1
|
Zhang F, Hirama Y, Onishi S, Mori T, Ono N, Kanaya S. Design of Fragrance Formulations with Antiviral Activity Using Bayesian Optimization. Microorganisms 2024; 12:1568. [PMID: 39203410 PMCID: PMC11356527 DOI: 10.3390/microorganisms12081568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
In case of future viral threats, including the proposed Disease X that has been discussed since the emergence of the COVID-19 pandemic in March 2020, our research has focused on the development of antiviral strategies using fragrance compounds with known antiviral activity. Despite the recognized antiviral properties of mixtures of certain fragrance compounds, there has been a lack of a systematic approach to optimize these mixtures. Confronted with the significant combinatorial challenge and the complexity of the compound formulation space, we employed Bayesian optimization, guided by Gaussian Process Regression (GPR), to systematically explore and identify formulations with demonstrable antiviral efficacy. This approach required the transformation of the characteristics of formulations into quantifiable feature values using molecular descriptors, subsequently modeling these data to predict and propose formulations with likely antiviral efficacy enhancements. The predicted formulations underwent experimental testing, resulting in the identification of combinations capable of inactivating 99.99% of viruses, including a notably efficacious formulation of five distinct fragrance types. This model demonstrates high predictive accuracy (coefficient determination Rcv2 > 0.7) and suggests a new frontier in antiviral strategy development. Our findings indicate the powerful potential of computational modeling to surpass human analytical capabilities in the pursuit of complex, fragrance-based antiviral formulations.
Collapse
Affiliation(s)
- Fan Zhang
- Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi 640-8580, Wakayama, Japan;
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
| | - Yui Hirama
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun 321-3426, Tochigi, Japan; (Y.H.); (S.O.); (T.M.)
| | - Shintaro Onishi
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun 321-3426, Tochigi, Japan; (Y.H.); (S.O.); (T.M.)
| | - Takuya Mori
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun 321-3426, Tochigi, Japan; (Y.H.); (S.O.); (T.M.)
| | - Naoaki Ono
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan
| | - Shigehiko Kanaya
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan;
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Nara, Japan
| |
Collapse
|
2
|
Xie L, Yuan Y, Yang F, Jiang H, Yang F, Yang C, Yu Z. Comparative analysis of antioxidant activities and chemical compositions in the extracts of different edible parts from Camellia tetracocca Zhang ( C. tetracocca) with two distinct color characteristics. Food Chem X 2024; 22:101496. [PMID: 38817977 PMCID: PMC11137522 DOI: 10.1016/j.fochx.2024.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
The Camellia tetracocca Zhang is a rare and ancient plant, exclusively found in the vicinity of Puan County, Guizhou Province, China. According to leaf color, two distinct variations have been identified: purple C. tetracocca Zhang (PCTZ) and green C. tetracocca (GCTZ). This research was conducted to investigate the antioxidant activities and chemical compositions of different edible parts of PCTZ and GCTZ. Antioxidant activity was evaluated using DPPH, ABTS, HSA, and T-AOC assays, while the content of compounds was determined by HPLC. The findings demonstrated that the antioxidant capacity of PCTZ leaves is significantly superior to that of GCTZ leaves. Notably, theacrine, a rare compound, contains up to 2.075% in PCTZ leaves, indicating potential as a novel natural antidepressant and antioxidant. In conclusion, PCTZ is a distinctive tea beverage and a valuable genetic material for tea tree breeding due to its high theacrine and low caffeine characteristics.
