruz Federal Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, Veracruz 94946, Mexico
| | - Neith Pacheco
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Mérida 97302, Mexico
| | - Josafhat Salinas-Ruiz
- Colegio de Postgraduados, Campus Córdoba, Carretera Federal Córdoba-Veracruz Federal Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, Veracruz 94946, Mexico
| | - José A Herrera-Corredor
- Colegio de Postgraduados, Campus Córdoba, Carretera Federal Córdoba-Veracruz Federal Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, Veracruz 94946, Mexico
| | - Ricardo Hernández-Martínez
- CONAHCYT-Colegio de Postgraduados, Campus Córdoba, Carretera Federal Córdoba-Veracruz Federal Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, Veracruz 94946, Mexico
| |
Collapse
|
7
|
Klaewkla M, Wangpaiboon K, Pichyangkura R, Charoenwongpaiboon T. Unraveling the role of flexible coil near calcium binding site of levansucrase on thermostability and product profile via proline substitution and molecular dynamics simulations. Proteins 2024; 92:170-178. [PMID: 37753539 DOI: 10.1002/prot.26592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Due to its bioactivity and versatile applications, levan has appeared as a promising biomaterial. Levansucrase is responsible for the conversion of sucrose into levan. With the goal of enhancing levan production, the strategy for enhancing the stability of levansucrase is being intensively studied. To make proteins more stable under high temperatures, proline, the most rigid residue, can be introduced into previously flexible regions. Herein, G249, D250, N251, and H252 on the flexible coil close to the calcium binding site of Bacillus licheniformis levansucrase were replaced with proline. Mutations at G249P greatly enhance both the enzyme's thermodynamic and kinetic stability, while those at H252P improve solely the enzyme's kinetic stability. GPC analysis revealed that G249P synthesize more levan, but H252P generate primarily oligosaccharides. Molecular dynamics simulations (MD) and MM/GBSA analysis revealed that G249P mutation increased not only the stability of levansucrase, but also affinity toward fructan.
Collapse
Affiliation(s)
| | - Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
8
|
Feitoza TG, de Lima Ponciano Costa B, Sampaio KB, Dos Santos Lima M, Garcia EF, de Albuquerque TMR, de Souza EL, Rodrigues NPA. An In Vitro Study of the Impacts of Sweet Potato Chips with Potentially Probiotic Levilactobacillus brevis and Lactiplantibacillus plantarum on Human Intestinal Microbiota : Impacts of potato chips with probiotics on intestinal microbiota. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10168-1. [PMID: 37792211 DOI: 10.1007/s12602-023-10168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
This study formulated sweet potato chips with powdered potentially probiotic Levilactobacillus brevis (SPLB) and Lactiplantibacillus plantarum (SPLP) and evaluated their impacts on human intestinal microbiota during 48 h of in vitro colonic fermentation. L. brevis and L. plantarum kept high viable cell counts (> 6 log CFU/g) on sweet potato chips after freeze-drying and during 60 days of storage. SPLB and SPLP had satisfactory quality parameters during 60 days of storage. SPLB and SPLP increased the relative abundance of Lactobacillus ssp./Enterococcus spp. (3.84-10.22%) and Bifidobacterium spp. (3.25-12.45%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (8.56-2.16%), Clostridium histolyticum (8.23-2.33%), and Eubacterium rectale/Clostridium coccoides (8.07-1.33%) during 48 h of in vitro colonic fermentation. SPLB and SPLP achieved high positive prebiotic indexes (> 8.24), decreased pH values and sugar contents, and increased lactic acid and short-chain fatty acid production, proving selective stimulatory effects on beneficial bacterial groups forming the intestinal microbiota. The results showed that SPLB and SPLP have good stability and high viable cell counts of L. brevis and L. plantarum when stored under room temperature and caused positive impacts on human intestinal microbiota, making them potentially probiotic non-dairy snack options.
