1
|
Bhattacharya S, Bagade S, Sangave PC, Kumar D, Shaik I, Mukherjee D. Comparative Study of pH-Responsive and Aggregation Stability of Bosutinib-Loaded Nanogels Comprising Gelatin Methacryloyl, Carboxymethyl Dextran, and Hyaluronic Acid for Controlled Drug Delivery in Colorectal Cancer: An Extensive In Vitro Investigation. Biomacromolecules 2024. [PMID: 39504130 DOI: 10.1021/acs.biomac.4c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
This study investigates the use of pH-responsive nanogels for delivering Bosutinib (BOSU) in colon cancer treatment. Nanogels were formulated using three polymers: hyaluronic acid (HA), carboxymethyl dextran (CMD), and gelatin methacryloyl (GelMA). These nanogels achieved high drug entrapment efficiencies (80-90%) through polymer mixing with BOSU, followed by EDC/NHS cross-linking and sonication. The nanogels were stable, with negative zeta potentials (-20 to -30 mV) and particle sizes between 100 and 200 nm. Fourier-transform infrared analysis confirmed successful methacrylation in GelMA nanogels. Sustained BOSU release at pH 5.0 was observed, resembling tumor environments, compared to slower release at normal pH (7.4). Cytotoxicity tests showed 70-80% cell survival reduction in HCT116 colon cancer cells at higher doses, and GelMA-BOSU nanogels notably reduced cell migration. Antiangiogenic effects were confirmed in a chick chorioallantoic membrane model, highlighting the potential of these nanogels for targeted BOSU delivery in colon cancer therapy.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Shashikant Bagade
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Preeti Chidambar Sangave
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Devendra Kumar
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Imran Shaik
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Dhrubojyoti Mukherjee
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
2
|
Żurek N, Świeca M, Kapusta I. UPLC-ESI-TQD-MS/MS Identification and Antioxidant, Anti-Inflammatory, Anti-Diabetic, Anti-Obesity and Anticancer Properties of Polyphenolic Compounds of Hawthorn Seeds. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:594-600. [PMID: 38814437 PMCID: PMC11410894 DOI: 10.1007/s11130-024-01197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Hawthorn seeds are a by-product of fruit processing and due to the scale of processing of this raw material, they can be an important source of bioactive compounds. This work is the first report on the phenolic composition of hawthorn seeds and their antioxidant, anti-inflammatory, antidiabetic, antiobesity and anticancer activities. In the isolated phenolic fraction of six seed species, 23 phenolic compounds were identified using the UPLC-ESI-TQD-MS/MS method, the key ones of which included the B-type procyanidin dimer. The seeds of the tested species showed high antioxidant activity (mainly by scavenging O2•- and OH• radicals), anti-inflammatory (mainly through LOX inhibition), anti-diabetic, anti-obesity and anti-cancer, with the highest activity against colon cancer cells (Dld-1 line), showing no activity against healthy colon epithelial cells (CCD841CoN). This activity was significantly dependent on the analyzed hawthorn species and, according to PCA analysis, on the content of flavan-3-ols. These discoveries provided the theoretical basis for the possibility of industrial use of hawthorn seeds.
Collapse
Affiliation(s)
- Natalia Żurek
- Department of Food Technology and Human Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., Rzeszow, 35-601, Poland.
| | - Michał Świeca
- Department of Food Chemistry and Biochemistry, University of Life Sciences in Lublin, 8 Skromna St., Lublin, 20-704, Poland
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., Rzeszow, 35-601, Poland
| |
Collapse
|
3
|
Li T, Ji W, Dong H, Wu Y, Guo L, Chen L, Wang X. A Comprehensive Review on the Isolation, Bioactivities, and Structure-Activity Relationship of Hawthorn Pectin and Its Derived Oligosaccharides. Foods 2024; 13:2750. [PMID: 39272515 PMCID: PMC11394867 DOI: 10.3390/foods13172750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Hawthorn (Crataegus pinnatifida Bunge) has been highlighted as an excellent source of a variety of bioactive polymers, which has attracted increasing research interest. Pectin, as a kind of soluble dietary fiber in hawthorn, is mainly extracted by hot water extraction and ultrasonic or enzymatic hydrolysis and is then extensively used in food, pharmaceutical, and nutraceutical industries. Numerous studies have shown that hawthorn pectin and its derived oligosaccharides exhibit a wide range of biological activities, such as antioxidant activity, hypolipidemic and cholesterol-reducing effects, antimicrobial activity, and intestinal function modulatory activity. As discovered, the bioactivities of hawthorn pectin and its derived oligosaccharides were mainly contributed by structural features and chemical compositions and were highly associated with the extraction methods. Additionally, hawthorn pectin is a potential resource for the development of emulsifiers and gelling agents, food packaging films, novel foods, and traditional medicines. This review provides a comprehensive summary of current research for readers on the extraction techniques, functional characteristics, structure-activity relationship, and applications in order to provide ideas and references for the investigation and utilization of hawthorn pectin and its derived oligosaccharides. Further research and development efforts are imperative to fully explore and harness the potential of hawthorn pectin-derived oligosaccharides in the food and medicine fields.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yingqun Wu
- Guizhou Ecological Food Creation Engineering Technology Center, Guizhou Medical University, Guizhou 550025, China
| | - Lanping Guo
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
4
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Pason P, Tachaapaikoon C, Suyama W, Waeonukul R, Shao R, Wongwattanakul M, Limpaiboon T, Chonanant C, Ngernyuang N. Anticancer and anti-angiogenic activities of mannooligosaccharides extracted from coconut meal on colorectal carcinoma cells in vitro. Toxicol Rep 2024; 12:82-90. [PMID: 38259721 PMCID: PMC10801218 DOI: 10.1016/j.toxrep.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common malignancies, though there are no effective therapeutic regimens at present. This study aimed to investigate the inhibitory effects of mannooligosaccharides extracted from coconut meal (CMOSs) on the proliferation and migration of human colorectal cancer HCT116 cells in vitro. The results showed that CMOSs exhibited significant inhibitory activity against HCT116 cell proliferation in a concentration-dependent manner with less cytotoxic effects on the Vero normal cells. CMOSs displayed the ability to increase the activation of caspase-8, -9, and -3/7, as well as the generation of reactive oxygen species (ROS). Moreover, CMOSs suppressed HCT116 cell migration in vitro. Interestingly, treatment of human microvascular endothelial cells (HMVECs) with CMOSs resulted in the inhibition of cell proliferation, cell migration, and capillary-like tube formation, suggesting its anti-vascular angiogenesis. In summary, the results of this study indicate that CMOSs could be a valuable therapeutic candidate for CRC treatment.
Collapse
Affiliation(s)
- Patthra Pason
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Waralee Suyama
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rong Shao
- Shanghai Key Laboratory for Gallbladder Cancer-Related Gastroenterological Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200089, China
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chirapond Chonanant
- Department of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi 20131, Thailand
| | - Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
6
|
Wang Z, Sun Y, Wu M, Zhou L, Zheng Y, Ren T, Li M, Zhao W. Hawthorn Proanthocyanidin Extract Inhibits Colorectal Carcinoma Metastasis by Targeting the Epithelial-Mesenchymal Transition Process and Wnt/β-Catenin Signaling Pathway. Foods 2024; 13:1171. [PMID: 38672844 PMCID: PMC11049232 DOI: 10.3390/foods13081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal carcinoma (CRC) is a major global health concern, with cancer metastasis being the main cause of patient mortality, and current CRC treatments are challenged by drug resistance. Although natural compounds, especially in foods like hawthorn proanthocyanidin extract (HPOE), have good anticancer activity, their effects on CRC metastasis remain unknown. Therefore, our objective was to investigate the impact and potential mechanisms of HPOE on the movement and infiltration of cells in the HCT116 CRC cells. Firstly, scratch-healing experiments confirmed the anti-migratory and anti-invasive capabilities of HPOE. Then, network pharmacology identified 16 possible targets, including MMP-9. Subsequently, RT-qPCR and Western blotting experiments confirmed that HPOE downregulated epithelial-mesenchymal transition-related factors (N-cadherin and MMP-9) and inhibited Wnt/β-catenin pathway activation. Finally, these results were experimentally validated using the Wnt pathway activator Licl and inhibitor XAV939. It was confirmed that HPOE had a certain inhibitory effect on the activation of the Wnt signaling pathway caused by the activator Licl and could enhance the inhibitory effect of the inhibitor XAV939. Our findings provide a basis for developing functional foods or dietary supplements, especially positioning HPOE as a functional food raw material for adjuvant treatment of CRC, given its ability to inhibit metastasis through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (Z.W.); (Y.S.); (M.W.); (L.Z.); (Y.Z.); (T.R.); (M.L.)