Collapse
Affiliation(s)
| | | | - Feijiao Yang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Huqin Jiang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Feng Yang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Chenju Yang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Zhengwen Yu
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
3
|
Roy AV, Chan M, Banadyga L, He S, Zhu W, Chrétien M, Mbikay M. Quercetin inhibits SARS-CoV-2 infection and prevents syncytium formation by cells co-expressing the viral spike protein and human ACE2. Virol J 2024; 21:29. [PMID: 38273400 PMCID: PMC10811921 DOI: 10.1186/s12985-024-02299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Several in silico studies have determined that quercetin, a plant flavonol, could bind with strong affinity and low free energy to SARS-CoV-2 proteins involved in viral entry and replication, suggesting it could block infection of human cells by the virus. In the present study, we examined the ex vivo ability of quercetin to inhibit of SARS-CoV-2 replication and explored the mechanisms of this inhibition. METHODS Green monkey kidney Vero E6 cells and in human colon carcinoma Caco-2 cells were infected with SARS-CoV-2 and incubated in presence of quercetin; the amount of replicated viral RNA was measured in spent media by RT-qPCR. Since the formation of syncytia is a mechanism of SARS-CoV-2 propagation, a syncytialization model was set up using human embryonic kidney HEK293 co-expressing SARS-CoV-2 Spike (S) protein and human angiotensin converting enzyme 2 (ACE2), [HEK293(S + ACE2) cells], to assess the effect of quercetin on this cytopathic event by microscopic imaging and protein immunoblotting. RESULTS Quercetin inhibited SARS-CoV-2 replication in Vero E6 cells and Caco-2 cells in a concentration-dependent manner with a half inhibitory concentration (IC50) of 166.6 and 145.2 µM, respectively. It also inhibited syncytialization of HEK293(S + ACE2) cells with an IC50 of 156.7 µM. Spike and ACE2 co-expression was associated with decreased expression, increased proteolytic processing of the S protein, and diminished production of the fusogenic S2' fragment of S. Furin, a proposed protease for this processing, was inhibited by quercetin in vitro with an IC50 of 116 µM. CONCLUSION These findings suggest that at low 3-digit micromolar concentrations of quercetin could impair SARS-CoV-2 infection of human cells partly by blocking the fusion process that promotes its propagation.
Collapse
Affiliation(s)
- Annie V Roy
- Functional Endoproteolysis Laboratory, Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Michael Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Michel Chrétien
- Functional Endoproteolysis Laboratory, Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Majambu Mbikay
- Functional Endoproteolysis Laboratory, Montreal Clinical Research Institute, Montreal, QC, Canada.
| |
Collapse
|
4
|
Stannard H, Koszalka P, Deshpande N, Desjardins Y, Baz M. Pre-Clinical Evaluation of the Antiviral Activity of Epigalocatechin-3-Gallate, a Component of Green Tea, against Influenza A(H1N1)pdm Viruses. Viruses 2023; 15:2447. [PMID: 38140688 PMCID: PMC10747412 DOI: 10.3390/v15122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza antiviral drugs are important tools in our fight against both annual influenza epidemics and pandemics. Polyphenols are a group of compounds found in plants, some of which have demonstrated promising antiviral activity. Previous in vitro and mouse studies have outlined the anti-influenza virus effectiveness of the polyphenol epigallocatechin-3-gallate (EGCG); however, no study has utilised the ferret model, which is considered the gold-standard for influenza antiviral studies. This study aimed to explore the antiviral efficacy of EGCG in vitro and in ferrets. We first performed studies in Madin-Darby Canine Kidney (MDCK) and human lung carcinoma (Calu-3) cells, which demonstrated antiviral activity. In MDCK cells, we observed a selective index (SI, CC50/IC50) of 77 (290 µM/3.8 µM) and 96 (290 µM/3.0 µM) against A/California/07/2009 and A/Victoria/2570/2019 (H1N1)pdm09 influenza virus, respectively. Calu-3 cells demonstrated a SI of 16 (420 µM/26 µM) and 18 (420 µM/24 µM). Ferrets infected with A/California/07/2009 influenza virus and treated with EGCG (500 mg/kg/day for 4 days) had no change in respiratory tissue viral titres, in contrast to oseltamivir treatment, which significantly reduced viral load in the lungs of treated animals. Therefore, we demonstrated that although EGCG showed antiviral activity in vitro against influenza viruses, the drug failed to impair viral replication in the respiratory tract of ferrets.