Collapse
Affiliation(s)
- Tarsila Gonçalves Feitoza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Bárbara de Lima Ponciano Costa
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Karoliny Brito Sampaio
- Laboratory of Didactic Restaurant and Beverages, Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, PE, Brazil
| | - Estefânia Fernandes Garcia
- Laboratory of Didactic Restaurant and Beverages, Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | - Noádia Priscila Araújo Rodrigues
- Laboratory of Didactic Restaurant and Beverages, Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
9
|
Saleh SAA, Shawky H, Ezzat A, Taie HAA, Salama B, El-Bassyouni GT, El Awdan SA, Awad GEA, Hashem AM, Esawy MA, Abdel Wahab WA. Prebiotic-mediated gastroprotective potentials of three bacterial levans through NF-κB-modulation and upregulation of systemic IL-17A. Int J Biol Macromol 2023; 250:126278. [PMID: 37572818 DOI: 10.1016/j.ijbiomac.2023.126278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
This study aimed to investigate whether the gastroprotective effects of three types of bacterial levans are correlated with their prebiotic-associated anti-inflammatory/antioxidant potentials. Three levans designated as LevAE, LevP, and LevZ were prepared from bacterial honey isolates; purified, and characterized using TLC, NMR, and FTIR. The anti-inflammatory properties of levan preparations were assessed in LPS-stimulated RAW 264.7 cell lines, while their safety and gastroprotective potentials were assessed in Wistar rats. The three levans significantly reduced ulcer number (22.29-70.05 %) and severity (31.76-80.54 %) in the ethanol-induced gastric ulcer model compared to the control (P < 0.0001/each), with the highest effect observed in LevAE and levZ (200 mg/each) (P < 0.0001). LevZ produced the highest levels of glutathione; catalase activity, and the lowest MDA levels (P = 0.0001/each). The highest anti-inflammatory activity was observed in LevAE and levZ in terms of higher inhibitory effect on IL-1β and TNF-α production (P < 0.0001 each); COX2, PGE2, and NF-κB gene expression. The three levan preparations also proved safe with no signs of toxicity, with anti-lipidemic properties as well as promising prebiotic activity that directly correlated with their antiulcer effect. This novel study highlights the implication of prebiotic-mediated systemic immunomodulation exhibited by bacterial levans that directly correlated with their gastroprotective activity.
Collapse
Affiliation(s)
- Shireen A A Saleh
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Heba Shawky
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Asmaa Ezzat
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, Agriculture and Biological Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Bassem Salama
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Sally A El Awdan
- Pharmacology Department, Medical Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Ghada E A Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Amal M Hashem
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Walaa A Abdel Wahab
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
10
|
de Oliveira SPA, de Albuquerque TMR, Massa NML, Rodrigues NPA, Sampaio KB, do Nascimento HMA, Dos Santos Lima M, da Conceição ML, de Souza EL. Investigating the effects of conventional and unconventional edible parts of red beet (Beta vulgaris L.) on target bacterial groups and metabolic activity of human colonic microbiota to produce novel and sustainable prebiotic ingredients. Food Res Int 2023; 171:112998. [PMID: 37330844 DOI: 10.1016/j.foodres.2023.112998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/19/2023]
Abstract
This study investigated the effects of freeze-dried red beet root (FDBR) and freeze-dried red beet stem and leaves (FDBSL) on target bacterial groups and metabolic activity of human colonic microbiota in vitro. The capability of FDBR and FDBSL to cause alterations in the relative abundance of different selected bacterial groups found as part of human intestinal microbiota, as well as in pH values, sugar, short-chain fatty acid, phenolic compounds, and antioxidant capacity were evaluated during 48 h of in vitro colonic fermentation. FDBR and FDBSL were submitted to simulated gastrointestinal digestion and freeze-dried prior to use in colonic fermentation. FDBR and FDBSL overall increased the relative abundance of Lactobacillus spp./Enterococcus spp. (3.64-7.60%) and Bifidobacterium spp. (2.76-5.78%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (9.56-4.18%), Clostridium histolyticum (1.62-1.15%), and Eubacterium rectale/Clostridium coccoides (2.33-1.49%) during 48 h of colonic fermentation. FDBR and FDBSL had high positive prebiotic indexes (>3.61) during colonic fermentation, indicating selective stimulatory effects on beneficial intestinal bacterial groups. FDBR and FDBSL increased the metabolic activity of human colonic microbiota, evidenced by decreased pH, sugar consumption, short-chain fatty acid production, alterations in phenolic compound contents, and maintenance of high antioxidant capacity during colonic fermentation. The results indicate that FDBR and FDBSL could induce beneficial alterations in the composition and metabolic activity of human intestinal microbiota, as well as that conventional and unconventional red beet edible parts are candidates to use as novel and sustainable prebiotic ingredients.