| |
Collapse
|
7
|
Sun Y, Meng X, Chen M, Li D, Liu R, Sun T. Isolation, structural properties and bioactivities of polysaccharides from Crataegus pinnatifida. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117688. [PMID: 38159827 DOI: 10.1016/j.jep.2023.117688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Crataegus pinnatifida, commonly known as hawthorn, is a plant species with a long history of medicinal use in traditional Chinese medicine. Hawthorn polysaccharides (HP) have gained worldwide attention due to their decent biological activities and potential health benefits. Their excellent antioxidant activity, antitumor activity, immunomodulatory activity, hypoglycemic effect and hypolipidemic effects, intestinal microbiota modulatory activity makes them valuable in the field of ethnopharmacological research. AIM OF THE STUDY The purpose of the current review is to provide a systematic and comprehensive summary of the latest literatures and put forward the future perspectives on hawthorn polysaccharides in the context of its extraction, purification, structural characteristics and bioactivities. Furthermore, the underlying structure-bioactivity relationship of hawthorn polysaccharides was also explored and discussed. The current review would provide the important research underpinnings and the update the information for future development and application of hawthorn polysaccharides in the pharmaceutical and functional food industries. MATERIALS AND METHODS We use Google Scholar, CNKI, PubMed, Springer, Elsevier, Wiley, Web of Science and other online databases to search and obtain the literature on extraction, isolation, structural analysis and the biological activity of hawthorn polysaccharides published before October 2023. The key words are "extraction", "isolation and purification", "bioactivities", and "Crataegus pinnatifida polysaccharides ". RESULTS Crataegus pinnatifida has been widely used for the treatment of cardiovascular diseases, digestive disorders, inflammatory and oxidative stress in traditional Chinese medicine. Polysaccharides are the key active components of Crataegus pinnatifida which have gained widespread attention. The structure and bioactivity of polysaccharides from Crataegus pinnatifida varies in terms of raw materials, extraction methods and purification techniques. Crataegus pinnatifida polysaccharides possess diverse bioactivities, including antitumor, immunomodulatory, hypoglycemic activity, cardioprotective and antioxidant activities, among others. These biological properties can not only lay firm foundation for the treatment of diverse diseases, but also provide a theoretical basis for the in-depth study of the structure-activity relationship. In addition, the underlying structure-activity relationship is also explored and discussed, and further research and development of hawthorn polysaccharides are also prospected. CONCLUSION As a natural compound, hawthorn polysaccharides has garnered significant attention and held immense research potential. Hawthorn polysaccharides can be obtained through different extraction methods, including hot water extraction method, ultrasonic extraction method and enzymatic extraction method etc. The structures of hawthorn polysaccharides have also been characterized and reported in numerous studies. Moreover, hawthorn polysaccharides exhibit a wide range of bioactivities, such as the antioxidant activity, the antitumor activity, the immunomodulatory activity, the hypoglycemic effect and the hypolipidemic effect, as well as the intestinal microbiota modulatory activity. These diverse bioactivities contribute to the growing interest in hawthorn polysaccharides and its potential applications. Hawthorn polysaccharides has promising application prospects in various industries, including functional food, pharmaceuticals and biomedical research. Therefore, it is imperative to fully explore and harness the potential of hawthorn polysaccharides in the food and medicine fields.
Collapse
Affiliation(s)
- Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China.
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
8
|
Ma Y, Yu K, Wang N, Xiao X, Leng Y, Fan J, Du Y, Wang S. Sulfur dioxide-free wine with polyphenols promotes lipid metabolism via the Nrf2 pathway and gut microbiota modulation. Food Chem X 2024; 21:101079. [PMID: 38162039 PMCID: PMC10753059 DOI: 10.1016/j.fochx.2023.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Moderate wine consumption is often associated with preventing obesity, yet concerns arise due to the health risks linked to its constituent antioxidant, SO2. Recent focus has turned to polyphenols as a potential substitute for SO2. This investigation explores the impact and mechanisms of sulfur dioxide-free wine enriched with polyphenols on lipid regulation. Through a comprehensive analysis involving oxidative stress, lipid metabolism, and gut microorganisms in high-fat-diet mouse models, this study reveals that sulfur dioxide-free wine containing the polyphenol resveratrol exhibits a heightened ability to regulate lipids. It modulates oxidative stress by influencing NF-E2-related factor 2, a crucial factor, while enhancing lipid metabolism and fatty acid β-oxidation through key genes such as carnitine palmitoyltransferase I and peroxisome proliferator-activated receptor alpha. Furthermore, oral administration of sulfur dioxide-free wine supplemented with resveratrol demonstrates an increase in the relative abundance of beneficial intestinal microflora, such as Turicibacter, Allobaculum, Bacteroides, and Macellibacteroides, while decreasing the Firmicutes/Bacteroidetes ratio.
Collapse
Affiliation(s)
- Yi Ma
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Kangjie Yu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Ning Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Xiongjun Xiao
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Yinjiang Leng
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Jun Fan
- University of Electronic Science and Technology of China, China
| | - Yong Du
- Wuliangye Yibin Co., Ltd., China
| | - Shuanghui Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
| |
Collapse
|
9
|
Hao P, Yang X, Yin W, Wang X, Ling Y, Zhu M, Yu Y, Chen S, Yuan Y, Quan X, Xu Z, Zhang J, Zhao W, Zhang Y, Song C, Xu Q, Qin S, Wu Y, Shu X, Wei K. A study on the treatment effects of Crataegus pinnatifida polysaccharide on non-alcoholic fatty liver in mice by modulating gut microbiota. Front Vet Sci 2024; 11:1383801. [PMID: 38601914 PMCID: PMC11006196 DOI: 10.3389/fvets.2024.1383801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
The objective of this study was to investigate the protective effect of Crataegus pinnatifida polysaccharide (CPP) on non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice. The findings demonstrated that CPP improved free fatty acid (FFA)-induced lipid accumulation in HepG2 cells and effectively reduced liver steatosis and epididymal fat weight in NAFLD mice, as well as decreased serum levels of TG, TC, AST, ALT, and LDL-C. Furthermore, CPP exhibited inhibitory effects on the expression of fatty acid synthesis genes FASN and ACC while activating the expression of fatty acid oxidation genes CPT1A and PPARα. Additionally, CPP reversed disturbances in intestinal microbiota composition caused by HFD consumption. CPP decreased the firmicutes/Bacteroidetes ratio, increased Akkermansia abundance, and elevated levels of total short-chain fatty acid (SCFA) content specifically butyric acid and acetic acid. Our results concluded that CPP may intervene in the development of NAFLD by regulating of intes-tinal microbiota imbalance and SCFAs production. Our study highlights that CPP has a potential to modulate lipid-related pathways via alterations to gut microbiome composition thereby ex-erting inhibitory effects on obesity and NAFLD development.
Collapse
Affiliation(s)
- Ping Hao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaonan Yang
- National Engineering Research Center for Southwest Endangered Medicinal Resources Development, Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Wen Yin
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Wang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yun Ling
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengyao Zhu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yue Yu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shouhai Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuan Yuan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Quan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhiheng Xu
- College of Medicine (Institute of Translational Medicine), Yangzhou University, Yangzhou, China
| | - Jiahui Zhang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenjia Zhao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ying Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Chunlian Song
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qing Xu
- Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Shuangshuang Qin
- National Engineering Research Center for Southwest Endangered Medicinal Resources Development, Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yi Wu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xianghua Shu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Kunhua Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production and Development of Cantonese Medicinal Materials/Guangdong Engineering Research Center of Good Agricultural Practice and Comprehensive Development for Cantonese Medicinal Materials, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- National Engineering Research Center for Southwest Endangered Medicinal Resources Development, Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
10
|
Cui M, Cheng L, Zhou Z, Zhu Z, Liu Y, Li C, Liao B, Fan M, Duan B. Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117229. [PMID: 37788786 DOI: 10.1016/j.jep.2023.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Crataegus (hawthorn), a member of the Rosaceae family, encompasses several species with broad geographical distribution across the Northern Hemisphere, including Asia, Europe, and the Americas. Hawthorn is recognized as an edible medicinal plant with applications related to strengthening the digestive system, promoting blood circulation, and resolving blood stasis. AIM OF THE REVIEW This study critically summarized the traditional uses, phytochemistry, and pharmacological properties to provide a theoretical basis for further studies on hawthorn and its applications in medicine and food. MATERIALS AND METHODS The available information on hawthorn was gathered from scientific databases (including Google Scholar, Web of Science, PubMed, ScienceDirect, Baidu Scholar, CNKI, online ethnobotanical databases, and ethnobotanical monographs, and considered data from 1952 to 2023). Information about traditional uses, phytochemistry, pharmacology, and safety concerns of the collected data is comprehensively summarized in this paper. RESULTS The literature review revealed that hawthorn includes more than 1000 species primarily distributed in the northern temperate zone. Traditional uses of hawthorn have lasted for millennia in Asia, Europe, and the Americas. Within the past decade, 337 chemical compounds, including flavonoids, lignans, fatty acids and organic acids, monoterpenoids and sesquiterpenoids, terpenoids and steroids, have been identified from hawthorn. Modern pharmacological studies have confirmed numerous bioactivities, such as cardiovascular system influence, antitumor activity, hepatoprotective activity, antimicrobial properties, immunomodulatory functions, and anti-inflammatory activities. Additionally, evaluations have indicated that hawthorn lacks toxicity. CONCLUSIONS Based on its traditional uses, chemical composition, and pharmacological studies, hawthorn has significant potential as a medicinal and edible plant with a diverse range of pharmacological activities. Traditional uses of the hawthorn include the treatment of indigestion, dysmenorrhea, and osteoporosis. However, modern pharmacological research primarily focuses on its cardiovascular and cerebrovascular system effects, antitumor effects, and liver protection properties. Currently, there is a lack of correlative research involving its traditional uses and pharmacological activities. Moreover, phytochemical and pharmacological research has yet to focus on many types of hawthorn with traditional applications. Therefore, it is imperative to research the genus Crataegus extensively.