Collapse
Affiliation(s)
| | | | - Nayara Moreira Lacerda Massa
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, PE, Brazil
| | - Maria Lúcia da Conceição
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
11
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
12
|
Extraction and Characterization of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers (Basel) 2023; 15:polym15030745. [PMID: 36772046 PMCID: PMC9921167 DOI: 10.3390/polym15030745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cocoa bean shells (CBS), a by-product of the cocoa industry, from two cacao varieties and obtained after selected processing conditions (fermentation, drying, roasting) were characterized in terms of their chemical composition, where they were found to be a great source of carbohydrates, specifically dietary fiber, protein, ash, and polyphenols, namely quercetin, epicatechin, and catechin. Cell wall polysaccharides were isolated by alkaline extraction (0.5 M or 4 M KOH) and were found to be enriched primarily in pectic polysaccharides (80.6-86%) namely rhamnogalacturonan and arabinogalactan as well as hemi- cellulosic polysaccharides (13.9-19.4%). Overall, 0.5 M KOH polysaccharides were favored having provided a diverse profile of neutral sugars and uronic acids. When tested for the promotion of the growth of selected probiotic strains, CBS cell wall polysaccharides performed similarly or more than inulin and rhamnogalacturonan based on the prebiotic activity scores. The short-chain fatty acid profiles were characterized by high amounts of lactic acid, followed by acetic and propionic acid.
Collapse
|
13
|
Xu M, Pan L, Wang B, Zou X, Zhang A, Zhou Z, Han Y. Simulated Digestion and Fecal Fermentation Behaviors of Levan and Its Impacts on the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1531-1546. [PMID: 36622938 DOI: 10.1021/acs.jafc.2c06897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Levan is a microbial fructan widely explored in various fields owing to its excellent physical and biochemical properties. However, little is known about its digestion and fermentation characteristics in vitro. This study evaluated the potential prebiotic properties of levan obtained by enzymatic synthesis. Scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the primary structures of levan remained stable after saliva-gastrointestinal digestion. The microtopography, molecular weight, and functional group of levan were seriously damaged during fecal fermentation. Moreover, the total short-chain fatty acid levels increased significantly, especially for propionic acid, butyric acid, and valeric acid. The 16S rDNA sequencing showed that levan mainly increased the abundance of Firmicutes; in genus levels, certain beneficial bacteria such as Megasphaera and Megamonas genera were remarkably promoted, and the proliferation of harmful genera was inhibited (such as Cedecea and Klebsiella). Overall, this study provided new insights into the potential probiotic mechanism of levan.
Collapse
Affiliation(s)
- Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Binbin Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Xuan Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Aihua Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| |
Collapse
|
14
|
Chronopoulou EG. Levansucrase: Enzymatic Synthesis of Engineered Prebiotics. Curr Pharm Biotechnol 2023; 24:199-202. [PMID: 36883258 DOI: 10.2174/1389201023666220421134103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Evangelia G Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
15
|
Growth behavior of probiotic microorganisms on levan- and inulin-based fructans. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Brito Sampaio K, Luiz de Brito Alves J, Mangueira do Nascimento Y, Fechine Tavares J, Sobral da Silva M, dos Santos Nascimento D, dos Santos Lima M, Priscila de Araújo Rodrigues N, Fernandes Garcia E, Leite de Souza E. Nutraceutical formulations combining Limosilactobacillus fermentum, quercetin, and or resveratrol with beneficial impacts on the abundance of intestinal bacterial populations, metabolite production, and antioxidant capacity during colonic fermentation. Food Res Int 2022; 161:111800. [DOI: 10.1016/j.foodres.2022.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
17
|
Gao J, Sadiq FA, Zheng Y, Zhao J, He G, Sang Y. Biofilm-based delivery approaches and specific enrichment strategies of probiotics in the human gut. Gut Microbes 2022; 14:2126274. [PMID: 36175161 PMCID: PMC9542427 DOI: 10.1080/19490976.2022.2126274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The use of probiotics has been one of the effective strategies to restructure perturbed human gut microbiota following a disease or metabolic disorder. One of the biggest challenges associated with the use of probiotic-based gut modulation strategies is to keep the probiotic cells viable and stable during the gastrointestinal transit. Biofilm-based probiotics delivery approaches have emerged as fascinating modes of probiotic delivery in which probiotics show significantly greater tolerance and biotherapeutic potential, and interestingly probiotic biofilms can be developed on food-grade surfaces too, which is ideal for the growth and proliferation of bacterial cells for incorporation into food matrices. In addition, biofilms can be further encapsulated with food-grade materials or with bacterial self-produced biofilms. This review presents a newly emerging and unprecedently discussed techniques for the safe delivery of probiotics based on biofilms and further discusses newly emerging prebiotic materials which target specific gut microbiota groups for growth and proliferation.
Collapse
Affiliation(s)
- Jie Gao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Faizan Ahmed Sadiq
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Yixin Zheng
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jinrong Zhao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China,CONTACT Guoqing He College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yaxin Sang
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China,Yaxin Sang Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Charoenwongpaiboon T, Wangpaiboon K, Septham P, Jiamvoraphong N, Issaragrisil S, Pichyangkura R, Lorthongpanich C. Production and bioactivities of nanoparticulated and ultrasonic-degraded levan generated by Erwinia tasmaniensis levansucrase in human osteosarcoma cells. Int J Biol Macromol 2022; 221:1121-1129. [PMID: 36115448 DOI: 10.1016/j.ijbiomac.2022.09.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022]
Abstract
Levan is a bioactive polysaccharide that can be synthesized by various microorganisms. In this study, the physicochemical properties and bioactivity of levan synthesized by recombinant levansucrase from Erwinia tasmaniensis were investigated. The synthesis conditions, including the enzyme concentration, substrate concentration, and temperature, were optimized. The obtained levan generally appeared as a cloudy suspension. However, it could transform into a hydrogel at concentrations exceeding 10 % (w/v). Then, ultrasonication was utilized to reduce the molecular weight and increase the bioavailability of levan. Dynamic light scattering (DLS) and gel permeation chromatography (GPC) indicated that the size of levan was significantly decreased by ultrasonication, whereas Fourier transform infrared spectroscopy, 1H-nuclear magnetic resonance, and X-ray powder diffraction revealed that the chemical structure of levan was not changed. Finally, the bioactivities of both levan forms were examined using human osteosarcoma (Saos-2) cells. The result clearly illustrated that sonicated levan had higher antiproliferative activity in Saos-2 cells than original levan. Sonicated levan also activated Toll-like receptor expression at the mRNA level. These findings suggested the important beneficial applications of sonicated levan for the development of cancer therapies.
Collapse
Affiliation(s)
| | - Karan Wangpaiboon
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prapasri Septham
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nittaya Jiamvoraphong
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
19
|
Karboune S, Seo S, Li M, Waglay A, Lagacé L. Biotransformation of sucrose rich Maple syrups into fructooligosaccharides, oligolevans and levans using levansucrase biocatalyst: Bioprocess optimization and prebiotic activity assessment. Food Chem 2022; 382:132355. [PMID: 35152014 DOI: 10.1016/j.foodchem.2022.132355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Maple syrup was investigated as a source to produce FOSs and β-(2-6)-linked-oligolevans/levans. The modulation of this biotransformation was achieved through the control of Maple syrup °Bx and reaction conditions. Reaction time was identified as the most influential factor for the oligolevans/FOSs production in Maple syrup 30°Bx reaction system as well as for the oligolevans/levans synthesis in the 66°Bx one. In the predictive model of oligolevans/levans production in Maple syrup 60°Bx, the interactive effect between levansucrase unit and reaction time was significant (p-value of 0.0008). The optimal conditions for oligolevans/FOSs production (109.20 g/L) in Maple syrup 30°Bx were 3.73 U/mL, pH 6.60 and 23.12 h; while 5 U/mL, pH 6.04 and 29.92 h were identified as the optimal conditions for oligolevans/levans production (147.09 g/L) in Maple syrup 66°Bx. As compared to inulin-type commercial FOSs, the fermentation of oligolevans/FOSs from Maple syrup led to a higher count of Lactobacillus acidophilus and Bifidobacterium lactis and resulted in a higher production of lactic acid. This study lays the foundation for the biotransformation of Maple syrups into functional prebiotic ingredients.