Collapse
Affiliation(s)
- Meng Cui
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Lei Cheng
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Zhongyu Zhou
- College of Pharmaceutical Science, Dali University, Dali, 671000, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Zemei Zhu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Yinglin Liu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Chaohai Li
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Binbin Liao
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Min Fan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| |
Collapse
|
11
|
Cheng L, Yang Q, Li C, Zheng J, Wang Y, Duan B. Preparation, structural characterization, bioactivities, and applications of Crataegus spp. polysaccharides: A review. Int J Biol Macromol 2023; 253:126671. [PMID: 37689285 DOI: 10.1016/j.ijbiomac.2023.126671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/16/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Crataegus, is a genus within the Rosaceae family. It is recognized as a valuable plant with both medicinal and edible qualities, earning it the epithet of the "nutritious fruit" owing to its abundant bioactive compounds. Polysaccharides are carbohydrate polymers linked by glycosidic bonds, one of the crucial bioactive ingredients of Crataegus spp. Recently, Crataegus spp. polysaccharides (CPs) have garnered considerable attention due to their diverse range of bioactivities, including prebiotic, hypolipidemic, anticancer, antibacterial, antioxidant, and immunobiological properties. Herein, we provide a comprehensive overview of recent research on CPs. The analysis revealed that CPs exhibited a broad molecular weight distribution, ranging from 5.70 Da to 4.76 × 108 Da, and are composed of various monosaccharide constituents such as mannose, rhamnose, and arabinose. Structure-activity relationships demonstrated that the biological function of CPs is closely associated with their molecular weight, galacturonic acid content, and chemical modifications. Additionally, CPs have excellent bioavailability, biocompatibility, and biodegradability, which make them promising candidates for applications in the food, medicine, and cosmetic industries. The article also scrutinized the potential development and future research directions of CPs. Overall, this article provides comprehensive knowledge and underpinnings of CPs for future research and development as therapeutic agents and multifunctional food additives.
Collapse
Affiliation(s)
- Lei Cheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Qiuli Yang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Chaohai Li
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | | | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
12
|
Chen YT, Chen SJ, Hu CY, Dong CD, Chen CW, Singhania RR, Hsieh SL. Exploring the Anti-Cancer Effects of Fish Bone Fermented Using Monascus purpureus: Induction of Apoptosis and Autophagy in Human Colorectal Cancer Cells. Molecules 2023; 28:5679. [PMID: 37570647 PMCID: PMC10419882 DOI: 10.3390/molecules28155679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Fish bone fermented using Monascus purpureus (FBF) has total phenols and functional amino acids that contribute to its anti-oxidant and anti-inflammatory properties. Colorectal cancer, one of the most prevalent cancers and the third largest cause of death worldwide, has become a serious threat to global health. This study investigates the anti-cancer effects of FBF (1, 2.5 or 5 mg/mL) on the cell growth and molecular mechanism of HCT-116 cells. The HCT-116 cell treatment with 2.5 or 5 mg/mL of FBF for 24 h significantly decreased cell viability (p < 0.05). The S and G2/M phases significantly increased by 88-105% and 25-43%, respectively (p < 0.05). Additionally, FBF increased the mRNA expression of caspase 8 (38-77%), protein expression of caspase 3 (34-94%), poly (ADP-ribose) polymerase (PARP) (31-34%) and induced apoptosis (236-773%) of HCT-116 cells (p < 0.05). FBF also increased microtubule-associated protein 1B light chain 3 (LC3) (38-48%) and phosphoinositide 3 kinase class III (PI3K III) (32-53%) protein expression, thereby inducing autophagy (26-52%) of HCT-116 cells (p < 0.05). These results showed that FBF could inhibit HCT-116 cell growth by inducing S and G2/M phase arrest of the cell cycle, apoptosis and autophagy. Thus, FBF has the potential to treat colorectal cancer.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan;
| | - Shu-Jen Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan;
| | - Chun-Yi Hu
- Department of Food Science and Nutrition, Meiho University, Pingtung 912009, Taiwan;
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (C.-D.D.); (C.-W.C.); (R.R.S.)
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (C.-D.D.); (C.-W.C.); (R.R.S.)
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (C.-D.D.); (C.-W.C.); (R.R.S.)
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan;
| |
Collapse
|
13
|
Cheng X, Han X, Zhou L, Sun Y, Zhou Q, Lin X, Gao Z, Wang J, Zhao W. Cabernet sauvignon dry red wine ameliorates atherosclerosis in mice by regulating inflammation and endothelial function, activating AMPK phosphorylation, and modulating gut microbiota. Food Res Int 2023; 169:112942. [PMID: 37254366 DOI: 10.1016/j.foodres.2023.112942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Limited evidence suggests that the abundance of antioxidant polyphenols in dry red wine (DRW) may prevent cardiovascular diseases, a benefit likely attributed to abundant antioxidant polyphenols present in DRW. Here, we examined the anti-atherosclerotic effect of Cabernet Sauvignon DRW (CSDRW) in a mouse model of atherosclerosis (AS) using metabolomic profiling and molecular techniques. Oral administration of CSDRW reduced atherosclerotic lesion size in ApoE-/- mice, alleviated hyperlipidemia, ameliorated hepatic lipid accumulation mediated by AMPK activation, and promoted lipid metabolism via PPARγ-LXR-α-ABCA1 pathway regulation. CSDRW increased the relative abundance of beneficial gut microbiota, including Bacteroidetes, Verrucomicrobiota, and Akkermansiaceae. Metabolic analysis using liquid chromatography-tandem mass spectrometry revealed that CSDRW contained various polyphenols, including flavanol, phenolic acid, flavonol, and resveratrol, which possibly mediate the beneficial effects in AS by reducing inflammation, restoring normal endothelial function, regulating hepatic lipid metabolism, and modulating gut microbiota composition.
Collapse
Affiliation(s)
- Xinlong Cheng
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Xue Han
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China; School of Public Health, Hebei University, Baoding 071000, PR China
| | - Liangfu Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Yasai Sun
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Qian Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Xuan Lin
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Zhe Gao
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Jie Wang
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Wen Zhao
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China.
| |
Collapse
|
14
|
Jing Y, Yan M, Liu D, Tao C, Hu B, Sun S, Zheng Y, Wu L. Research progress on the structural characterization, biological activity and product application of polysaccharides from Crataegus pinnatifida. Int J Biol Macromol 2023; 244:125408. [PMID: 37343606 DOI: 10.1016/j.ijbiomac.2023.125408] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Crataegus pinnatifida is a plant of the Crataegus genus in the Rosaceae family and is commonly used as a food and medicinal resource. Crataegus pinnatifida polysaccharide, as one of the main active ingredients of Crataegus pinnatifida, has a variety of beneficial biological activities, such as antioxidant, hypoglycemic activity, lipid-lowering, intestinal flora regulation, promotion immune regulation, and antitumor activities. However, the extraction methods of Crataegus pinnatifida polysaccharides lack innovation, the primary structure is relatively limited, and the biological activity mechanism needs to be further explored. Therefore, this review summarizes the research status of the extraction, purification, structural characterization, biological activity, and product application of Crataegus pinnatifida polysaccharides. The purpose of this study is to generate support for further development and application of polysaccharides from Crataegus pinnatifida.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Meng Yan
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Dongbo Liu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Cheng Tao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Beibei Hu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Shiguo Sun
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China.
| |
Collapse
|
15
|
Lu J, Zhang A, Zhang F, Linhardt RJ, Zhu Z, Yang Y, Zhang T, Lin Z, Zhang S, Zhao H, Sun P. Ganoderenic acid D-loaded functionalized graphene oxide-based carrier for active targeting therapy of cervical carcinoma. Biomed Pharmacother 2023; 164:114947. [PMID: 37269813 DOI: 10.1016/j.biopha.2023.114947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Ganoderenic acid D (GAD), extracted from the Chinese herb Ganoderma lucidum, was loaded onto a graphene oxide-polyethylene glycol-anti-epidermal growth factor receptor (GO-PEG-EGFR) carrier to develop a targeting antitumor nanocomposite (GO-PEG@GAD). The carrier was fabricated from PEG and anti-EGFR aptamer modified GO. Targeting was mediated by the grafted anti-EGFR aptamer, which targets the membrane of HeLa cells. Physicochemical properties were characterized by transmission electron microscopy, dynamic light scattering, X-ray powder diffraction, and Fourier transform infrared spectroscopy. High loading content (77.3 % ± 1.08 %) and encapsulation efficiency (89.1 % ± 2.11 %) were achieved. Drug release continued for approximately 100 h. The targeting effect both in vitro and in vivo was confirmed by confocal laser scanning microscopy (CLSM) and imaging analysis system. The mass of the subcutaneous implanted tumor was significantly decreased by 27.27 ± 1.23 % after treatment with GO-PEG@GAD compared with the negative control group. Moreover, the in vivo anti-cervical carcinoma activity of this medicine was due to activation of the intrinsic mitochondrial pathway.
Collapse
Affiliation(s)
- Jiahui Lu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402 Hangzhou, PR China; College of Food Science and Engineering, Zhejiang University of Technology, 310014 Hangzhou, PR China
| | - Anqiang Zhang
- College of Food Science and Engineering, Zhejiang University of Technology, 310014 Hangzhou, PR China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 12180 Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 12180 Troy, NY, USA; Departments of Chemistry and Chemical Biology and Biomedical Engineering, Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 12180 Troy, NY, USA
| | - Zhihui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402 Hangzhou, PR China
| | - Yanzi Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402 Hangzhou, PR China
| | - Tinghuang Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402 Hangzhou, PR China
| | - Zhibin Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191 Beijing, PR China
| | - Su Zhang
- Zhejiang Provincial Rural Industrial Development Co., Ltd, 310000, Hangzhou, PR China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402 Hangzhou, PR China.
| | - Peilong Sun
- College of Food Science and Engineering, Zhejiang University of Technology, 310014 Hangzhou, PR China.
| |
Collapse
|
16
|
Li Q, Liu X, Yan C, Zhao B, Zhao Y, Yang L, Shi M, Yu H, Li X, Luo K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206211. [PMID: 36890780 DOI: 10.1002/smll.202206211] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/09/2023] [Indexed: 06/08/2023]
Abstract
Cancer immunotherapy is a promising antitumor approach, whereas nontherapeutic side effects, tumor microenvironment (TME) intricacy, and low tumor immunogenicity limit its therapeutic efficacy. In recent years, combination immunotherapy with other therapies has been proven to considerably increase antitumor efficacy. However, achieving codelivery of the drugs to the tumor site remains a major challenge. Stimulus-responsive nanodelivery systems show controlled drug delivery and precise drug release. Polysaccharides, a family of potential biomaterials, are widely used in the development of stimulus-responsive nanomedicines due to their unique physicochemical properties, biocompatibility, and modifiability. Here, the antitumor activity of polysaccharides and several combined immunotherapy strategies (e.g., immunotherapy combined with chemotherapy, photodynamic therapy, or photothermal therapy) are summarized. More importantly, the recent progress of polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy is discussed, with the focus on construction of nanomedicine, targeted delivery, drug release, and enhanced antitumor effects. Finally, the limitations and application prospects of this new field are discussed.
Collapse
Affiliation(s)
- Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| |
Collapse
|
17
|
Niu Y, Liu W, Fan X, Wen D, Wu D, Wang H, Liu Z, Li B. Beyond cellulose: pharmaceutical potential for bioactive plant polysaccharides in treating disease and gut dysbiosis. Front Microbiol 2023; 14:1183130. [PMID: 37293228 PMCID: PMC10244522 DOI: 10.3389/fmicb.2023.1183130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Polysaccharides derived from plants, algae, or fungi serve as the major components of some human diets. Polysaccharides have been shown to exhibit diverse biological activities in improving human health, and have also been proposed to function as potent modulators of gut microbiota composition, thus playing a bi-directional regulatory role in host health. Here, we review a variety of polysaccharide structures potentially linked to biological functions, and cover current research progress in characterizing their pharmaceutical effects in various disease models, including antioxidant, anticoagulant, anti-inflammatory, immunomodulatory, hypoglycemic, and antimicrobial activities. We also highlight the effects of polysaccharides on modulating gut microbiota via enrichment for beneficial taxa and suppression of potential pathogens, leading to increased microbial expression of carbohydrate-active enzymes and enhanced short chain fatty acid production. This review also discusses polysaccharide-mediated improvements in gut function by influencing interleukin and hormone secretion in host intestinal epithelial cells.
Collapse
Affiliation(s)
- Yuanlin Niu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Dongxu Wen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Dan Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hongzhuang Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
18
|
Ruan J, Zhang P, Zhang Q, Zhao S, Dang Z, Lu M, Li H, Zhang Y, Wang T. Colorectal cancer inhibitory properties of polysaccharides and their molecular mechanisms: A review. Int J Biol Macromol 2023; 238:124165. [PMID: 36963537 DOI: 10.1016/j.ijbiomac.2023.124165] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Colorectal cancer (CRC) is one of the three major malignant tumors in the world. The major treatments currently recommended for it are surgery, radiotherapy, and chemotherapy, all of which are frequently accompanied by a poor prognosis and high recurrence rate. To limit cell proliferation and metastasis, trigger cell apoptosis, and regulate tumor microenvironment (TME), researchers are focusing attention on investigating highly effective and non-toxic natural medicines. According to the research reported in 89 pieces of related literature, between 2018 and 2021, specialists extracted 48 different types of polysaccharides with CRC inhibitory actions from various plants, including Dendrobium officinale Kimura et Migo., Nostoc commune Vaucher, and Ganoderma lucidum (Leyss. ex Fr.) Karst. The novel founded mechanisms mainly include: inhibiting cancer cell proliferation by acting on IRS1/PI3K/Akt and IL-6/STAT3 pathways; inducing cancer cell apoptosis by acting on LncRNA HOTAIR/Akt mediated-intrinsic apoptosis, or regulating the TNF-α-mediated extrinsic apoptosis; inducing cancer cell autophagy by acting on endoplasmic reticulum stress or mTOR-TFEB pathway; inhibiting cancer cell metastasis by regulating Smad2/3 and TLR4/JNK pathways; regulating TME in CRC; and maintaining the intestinal barrier. This review will provide more novel research strategies and a solid literature basis for the application of polysaccharides in the treatment of CRC.
Collapse
Affiliation(s)
- Jingya Ruan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Ping Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Qianqian Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Shuwu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Zhunan Dang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Mengqi Lu
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Huimin Li
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, 301617 Tianjin, China.
| |
Collapse
|
19
|
Qian Y, Shi C, Cheng C, Liao D, Liu J, Chen GT. Ginger polysaccharide UGP1 suppressed human colon cancer growth via p53, Bax/Bcl-2, caspase-3 pathways and immunomodulation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Characterization of procyanidin extracts from hawthorn (Crataegus pinnatifida) in human colorectal adenocarcinoma cell line Caco-2, simulated Digestion, and fermentation identified unique and novel prebiotic properties. Food Res Int 2023; 165:112393. [PMID: 36869464 DOI: 10.1016/j.foodres.2022.112393] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The health-promoting activities of procyanidin extracts from hawthorn (HPCs) are closely related to their digestive behaviors, absorption, and colonic metabolism, all of which remain unknown for now and thus hinder further exploration. This study aims to explore the dynamic changes of HPCs during in vitro digestion and fermentation, as well as their Caco-2 permeability, focusing mainly on the interaction between gut microbiota and HPCs. The results showed that the digested HPC samples had characteristic absorption peaks at 280 nm, and there were absorption peaks in the stretching vibration zone, including OH and CC on the benzene ring, which suggested that procyanidins were the main components in HPCs after in vitro digestion. Meanwhile, HPCs had the highest stability in the oral phase. However, the total procyanidin content of HPCs decreased during gastrointestinal digestion, and flavan-3-ol dimers and trimers in HPCs are partially degraded into epicatechin. Uptake of epicatechin (4.07 %), procyanidin B2 (2.15 %), and procyanidin B5 (39.44 %) through Caco-2 monolayer was also observed in HPC treatment, while there was still a large portion of procyanidins that was not absorbed. Subsequent fermentation resulted in a decrease in pH along with the production of short-chain fatty acids (SCFAs), mainly due to the degradation and utilization of HPC, as indicated by a reduction of total procyanidins. Furthermore, the HPCs modulated gut microbial populations: down-regulated the abundances of Bacteroides, Fusobacterium, Enterococcus, Parabacteroides, and Bilophila, and up-regulated Escherichia-Shigella, Klebsiella, Turicibacter, Actinobacillus, Roseburia, and Blautia. Ultimately, epicatechin and procyanidin B2, B5 and C1 were converted into phenolic acids through the metabolism of Bacteroides, Sutterella, Butyrobacter and Blautia. 4-ethylbenzoic acid, 4-hydroxyphenylpropionic acid, 3,4-dihydroxyphenyl acetic acid were confirmed as the significant metabolites in the fermentation. These results elucidated the potential mechanisms of HPCs metabolism and their beneficial effects on gut microbiota and colonic phenolic acids production.