Collapse
Affiliation(s)
- S Karboune
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| | - Sooyoun Seo
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Mengxi Li
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Amanda Waglay
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Luc Lagacé
- Centre de recherche, de développement et de transfert technologique acéricole inc, 142 rang Lainesse St-Norbert d'Arthabaska, Québec G0P 1B0, Canada
| |
Collapse
|
20
|
Levan-type fructooligosaccharides synthesis by novel levansucrase-inulosucrase fusion enzyme. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Roupar D, Coelho MC, Gonçalves DA, Silva SP, Coelho E, Silva S, Coimbra MA, Pintado M, Teixeira JA, Nobre C. Evaluation of Microbial-Fructo-Oligosaccharides Metabolism by Human Gut Microbiota Fermentation as Compared to Commercial Inulin-Derived Oligosaccharides. Foods 2022; 11:foods11070954. [PMID: 35407041 PMCID: PMC8997964 DOI: 10.3390/foods11070954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
The prebiotic potential of fructo-oligosaccharides (microbial-FOS) produced by a newly isolated Aspergillus ibericus, and purified by Saccharomyces cerevisiae YIL162 W, was evaluated. Their chemical structure and functionality were compared to a non-microbial commercial FOS sample. Prebiotics were fermented in vitro by fecal microbiota of five healthy volunteers. Microbial-FOS significantly stimulated the growth of Bifidobacterium probiotic strains, triggering a beneficial effect on gut microbiota composition. A higher amount of total short-chain fatty acids (SCFA) was produced by microbial-FOS fermentation as compared to commercial-FOS, particularly propionate and butyrate. Inulin neoseries oligosaccharides, with a degree of polymerization (DP) up to 5 (e.g., neokestose and neonystose), were identified only in the microbial-FOS mixture. More than 10% of the microbial-oligosaccharides showed a DP higher than 5. Differences identified in the structures of the FOS samples may explain their different functionalities. Results indicate that microbial-FOS exhibit promising potential as nutraceutical ingredients for positive gut microbiota modulation.
Collapse
Affiliation(s)
- Dalila Roupar
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.R.); (M.C.C.); (D.A.G.); (J.A.T.)
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta C. Coelho
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.R.); (M.C.C.); (D.A.G.); (J.A.T.)
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (M.P.)
| | - Daniela A. Gonçalves
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.R.); (M.C.C.); (D.A.G.); (J.A.T.)
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Soraia P. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (S.P.S.); (E.C.); (M.A.C.)
| | - Elisabete Coelho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (S.P.S.); (E.C.); (M.A.C.)
| | - Sara Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (M.P.)
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (S.P.S.); (E.C.); (M.A.C.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (M.P.)
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.R.); (M.C.C.); (D.A.G.); (J.A.T.)
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Clarisse Nobre
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.R.); (M.C.C.); (D.A.G.); (J.A.T.)
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-604-400; Fax: +351-253-678-986
| |
Collapse
|
22
|
Young ID, Nepogodiev SA, Black IM, Le Gall G, Wittmann A, Latousakis D, Visnapuu T, Azadi P, Field RA, Juge N, Kawasaki N. Lipopolysaccharide associated with β-2,6 fructan mediates TLR4-dependent immunomodulatory activity in vitro. Carbohydr Polym 2022; 277:118606. [PMID: 34893207 DOI: 10.1016/j.carbpol.2021.118606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Levan, a β-2,6 fructofuranose polymer produced by microbial species, has been reported for its immunomodulatory properties via interaction with toll-like receptor 4 (TLR4) which recognises lipopolysaccharide (LPS). However, the molecular mechanisms underlying these interactions remain elusive. Here, we investigated the immunomodulatory properties of levan using thoroughly-purified and characterised samples from Erwinia herbicola and other sources. E. herbicola levan was purified by gel-permeation chromatography and LPS was removed from the levan following a novel alkali treatment developed in this study. E. herbicola levan was then characterised by gas chromatography-mass spectrometry and NMR. We found that levan containing LPS, but not LPS-depleted levan, induced TLR4-mediated cytokine production by bone marrow-derived dendritic cells and/or activated TLR4 reporter cells. These data indicated that the immunomodulatory properties of the levan toward TLR4-expressing immune cells were mediated by the LPS. This work also demonstrates the importance of LPS removal when assessing the immunomodulatory activity of polysaccharides.