Collapse
|
21
|
Khakpour S, Hojjati M, Jooyandeh H, Noshad M. Microwave-assisted extraction, optimization, structural characterization, and functional properties of polysaccharides from Crataegus azarolus seeds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Srimongkol P, Songserm P, Kuptawach K, Puthong S, Sangtanoo P, Thitiprasert S, Thongchul N, Phunpruch S, Karnchanatat A. Sulfated polysaccharides derived from marine microalgae, Synechococcus sp. VDW, inhibit the human colon cancer cell line Caco-2 by promoting cell apoptosis via the JNK and p38 MAPK signaling pathway. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Physicochemical properties, structure and biological activities of a novel low-molecular-weight hawthorn pectin. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Zhang J, Chai X, Zhao F, Hou G, Meng Q. Food Applications and Potential Health Benefits of Hawthorn. Foods 2022; 11:foods11182861. [PMID: 36140986 PMCID: PMC9498108 DOI: 10.3390/foods11182861] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hawthorn (Crataegus) is a plant of the Rosaceae family and is widely grown throughout the world as one of the medicinal and edible plants, known as the “nutritious fruit” due to its richness in bioactive substances. Preparations derived from it are used in the formulation of dietary supplements, functional foods, and pharmaceutical products. Rich in amino acids, minerals, pectin, vitamin C, chlorogenic acid, epicatechol, and choline, hawthorn has a high therapeutic and health value. Many studies have shown that hawthorn has antioxidant, anti-inflammatory, anticancer, anti-cardiovascular disease, and digestive enhancing properties. This is related to its bioactive components such as polyphenols (chlorogenic acid, proanthocyanidin B2, epicatechin), flavonoids (proanthocyanidins, mucoxanthin, quercetin, rutin), and pentacyclic triterpenoids (ursolic acid, hawthornic acid, oleanolic acid), which are also its main chemical constituents. This paper briefly reviews the chemical composition, nutritional value, food applications, and the important biological and pharmacological activities of hawthorn. This will contribute to the development of functional foods or nutraceuticals from hawthorn.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Correspondence: (X.C.); (Q.M.)
| | - Fenglan Zhao
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qingguo Meng
- Department of Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
- Correspondence: (X.C.); (Q.M.)
| |
Collapse
|
25
|
Hawthorn Juice Simulation System for Pectin and Polyphenol Adsorption Behavior: Kinetic Modeling Properties and Identification of the Interaction Mechanism. Foods 2022; 11:foods11182813. [PMID: 36140941 PMCID: PMC9498233 DOI: 10.3390/foods11182813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction between polyphenols and polysaccharides plays an important role in increasing the turbidity stability of fruit juice and improving unpleasant sensory experiences. The binding adsorption behavior between hawthorn pectin (HP) and polyphenols (epicatechin and chlorogenic acid) accorded with the monolayer adsorption behavior driven by chemical action and were better fitted by pseudo-second order dynamic equation and Langmuir model. The HP binding sites (Qm) and adsorption capacity (Qe) to epicatechin were estimated at 75.188 and 293.627 μg/mg HP, respectively, which was about nine and twelve times higher than that of chlorogenic acid. The interaction between HP and polyphenols exhibited higher turbidity characteristics, particle size and lower zeta potential than epicatechin and chlorogenic acid alone. Meanwhile, according to Fourier Transform Infrared Spectroscopy (FT-IR) analysis, it could be speculated that the interaction between HP and polyphenols resulted in chemical combination. Moreover, ΔH < 0 and TΔS < 0, which indicated that the interaction between HP and polyphenols was mainly driven by hydrogen bonds and van der Waals forces.
Collapse
|
26
|
Alfaleh MA, Hashem AM, Abujamel TS, Alhakamy NA, Kalam MA, Riadi Y, Md S. Apigenin Loaded Lipoid-PLGA-TPGS Nanoparticles for Colon Cancer Therapy: Characterization, Sustained Release, Cytotoxicity, and Apoptosis Pathways. Polymers (Basel) 2022; 14:polym14173577. [PMID: 36080654 PMCID: PMC9460590 DOI: 10.3390/polym14173577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Colon cancer (CC) is one of major causes of mortality and affects the socio-economic status world-wide. Therefore, developing a novel and efficient delivery system is needed for CC management. Thus, in the present study, lipid polymer hybrid nanoparticles of apigenin (LPHyNPs) was prepared and characterized on various parameters such as particle size (234.80 ± 12.28 nm), PDI (0.11 ± 0.04), zeta potential (−5.15 ± 0.70 mV), EE (55.18 ± 3.61%), etc. Additionally, the DSC, XRD, and FT-IR analysis determined drug entrapment and affinity with the selected excipient, demonstrating a promising drug affinity with the lipid polymer. Morphological analysis via SEM and TEM exhibited spherical NPs with a dark color core, which indicated drug entrapment inside the core. In vitro release study showed significant (p < 0.05) sustained release of AGN from LPHyNPs than AGN suspension. Further, the therapeutic efficacy in terms of apoptosis and cell cycle arrest of developed LPHyNPs against CC was estimated by performing flow cytometry and comparing its effectiveness with blank LPHyNPs and AGN suspension, which exhibited remarkable outcomes in favor of LPHyNPs. Moreover, the mechanism behind the anticancer attribute was further explored by estimating gene expression of various signaling molecules such as Bcl-2, BAX, NF-κB, and mTOR that were involved in carcinogenic pathways, which indicated significant (p < 0.05) results for LPHyNPs. Moreover, to strengthen the anticancer potential of LPHyNPs against chemoresistance, the expression of JNK and MDR-1 genes was estimated. Outcomes showed that their expression level reduced appreciably when compared to blank LPHyNPs and AGN suspension. Hence, it can be concluded that developed LPHyNPs could be an efficient therapeutic system for managing CC.
Collapse
Affiliation(s)
- Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Abul Kalam
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
27
|
Murtazina A, Ruiz Alcala G, Jimenez-Martinez Y, Marchal JA, Tarabayeva A, Bitanova E, McDougall G, Bishimbayeva N, Boulaiz H. Anti-Cancerous Potential of Polysaccharides Derived from Wheat Cell Culture. Pharmaceutics 2022; 14:pharmaceutics14051100. [PMID: 35631686 PMCID: PMC9147229 DOI: 10.3390/pharmaceutics14051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
There is a global need to discover effective anti-cancerous compounds from natural sources. Cultivated wheat cells can be a valuable source of non-toxic or low toxic plant-derived polysaccharides. In this study, we evaluated the anti-cancer ability of seven fractions of wheat cell culture polysaccharides (WCCPSs) in the HCT-116 colon cancer cell line. Almost all (6/7) fractions had an inhibitory effect on the proliferation of colon cancer cells, and two fractions (A-b and A-f) had considerable therapeutic indexes. The WCCPS fractions induced cell cycle arrest in the G1 phase and induced different rates of apoptosis (≤48%). Transmission and scanning electron microscopy revealed that WCCPS fractions caused apoptotic changes in the nucleus and cytoplasm, including damage to mitochondria and external morphological signs of apoptosis. In addition, the WCCPSs induced an increase in the levels of Bax, cytochrome c, and caspases 8 and 3, indicating that cell death progressed through intrinsic and extrinsic pathways of apoptosis. Furthermore, some fractions caused a significant decrease of c-Myc, b-catenin, NFkB2, and HCAM (CD 44) levels, indicating enhanced cell differentiation. Thus, for the first time, our results provide a proof of concept of the anti-cancer capacity of WCCPS fractions in colorectal cancer.
Collapse
Affiliation(s)
- Alima Murtazina
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty A35B8H9, Kazakhstan; (A.T.); (E.B.)
- Research Center “Bioscience Technologies”, Almaty A15G7B0, Kazakhstan
| | - Gloria Ruiz Alcala
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
| | - Yaiza Jimenez-Martinez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain
- Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Anel Tarabayeva
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty A35B8H9, Kazakhstan; (A.T.); (E.B.)
| | - Elmira Bitanova
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty A35B8H9, Kazakhstan; (A.T.); (E.B.)
| | - Gordon McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Nazira Bishimbayeva
- Research Center “Bioscience Technologies”, Almaty A15G7B0, Kazakhstan
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty A15E3B4, Kazakhstan
- Correspondence: or (N.B.); (H.B.)
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain or (A.M.); (G.R.A.); (Y.J.-M.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain
- Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: or (N.B.); (H.B.)
| |
Collapse
|
28
|
Polysaccharides from Medicine and Food Homology Materials: A Review on Their Extraction, Purification, Structure, and Biological Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103215. [PMID: 35630690 PMCID: PMC9147777 DOI: 10.3390/molecules27103215] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/16/2023]
Abstract
Medicine and food homology (MFH) materials are rich in polysaccharides, proteins, fats, vitamins, and other components. Hence, they have good medical and nutritional values. Polysaccharides are identified as one of the pivotal bioactive constituents of MFH materials. Accumulating evidence has revealed that MFH polysaccharides (MFHPs) have a variety of biological activities, such as antioxidant, immunomodulatory, anti-tumor, hepatoprotective, anti-aging, anti-inflammatory, and radioprotective activities. Consequently, the research progress and future prospects of MFHPs must be systematically reviewed to promote their better understanding. This paper reviewed the extraction and purification methods, structure, biological activities, and potential molecular mechanisms of MFHPs. This review may provide some valuable insights for further research regarding MFHPs.