Collapse
Affiliation(s)
- Ian D Young
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ian M Black
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Gwenaelle Le Gall
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Alexandra Wittmann
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Triinu Visnapuu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Norihito Kawasaki
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
23
|
Liu Y, Wang J, Wu C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Front Nutr 2022; 8:634897. [PMID: 35047537 PMCID: PMC8761849 DOI: 10.3389/fnut.2021.634897] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract harbours a complex microbial community, which interacts with the mucosal immune system closely. Gut microbiota plays a significant role in maintaining host health, which could supply various nutrients, regulate energy balance, modulate the immune response, and defence against pathogens. Therefore, maintaining a favourable equilibrium of gut microbiota through modulating bacteria composition, diversity, and their activity is beneficial to host health. Several studies have shown that probiotics and pre-biotics could directly and indirectly regulate microbiota and immune response. In addition, post-biotics, such as the bioactive metabolites, produced by gut microbiota, and/or cell-wall components released by probiotics, also have been shown to inhibit pathogen growth, maintain microbiota balance, and regulate an immune response. This review summarises the studies concerning the impact of probiotics, pre-biotics, and post-biotics on gut microbiota and immune systems and also describes the underlying mechanisms of beneficial effects of these substances. Finally, the future and challenges of probiotics, pre-biotics, and post-biotics are proposed.
Collapse
Affiliation(s)
- Yue Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiaqi Wang
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
24
|
Hajar-Azhari S, Hafiz Abd Rahim M, Razid Sarbini S, Muhialdin BJ, Olusegun L, Saari N. Enzymatically synthesised fructooligosaccharides from sugarcane syrup modulate the composition and short-chain fatty acid production of the human intestinal microbiota. Food Res Int 2021; 149:110677. [PMID: 34600679 DOI: 10.1016/j.foodres.2021.110677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/31/2021] [Accepted: 08/26/2021] [Indexed: 01/22/2023]
Abstract
Fructooligosaccharides can be produced by direct enzymatic conversion from sucrose-rich sugarcane syrup (SS) consisting of 58.93% sucrose yielding 21.28 g FOS/100 g sucrose. This study evaluated the prebiotic effect of unpurified/purified SS containing FOS for the modulation of the human intestinal microbial composition and short-chain fatty acid production. The unpurified and purified FOS substrates, which were a mixture of 1-kestose, nystose and 1F-fructosylnystose, were supplemented into human faecal culture using a pH-controlled batch fermentation system and significantly increased the Bifidobacterium counts after 5 h fermentation, while Bacteroides/Prevotella counts were highest throughout 24 h fermentation. Meanwhile, Lactobacillus/Enterococcus exhibited a slight increase after 5 h fermentation before reaching a plateau afterwards. The steady Bacteroides/Prevotella growth and increased Bifidobacterium population promoted an increase in the production of short-chain fatty acids acetate (58 ± 2.70 mM), propionate (9.19 ± 5.94 mM) and butyrate (7.15 ± 2.28 mM). These results provide evidence that representative gut microbiota could utilise the enzymatically synthesised FOS to generate short-chain fatty acids as metabolites in pH-controlled conditions, thus FOS from SS are a potential prebiotic ingredient for foods and health drinks.
Collapse
Affiliation(s)
- Siti Hajar-Azhari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Muhamad Hafiz Abd Rahim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia, Bintulu Campus, Malaysia
| | - Belal J Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Lasekan Olusegun
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia.
| |
Collapse
|
25
|
de Albuquerque TMR, Magnani M, Lima MDS, Castellano LRC, de Souza EL. Effects of digested flours from four different sweet potato (Ipomoea batatas L.) root varieties on the composition and metabolic activity of human colonic microbiota in vitro. J Food Sci 2021; 86:3707-3719. [PMID: 34287876 DOI: 10.1111/1750-3841.15852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
This study evaluated the effects of flours from four different sweet potato root (SPR) varieties, being two with white peel and two with purple peel, on the composition and metabolic activity of human colonic microbiota in vitro. The capability of these SPR flours (20 g/L) to cause alterations in relative abundance of different bacterial groups found as part of human colonic microbiota, as well as in lactic acid and short-chain fatty acid production was evaluated during 48 hr of an in vitro colonic fermentation. The SPR flours were submitted to a simulated gastrointestinal digestion prior to use in experiments. The four SPR flours increased the relative abundance of Lactobacillus/Enterococcus (range: 0.49-4.48%) and Bifidobacterium (range: 0.32-3.27%) and decreased the relative abundance of Bacteroides/Prevotella (range: 0.29-7.49%), Clostridium histolyticum (range: 0.15-2.08%), and Eubacterium rectale/Clostridium coccoides (range: 0.28-3.86%) during the 48 hr of colonic fermentation. The four SPRF flours had positive prebiotic indexes (> 0.38) after 24 and 48 hr of colonic fermentation, reinforcing the occurrence of selective stimulatory effects on colonic microbiota. An increased metabolic activity of human colonic microbiota was caused by tested SPR flours, which was evidenced by decreased pH (range: 3.20-3.83) and increased lactic acid and short chain fatty acid production during the 48 hr of colonic fermentation. The four examined SPR flours were capable of causing positive alterations in composition and driving the metabolic activity of human colonic microbiota during in vitro colonic fermentation, which should be linked to their prebiotic properties. PRACTICAL APPLICATION: The four examined sweet potato root flours (SPRF) caused beneficial alterations in composition besides of driving the metabolic activity of human colonic microbiota in vitro. These results characterize the examined SPRF as candidates for use as prebiotic ingredients by food industry for formulation of value-added functional foods or dietary supplements.