Collapse
|
29
|
Li F, Jiao X, Zhao J, Liao X, Wei Y, Li Q. Antitumor mechanisms of an exopolysaccharide from Lactobacillus fermentum on HT-29 cells and HT-29 tumor-bearing mice. Int J Biol Macromol 2022; 209:552-562. [PMID: 35421410 DOI: 10.1016/j.ijbiomac.2022.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 11/05/2022]
Abstract
We have obtained an exopolysaccharide (YL-11 EPS) produced by Lactobacillus fermentum YL-11 isolated from fermented milk and confirmed that it can effectively inhibit colon cancer HT-29 cells proliferation in vitro. The aim of this study is to study anti-colon cancer effect in vivo and its possible mechanisms. Animal assays indicated YL-11 EPS treatment significantly suppressed the growth of HT-29 tumor xenograft without exhibiting obvious negative effects on normal cells. Cell experiments demonstrated YL-11 EPS treatment up regulated the ratio of Bax/Bcl-2 and induced the decrease in mitochondrial membrane potential and improved the expression of cleaved caspases-3 and cleaved PARP proteins, and finally induced HT-29 cells apoptosis, suggesting the involvement of mitochondrial pathway. Moreover, YL-11 EPS can block the PI3K/AKT signaling pathway and arrest the cell cycle in G1-phase to exert its anti-colon cancer activity. Overall, YL-11 EPS can be explored as a potential nutraceutical to prevent colorectal cancer.
Collapse
Affiliation(s)
- Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
30
|
Zhang Y, Zhang Z, Liu H, Wang D, Wang J, Liu M, Yang Y, Zhong S. A natural selenium polysaccharide from Pleurotus ostreatus: Structural elucidation, anti-gastric cancer and anti-colon cancer activity in vitro. Int J Biol Macromol 2022; 201:630-640. [PMID: 35066027 DOI: 10.1016/j.ijbiomac.2022.01.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/15/2021] [Accepted: 01/15/2022] [Indexed: 11/05/2022]
Abstract
The development and application of new natural selenium polysaccharides with relatively clear structure and excellent activity have become hot and difficult issues. This study used GC-MS and 2D NMR to characterize the detailed chain structure information of selenium polysaccharide (Se-POP-3) from Selenium-enriched Pleurotus ostreatus, and then explored its anti-gastric cancer and anti-colon cancer effects in vitro. Results showed that the main chain of Se-POP-3 was →[3)-β-D-Glcp-(1]2 → 6)-β-D-Glcp-(1 → 3,6)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1→, and the branch was α-D-Glcp-(1 → [4)-α-D-Glcp-(1]4→, which was connected to the main chain through the O-3 bond of →3,6)-β-D-Glcp-(1 → glycosidic bond. In addition, Se-POP-3 could reduce viability, induce apoptosis, inhibit migration and invasion, destroy the Bax/Bcl-2 ratio, and inhibit the epithelial-to-mesenchymal transition of MGC-803 and HCT-116 cells in vitro. Moreover, this study also showed that within the concentration range set in this study, Se-POP-3 had no significant effect on the growth of normal cells (NCM460 cells). This study can provide a theoretical basis for the potential application of Se-POP-3 as an anti-gastrointestinal cancer drug or functional food.
Collapse
Affiliation(s)
- Yunshan Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhuomin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - De Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiahui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Meng Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
31
|
Biological properties and potential application of hawthorn and its major functional components: A review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
32
|
Guo R, Chen M, Ding Y, Yang P, Wang M, Zhang H, He Y, Ma H. Polysaccharides as Potential Anti-tumor Biomacromolecules —A Review. Front Nutr 2022; 9:838179. [PMID: 35295918 PMCID: PMC8919066 DOI: 10.3389/fnut.2022.838179] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer, as one of the most life-threatening diseases, has attracted the attention of researchers to develop drugs with minimal side effects. The bioactive macromolecules, such as the polysaccharides, are considered the potential candidates against cancer due to their anti-tumor activities and non-toxic characteristics. The present review provides an overview on polysaccharides' extraction, isolation, purification, mechanisms for their anti-tumor activities, structure-activity relationships, absorption and metabolism of polysaccharides, and the applications of polysaccharides in anti-tumor therapy. Numerous research showed extraction methods of polysaccharides had a significant influence on their activities. Additionally, the anti-tumor activities of the polysaccharides are closely related to their structure, while molecular modification and high bioavailability may enhance the anti-tumor activity. Moreover, most of the polysaccharides exerted an anti-tumor activity mainly through the cell cycle arrest, anti-angiogenesis, apoptosis, and immunomodulation mechanisms. Also, recommendations were made to utilize the polysaccharides against cancer.
Collapse
Affiliation(s)
- Rui Guo
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Min Chen
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Yangyang Ding
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Pengyao Yang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mengjiao Wang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haihui Zhang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuanqing He
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
- *Correspondence: Yuanqing He
| | - Haile Ma
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Alomari FY, Sharfalddin AA, Abdellattif MH, Domyati D, Basaleh AS, Hussien MA. QSAR Modeling, Molecular Docking and Cytotoxic Evaluation for Novel Oxidovanadium(IV) Complexes as Colon Anticancer Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030649. [PMID: 35163913 PMCID: PMC8838224 DOI: 10.3390/molecules27030649] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Four new drug-based oxidovanadium (IV) complexes were synthesized and characterized by various spectral techniques, including molar conductance, magnetic measurements, and thermogravimetric analysis. Moreover, optimal structures geometry for all syntheses was obtained by the Gaussian09 program via the DFT/B3LYP method and showed that all of the metal complexes adopted a square-pyramidal structure. The essential parameters, electrophilicity (ω) value and expression for the maximum charge that an electrophile molecule may accept (ΔNmax) showed the practical biological potency of [VO(CTZ)2] 2H2O. The complexes were also evaluated for their propensity to bind to DNA through UV–vis absorption titration. The result revealed a high binding ability of the [VO(CTZ)2] 2H2O complex with Kb = 1.40 × 10⁶ M−1. Furthermore, molecular docking was carried out to study the behavior of the VO (II) complexes towards colon cancer cell (3IG7) protein. A quantitative structure–activity relationship (QSAR) study was also implemented for the newly synthesized compounds. The results of validation indicate that the generated QSAR model possessed a high predictive power (R2 = 0.97). Within the investigated series, the [VO(CTZ)2] 2H2O complex showed the greatest potential the most selective compound comparing to the stander chemotherapy drug.
Collapse
Affiliation(s)
- Fatimah Y. Alomari
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 76971, Dammam 31441, Saudi Arabia;
| | - Abeer A. Sharfalddin
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.S.); (A.S.B.)
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Doaa Domyati
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia;
| | - Amal S. Basaleh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.S.); (A.S.B.)
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.S.); (A.S.B.)
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42521, Egypt
- Correspondence:
| |
Collapse
|
34
|
Wu J, Lin C, Chen X, Pan N, Liu Z. Polysaccharides isolated from Bangia fuscopurpurea induce apoptosis and autophagy in human ovarian cancer A2780 cells. Food Sci Nutr 2021; 9:6707-6719. [PMID: 34925800 PMCID: PMC8645740 DOI: 10.1002/fsn3.2621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 01/13/2023] Open
Abstract
Although ovarian cancer is common, its prognosis remains poor because of drug resistance and early metastasis. Polysaccharides extracted from Bangia fuscopurpurea (BFP) are potential anti-cancer agents, but the mechanisms underlying their effects in human ovarian cancer remain unclear. Here, we investigated the mechanisms of action of BFP polysaccharides in A2780 ovarian cancer cells using cell migration, invasion, apoptosis, and autophagy assays. Transwell assays indicated that BFP inhibited cell migration and invasion. Flow cytometry analysis showed that BFP treatment induced apoptosis and reactive oxygen species production, while significantly reducing mitochondrial membrane potential. Reverse transcription-polymerase chain reaction and Western blot analyses revealed changes in the expression of apoptosis- and autophagy-related cellular mRNAs and proteins, respectively, following BFP treatment for 24 h. Transmission electron microscopy revealed that BFP induced autophagy in A2780 cells. These findings demonstrate that BFP may be useful for developing functional foods for cancer therapy.