Collapse
Affiliation(s)
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Brazil
| | - Lúcio Roberto Cançado Castellano
- Laboratory of Cultivation and Cell Analysis, Technical Health School, Health Science Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
26
|
Development and Characterization of Two Types of Surface Displayed Levansucrases for Levan Biosynthesis. Catalysts 2021. [DOI: 10.3390/catal11070757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Levan has wide applications in chemical, cosmetic, pharmaceutical and food industries. The free levansucrase is usually used in the biosynthesis of levan, but the poor reusability and low stability of free levansucrase have limited its large-scale use. To address this problem, the surface-displayed levansucrase in Saccharomyces cerevisiae were generated and evaluated in this study. The levansucrase from Zymomonas mobilis was displayed on the cell surface of Saccharomyces cerevisiae EBY100 using a various yeast surface display platform. The N-terminal fusion partner is based on a-agglutinin, and the C-terminal one is Flo1p. The yield of levan produced by these two whole-cell biocatalysts reaches 26 g/L and 34 g/L in 24 h, respectively. Meanwhile, the stability of the surface-displayed levansucrases is significantly enhanced. After six reuses, these two biocatalysts retained over 50% and 60% of their initial activities, respectively. Furthermore, the molecular weight and polydispersity test of the products suggested that the whole-cell biocatalyst of levansucrase displayed by Flo1p has more potentials in the production of levan with low molecular weight which is critical in certain applications. In conclusion, our method not only enable the possibility to reuse the enzyme, but also improves the stability of the enzyme.
Collapse
|
27
|
The Immunomodulatory Properties of β-2,6 Fructans: A Comprehensive Review. Nutrients 2021; 13:nu13041309. [PMID: 33921025 PMCID: PMC8071392 DOI: 10.3390/nu13041309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides such as β-2,1-linked fructans including inulin or fructose oligosaccharides are well-known prebiotics with recognised immunomodulatory properties. In recent years, other fructan types covering β-2,6-linked fructans, particularly microbial levans, have gained increasing interest in the field. β-2,6-linked fructans of different degrees of polymerisation can be synthesised by plants or microbes including those that reside in the gastrointestinal tract. Accumulating evidence suggests a role for these β-2,6 fructans in modulating immune function. Here, we provide an overview of the sources and structures of β-2,6 fructans from plants and microbes and describe their ability to modulate immune function in vitro and in vivo along with the suggested mechanisms underpinning their immunomodulatory properties. Further, we discuss the limitations and perspectives pertinent to current studies and the potential applications of β-2,6 fructans including in gut health.