Collapse
Affiliation(s)
- Jingna Wu
- Xiamen Key Laboratory of Marine Medicinal Natural Products ResourcesXiamen Medical CollegeXiamenChina
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical ResourcesXiamen Medical CollegeXiamenChina
| | - Changhong Lin
- The First Affiliated Hospital of Xiamen UniversityXiamenChina
| | | | - Nan Pan
- Fisheries Research Institute of FujianXiamenChina
| | - Zhiyu Liu
- Fisheries Research Institute of FujianXiamenChina
| |
Collapse
|
35
|
Martinelli F, Perrone A, Yousefi S, Papini A, Castiglione S, Guarino F, Cicatelli A, Aelaei M, Arad N, Gholami M, Salami SA. Botanical, Phytochemical, Anti-Microbial and Pharmaceutical Characteristics of Hawthorn ( Crataegusmonogyna Jacq.), Rosaceae. Molecules 2021; 26:molecules26237266. [PMID: 34885847 PMCID: PMC8659235 DOI: 10.3390/molecules26237266] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Hawthorn (Crataegus monogyna Jacq.) is a wild edible fruit tree of the genus Crataegus, one of the most interesting genera of the Rosaceae family. This review is the first to consider, all together, the pharmaceutical, phytochemical, functional and therapeutic properties of C. monogyna based on numerous valuable secondary metabolites, including flavonoids, vitamin C, glycoside, anthocyanin, saponin, tannin and antioxidants. Previous reviews dealt with the properties of all species of the entire genera. We highlight the multi-therapeutic role that C. monogyna extracts could have in the treatment of different chronic and degenerative diseases, mainly focusing on flavonoids. In the first part of this comprehensive review, we describe the main botanical characteristics and summarize the studies which have been performed on the morphological and genetic characterization of the C. monogyna germplasm. In the second part, the key metabolites and their nutritional and pharmaceutical properties are described. This work could be an essential resource for promoting future therapeutic formulations based on this natural and potent bioactive plant extract.
Collapse
Affiliation(s)
- Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
| | - Anna Perrone
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
- Correspondence: (A.P.); (S.A.S.)
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan 65178-38695, Iran; (S.Y.); (M.G.)
| | - Alessio Papini
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Francesco Guarino
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Angela Cicatelli
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Mitra Aelaei
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Neda Arad
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Mansour Gholami
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan 65178-38695, Iran; (S.Y.); (M.G.)
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
- Correspondence: (A.P.); (S.A.S.)
| |
Collapse
|
36
|
Process Efficiency and Energy Consumption during the Ultrasound-Assisted Extraction of Bioactive Substances from Hawthorn Berries. ENERGIES 2021. [DOI: 10.3390/en14227638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the impact of sonication parameters on the efficiency of the extraction of bioactive substances from hawthorn berries. The ultrasonic treatment was performed in two modes: continuous and pulse. In the pulse mode, the samples were sonicated with the following processor settings: 1 s on-2 s off. The effective ultrasonic processor times were 5, 10, and 15 min, and the total extraction times were 15 min, 30 min, and 45 min. The content of total polyphenols and total anthocyanins was determined by a spectrophotometric method. We show that the operating mode of the processor affects extraction efficiency, energy consumption and unit energy inputs. Extraction supported by a pulsating ultrasonic field allowed saving from 20% to 51% of energy with a simultaneous higher efficiency of the process. In addition, we show that the unit energy consumption in the pulsed mode was about 40% to 68% lower than the energy consumption in the case of continuous operation.
Collapse
|
37
|
Zheng B, Zhou X, Hu X, Chen Y, Xie J, Yu Q. Advances in the regulation of natural polysaccharides on human health: The role of apoptosis/autophagy pathway. Crit Rev Food Sci Nutr 2021:1-12. [PMID: 34711083 DOI: 10.1080/10408398.2021.1995844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Due to the multiple biological activities of polysaccharides, their great potential as "natural drugs" for many diseases has been the subject of continuous exploration in the field of food and nutrition. Apoptosis and autophagy play a key role in mammalian growth, development and maintenance of cellular homeostasis. Recent studies suggest that apoptosis/autophagy may be the key regulatory target for the beneficial effects of polysaccharides. However, the regulation of apoptosis and autophagy by polysaccharides is not consistent in different disease models. Therefore, this review outlined the relationship between apoptosis/autophagy and some common human diseases, then discussed the role of apoptosis/autophagy pathway in the regulation of human health by polysaccharides, Furthermore, the application of visualization, imaging and multi-omics techniques was proposed in the future trend. The present review may be beneficial to accelerate our understanding of the anti-disease mechanisms of polysaccharides, and promote the development and utilization of polysaccharides.
Collapse
Affiliation(s)
- Bing Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|
38
|
Xiao L, Ge X, Yang L, Chen X, Xu Q, Rui X, Fan X, Feng L, Zhang Q, Dong M, Li W. Anticancer potential of an exopolysaccharide from Lactobacillus helveticus MB2-1 on human colon cancer HT-29 cells via apoptosis induction. Food Funct 2021; 11:10170-10181. [PMID: 33164019 DOI: 10.1039/d0fo01345e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study aimed at investigating the anticancer activity of an exopolysaccharide (EPS) isolated from Lactobacillus helveticus MB2-1. The crude EPS from L. helveticus MB2-1 (LHEPS) was fractionated into three fractions, namely LHEPS-1, LHEPS-2 and LHEPS-3. LHEPS-1 exhibited the most effective anti-proliferative activity, which was associated with a stronger inhibition rate and increased lactate dehydrogenase leakage of human colon cancer HT-29 cells. Flow cytometry analysis and colorimetric assay revealed that LHEPS-1 induced cell cycle arrest by preventing G1 to S transition and increased the apoptosis rate. Furthermore, LHEPS-1 enhanced the production of intracellular reactive oxygen species (ROS) and the activity of caspases-8/9/3, increased the levels of pro-apoptotic Bax and mitochondrial cytochrome c, while decreased the anti-apoptotic Bcl-2 level, indicating that LHEPS-1 might induce the apoptosis of HT-29 cells through a ROS-dependent pathway and a mitochondria-dependent pathway. These findings suggest that LHEPS-1 may be developed as an effective food and/or drug for the prevention and therapeutics of cancer, especially human colon cancer.
Collapse
Affiliation(s)
- Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nivedita PS, Joy HH, Torvi AI, Shettar AK. Applications of Polysaccharides in Cancer Treatment. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
40
|
Luo Z, Wang L, Zhou P, Feng R, Li X. Effect of in vitro simulated gastrointestinal digestion on structural characteristics and anti-proliferative activities of the polysaccharides from the shells of Juglans regia L. Food Chem Toxicol 2021; 150:112100. [PMID: 33677040 DOI: 10.1016/j.fct.2021.112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/24/2023]
Abstract
The present research was designed to investigate the effects of simulated gastrointestinal digestion in vitro on the structural characteristics and anti-proliferative activities of polysaccharides from the shells of Juglans regia L. (JRP). Results suggested that JRP was composed of glucose, ribose, galactose, mannose, arabinose and rhamnose in a molar ratio of 10.7:4.9:16.4:2.3:10.8:2.3, with the molecular weight distributed from 3.21 × 105 to 4.55 × 105 Da. JRP belonged to non-crystalline substance, with irregular, smooth and compact morphological characteristics. Nevertheless, during gastrointestinal digestion in vitro, the physicochemical properties of JRP including molecular weight, monosaccharide composition, crystalline properties and morphology were significantly changed, accompanying with the increase of reducing sugar in digestive juice. Through measurements of anti-proliferation activities, the results showed that the digested JRP could remarkably inhibit the viabilities of HeLa cells by induction of apoptosis as a result of the excessive ROS accumulation and cell cycle arrest at G2/M phase, all of which were pronouncedly stronger than the ones induced by undigested JRP. These findings suggested that JRP processed by gastrointestinal digestion possessed more potential anti-proliferative applications that need to be exploited.