Collapse
|
28
|
Hu X, Song L, Yang Y, Wang L, Li Y, Miao M. Biosynthesis, structural characteristics and prebiotic properties of maltitol-based acceptor products. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Cheng R, Cheng L, Zhao Y, Wang L, Wang S, Zhang J. Biosynthesis and prebiotic activity of a linear levan from a new Paenibacillus isolate. Appl Microbiol Biotechnol 2021; 105:769-787. [PMID: 33404835 DOI: 10.1007/s00253-020-11088-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Levan, a type of β (2→6)-linked fructan, is a promising biopolymer with distinct properties and extensive applications in the fields of food, pharmaceutical, cosmetics, etc. However, the commercial availability of levan is still limited due to the relatively high production costs. Here, a new Paenibacillus sp. strain FP01 was isolated and identified as an efficient fructan producer with high yield (around 89.5 g/L fructan was obtained under 180 g/L sucrose) and conversation rate (49.7%). The fructan named Plev was structurally characterized as a linear levan-type fructan with a molecular mass of 3.11 × 106 Da. Aqueous solutions of Plev exhibited a non-Newtonian behavior at concentrations 3-5%. Heating and chilling had no obvious effects on apparent viscosities of Plev solutions. Plev also had good rheological stabilities toward pH (3-11) and metal salts (Na+, K+, Ca2+, Mg2+). Microbiome and metabolome analysis showed that Plev intervention increased the abundance of beneficial bacteria and elevated the levels of short-chain fatty acids (SCFAs) in feces of mice. Taken together, Plev could be considered a potential thickener and prebiotic supplement in food industry.Key points• Paenibacillus sp. strain FP01 was identified as a high-efficient levan producer.• The levan Plev from FP01 exhibited good rheological properties and stabilities.• The in vivo prebiotic activities of linear levan were revealed.
Collapse
Affiliation(s)
- Rui Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Long Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Lei Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China.
| |
Collapse
|
30
|
Structural elucidation and cytotoxic analysis of a fructan based biopolymer produced extracellularly by Zymomonas mobilis KIBGE-IB14. Carbohydr Res 2020; 499:108223. [PMID: 33342516 DOI: 10.1016/j.carres.2020.108223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/21/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
Fructan based biopolymers have been extensively characterized and explored for their potential applications. Linear chained biopolymers, like levan-type fructan, have gained attention because they have exhibited unconventional stretchable and unbendable properties along with biodegradable and biocompatible nature. Current study deals with the chemical characterization and cytotoxic analysis of fructose based exopolysaccharide that was extracellularly produced by an indigenously isolated bacterial species (Zymomonas mobilis KIBGE-IB14). Maximum yield of exopolysaccharide (44.7 gL-1) was attained after 72 h of incubation at 30 °C under shaking conditions (180 rpm) when the culture medium was supplemented with 150.0 gL-1 of sucrose as a sole carbon source. This exopolysaccharide displayed high water solubility index (96.0%) with low water holding capacity (17.0%) and an intrinsic viscosity of about 0.447 dL g-1. This biopolymer exhibited a characteristic linear homopolysaccharide structure of levan when characterized using Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (NMR) spectroscopy (1H, 13C, TOCSY and NOESY) while, Atomic Force Microscopy (AFM) revealed its pointed and thorny structure. The decomposition temperature of levan was approximately 245 °C as revealed by Thermal Gravimetric Analysis (TGA). X-Ray Diffraction (XRD) results revealed its amorphous nature with crystalline phase. Cytotoxicity of different concentrations of levan was investigated against mouse fibroblast cell lines by measuring their cellular metabolic activity and it was noticed that a higher concentration of levan (2.0 mg ml-1) permitted the normal cell growth of NIH/3T3 cell lines. This non-cytotoxic and biocompatible nature suggests that this levan has the capability to be utilized in food and drug-based formulations as it exhibited biomedical potential.
Collapse
|
31
|
Fermentation by Probiotic Lactobacillus gasseri Strains Enhances the Carotenoid and Fibre Contents of Carrot Juice. Foods 2020; 9:foods9121803. [PMID: 33291830 PMCID: PMC7762057 DOI: 10.3390/foods9121803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Carrot juice (straight, 8.5 Brix and concentrated, 15.2 Brix) was fermented by lactic acid bacteria (Lactobacillus gasseri strain DSM 20604 or DSM 20077). Fermentation enhanced the nutritional profile of carrot juice. There was a greater sugar reduction (27%) in fermented straight carrot juices than in the fermented concentrated juices (15%). The sugar reduction was independent of the strain used for fermentation. The two L. gasseri strains synthesised fructosyltransferase enzymes during fermentation of carrot juice samples that enabled conversion of simple sugars primarily into polysaccharides. The level of conversion to polysaccharides was dependent on the L. gasseri strain and juice concentration. Fermentation of carrot juice by L. gasseri enables the production of a nutritionally-enhanced beverage with reduced calorie and prebiotic potential. An additional benefit is the increased carotenoid content observed in straight and concentrated juices fermented by Lactobacillus gasseri DSM 20077 and the concentrated juice fermented by Lactobacillus gasseri DSM 20604.
Collapse
|