Collapse
Affiliation(s)
- Zhen Luo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Lu Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Peng Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Ru Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Xiaoyu Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| |
Collapse
|
41
|
Chen H, Nie Q, Hu J, Huang X, Yin J, Nie S. Multiomics Approach to Explore the Amelioration Mechanisms of Glucomannans on the Metabolic Disorder of Type 2 Diabetic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2632-2645. [PMID: 33606525 DOI: 10.1021/acs.jafc.0c07871] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Type 2 diabetes (T2D) is a worldwide epidemic associated with metabolic disorders and intestinal microbiota alterations. Polysaccharides have been considered to be beneficial to the prevention and alleviation of T2D. In the present study, ultra-performance liquid chromatography-triple-time-of-flight-based metabolomics and proteomics and 16S rRNA sequencing methods were employed to evaluate the effects of glucomannans from Dendrobium officinale stem, konjac, and Aloe vera leaves on host metabolism and intestinal microbiota regulation in type 2 diabetic rats and potential mechanisms. The metabolism of amino acids was significantly disturbed in the type 2 diabetic rats, especially the upregulated branched-chain amino acid (BCAA) metabolism. Host-derived BCAA metabolism was significantly decreased in type 2 diabetic rats. However, the levels of BCAAs in host circulation and gene abundance of BCAA biosynthesis in gut microbiota were significantly increased in diabetic rats, which suggested that the disturbed intestinal microbiota might be responsible for the increased circulation of BCAAs in T2D. Glucomannan treatment decreased the abundance of microbial BCAA biosynthesis-related genes and ameliorated the host BCAA metabolism. Also, glucomannan with a higher molecular weight and a lower ratio of mannose/glucose possessed better antidiabetic effects. In summary, the antidiabetic effects of glucomannans might be associated with the amelioration of BCAA metabolism by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Haihong Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
42
|
Yang X, Ji HY, Feng YY, Yu J, Liu AJ. A Novel Optimization of Water-Soluble Compound Polysaccharides from Chinese Herbal Medicines by Quantitative Theory and Study on Its Characterization and Antioxidant Activities. Chem Biodivers 2020; 18:e2000688. [PMID: 33258537 DOI: 10.1002/cbdv.202000688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023]
Abstract
The present study optimized the extraction characterization and antioxidant activities of water-soluble compound polysaccharides (CPs) from hawthorn, lotus leaf, Fagopyrum tataricum, semen cassiae, Lycium barbarum, and Poria cocos Chinese herbal medicines that have mass ratios of 4 : 2 : 2 : 1.5 : 1 : 1. The CPs yield equation was predicted using quantitative theory, to which a maximum CPs yield of 7.18±0.24 % under the following optimal extraction conditions: a water-to-raw material ratio of 30 mL/g, an extraction temperature of 65 °C, an extraction time of 45 min, and extraction mode ultrasonic-assistant extraction. CPs were consisted of Ara, Gal, Glc, Xyl, Man, GalA and GlcA in a molar ratio of 3.1 : 2.6 : 50.6 : 1.7 : 20.4 : 17.2 : 4.2. The HPGPC profiles and FT-IR spectra implied that CPs were heterogeneous acidic polysaccharides and possessed the β-d-pyranose configuration. Congo red test, CD spectrum and SEM revealed that CPs with three helix conformation showed a flocculent, granulous or sheet-like appearance. Furthermore, the relationships between antioxidant activity and concentration of CPs displayed significant positive correlation, and the scavenging abilities for DPPH, hydroxyl radical, ABTS, superoxide-anion radical and reducing power of CPs were 93.56±2.51 %, 84.03±1.69 %, 83.29±1.93 %, 37.49±1.93 % and 0.467±0.006 at a concentration of 4.0 mg/mL. Therefore, CPs could be applied as a potential natural antioxidant in pharmaceutical or functional food fields.
Collapse
Affiliation(s)
- Xu Yang
- Tianjin Food Safety Inspection Technology Institute, Tianjin, 300308, P. R. China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Hai-Yu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Ying-Ying Feng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - An-Jun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
43
|
Khan A, Muhamad NA, Ismail H, Nasir A, Khalil AAK, Anwar Y, Khan Z, Ali A, Taha RM, Al-Shara B, Latif S, Mirza B, Fadladdin YAJ, Zeid IMA, Al-Thobaiti SA. Potential Nutraceutical Benefits of In Vivo Grown Saffron (Crocus sativus L.) As Analgesic, Anti-inflammatory, Anticoagulant, and Antidepressant in Mice. PLANTS 2020; 9:plants9111414. [PMID: 33105854 PMCID: PMC7690613 DOI: 10.3390/plants9111414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/01/2023]
Abstract
Crocus sativus, a medicinally important herbaceous plant, has been traditionally used to cure coughs, colds, insomnia, cramps, asthma, and pain. Moreover, the therapeutic applications of saffron include its immunomodulatory and anticancer properties. The current experimental analysis was performed to explore the potential nutraceutical efficacy of corm, leaf, petal, and stigma of saffron ethanolic extracts as analgesic, anti-inflammatory, anticoagulant, and antidepressant using hot plate, carrageenan-induced paw edema, capillary tube and forced swim test, respectively in mice. The results indicated that among all the extracts, stigma ethanolic extract (SEE) represented maximum latency activity (72.85%) and edema inhibition (77.33%) followed by petal ethanolic extract (PEE) with latency activity and edema inhibition of 64.06 and 70.50%, respectively. Corm ethanolic extract (CEE) and leaf ethanolic extract (LEE) displayed mild analgesic activity of 22.40% and 29.07%, respectively. Additionally, LEE (53.29%) and CEE (47.47%) exhibited mild to moderate response against inflammation. The coagulation time of SEE (101.66 s) was almost equivalent to the standard drug, aspirin (101.66 s), suggesting a strong anticoagulant effect followed by PEE (86.5 s). LEE (66.83 s) represented moderate inhibitory effect on coagulation activity while CEE (42.83 s) showed neutral effect. Additionally, PEE and SEE also expressed itself as potential antidepressants with immobility time ≤76.66 s, while CEE (96.50 s) and LEE (106.83 s) indicated moderate to mild antidepressant efficacy. Based on the in vivo activities, saffron extract, particularly SEE and PEE, can be used as a potential nutraceutical and therapeutic agent due to its significant pharmacological activities.
Collapse
Affiliation(s)
- Asif Khan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; (A.K.); (R.M.T.); (B.A.-S.)
| | - Nur Airina Muhamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; (A.K.); (R.M.T.); (B.A.-S.)
- Correspondence:
| | - Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan;
| | - Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwan 16499, Korea;
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 54229, Jeddah, Saudi Arabia; (Y.A.); (Y.A.J.F.); (I.M.A.Z.)
| | - Zahid Khan
- Department of Pharmacognosy, Faculty of Pharmacy, Federal Urdu University of Arts Science and Technology, Karachi 75300, Pakistan;
| | - Amjad Ali
- Department of Botany, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan;
| | - Rosna Mat Taha
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; (A.K.); (R.M.T.); (B.A.-S.)
| | - Baker Al-Shara
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; (A.K.); (R.M.T.); (B.A.-S.)
| | - Sara Latif
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (S.L.); (B.M.)
| | - Bushra Mirza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (S.L.); (B.M.)
- Lahore College for Women University, Lahore 54000, Pakistan
| | - Yousef Abdal Jalil Fadladdin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 54229, Jeddah, Saudi Arabia; (Y.A.); (Y.A.J.F.); (I.M.A.Z.)
| | - Isam Mohamed Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 54229, Jeddah, Saudi Arabia; (Y.A.); (Y.A.J.F.); (I.M.A.Z.)
| | - Saed Ayidh Al-Thobaiti
- Department of Biology, University College Turabah, Taif University, Taif 21995, Saudi Arabia;
| |
Collapse
|
44
|
Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109643] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Lin HC, Lin JY. GSF3, a polysaccharide from guava (Psidium guajava L.) seeds, inhibits MCF-7 breast cancer cell growth via increasing Bax/Bcl-2 ratio or Fas mRNA expression levels. Int J Biol Macromol 2020; 161:1261-1271. [PMID: 32531360 DOI: 10.1016/j.ijbiomac.2020.06.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
Abstract
Guava seed polysaccharide fraction 3 (GSF3) is an immunomodulatory polysaccharide from guava (Psidium guajava L.) seed polysaccharides. However, effects of GSF3 on the growth of breast cancer cells were not understood, yet. To clarify the GSF3 effects on breast cancer cell growth, GSF3 was subjected to treat MCF-7 cells using direct action or indirect immunotherapy using immune cells conditioned media, respectively. The viabilities of MCF-7 cells were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Changes in pro-(Bax)/anti-apoptotic (Bcl-2) and Fas mRNA expression levels in the treated MCF-7 cells were measured using two-step reverse transcription quantitative polymerase chain reaction. Our results showed that GSF3 inhibited MCF-7 cell growth through either direct action or indirect immunotherapy. GSF3 direct action significantly (P < 0.05) decreased Bcl-2 mRNA expression amount but increased pro-(Bax)/anti-apoptotic (Bcl-2) mRNA expression ratios in the treated cells. The splenocytes conditioned media cultured with GSF3 increased Fas mRNA expression amounts in the treated MCF-7 cells. There was a significant negative correlation between Th2-polarized cytokines secreted by immune cells and Fas mRNA expression levels in the corresponding treated MCF-7 cells. Our findings suggested that GSF3 is a potent anti-cancerous polysaccharide by direct action or indirectly modulating immune cell cytokine secretion profiles.
Collapse
Affiliation(s)
- Hsiao-Chien Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC.
| |
Collapse
|
46
|
Abstract
Medicinal plants, many of which are wild, have recently been under the spotlight worldwide due to growing requests for natural and sustainable eco-compatible remedies for pathological conditions with beneficial health effects that are able to support/supplement a daily diet or to support and/or replace conventional pharmacological therapy. The main requests for these products are: safety, minimum adverse unwanted effects, better efficacy, greater bioavailability, and lower cost when compared with synthetic medications available on the market. One of these popular herbs is hawthorn (Crataegus spp.), belonging to the Rosaceae family, with about 280 species present in Europe, North Africa, West Asia, and North America. Various parts of this herb, including the berries, flowers, and leaves, are rich in nutrients and beneficial bioactive compounds. Its chemical composition has been reported to have many health benefits, including medicinal and nutraceutical properties. Accordingly, the present review gives a snapshot of the in vitro and in vivo therapeutic potential of this herb on human health.
Collapse
|