Collapse
Affiliation(s)
- Harry Stannard
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Nikita Deshpande
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Centre Nutrition, Santé et Societé (NUTRISS) Center, Faculté de Sciences de L’agriculture et de L’alimentation (FSAA), Université Laval, Quebec City, QC G1V 4L3, Canada
| | - Mariana Baz
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
5
|
Carvalho ARV, Reis JDE, Gomes PWP, Ferraz AC, Mardegan HA, Menegatto MBDS, Souza Lima RL, de Sarges MRV, Pamplona SDGSR, Jeunon Gontijo KS, de Magalhães JC, da Silva MN, Magalhães CLDB, Silva CYYE. Untargeted-based metabolomics analysis and in vitro/in silico antiviral activity of extracts from Phyllanthus brasiliensis (Aubl.) Poir. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:869-883. [PMID: 37403427 DOI: 10.1002/pca.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION This study describes the molecular profile and the potential antiviral activity of extracts from Phyllanthus brasiliensis, a plant widely found in the Brazilian Amazon. The research aims to shed light on the potential use of this species as a natural antiviral agent. METHODS The extracts were analysed using liquid chromatography-mass spectrometry (LC-MS) system, a potent analytical technique to discover drug candidates. In the meantime, in vitro antiviral assays were performed against Mayaro, Oropouche, Chikungunya, and Zika viruses. In addition, the antiviral activity of annotated compounds was predicted by in silico methods. RESULTS Overall, 44 compounds were annotated in this study. The results revealed that P. brasiliensis has a high content of fatty acids, flavones, flavan-3-ols, and lignans. Furthermore, in vitro assays revealed potent antiviral activity against different arboviruses, especially lignan-rich extracts against Zika virus (ZIKV), as follows: methanolic extract from bark (MEB) [effective concentration for 50% of the cells (EC50 ) = 0.80 μg/mL, selectivity index (SI) = 377.59], methanolic extract from the leaf (MEL) (EC50 = 0.84 μg/mL, SI = 297.62), and hydroalcoholic extract from the leaf (HEL) (EC50 = 1.36 μg/mL, SI = 735.29). These results were supported by interesting in silico prediction, where tuberculatin (a lignan) showed a high antiviral activity score. CONCLUSIONS Phyllanthus brasiliensis extracts contain metabolites that could be a new kick-off point for the discovery of candidates for antiviral drug development, with lignans becoming a promising trend for further virology research.
Collapse
Affiliation(s)
- Alice Rhelly V Carvalho
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - José Diogo E Reis
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Centre, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Ariane Coelho Ferraz
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Horrana A Mardegan
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Marília Bueno da Silva Menegatto
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Rafaela Lameira Souza Lima
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Maria Rosilda V de Sarges
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Sônia das G S R Pamplona
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | | | - José Carlos de Magalhães
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João del-Rei, São João del Rei, Brazil
| | - Milton N da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Cintia Lopes de Brito Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João del-Rei, São João del Rei, Brazil
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Consuelo Yumiko Yoshioka E Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
6
|
Kaggwa B, Anywar G, Munanura EI, Wangalwa R, Kyeyune H, Okella H, Kamba FP, Engeu OP. Application of the herbal chemical marker ranking system (Herb MaRS) to the standardization of herbal raw materials: a case study. BMC Complement Med Ther 2023; 23:348. [PMID: 37777721 PMCID: PMC10542261 DOI: 10.1186/s12906-023-04178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
INTRODUCTION Phytochemical standardization of herbal materials involves establishing consistent levels of one or more active ingredients or markers. It ensures the authenticity and quality of herbal materials, extracts, and their products. This research aimed to apply the herbal chemical marker ranking system (Herb MaRS) originally proposed for quality assurance of complex herbal products to establish markers for controlling the quality of herbal raw materials. METHODS The assessment of compounds for suitability as markers was based on the Herb MaRS, with minor modifications as follows: for more objective scoring, evidence of biological activity of the potential marker compound(s) was determined at three levels based on the number of symptoms of the disease condition a compound can treat or alleviate: (i) one symptom (1 point), two symptoms (2 points), and 3 or more symptoms (3 points). The reported concentrations of the compounds were also scored as follows: concentration not determined (0 points), concentration ≥ 5 ppm (1 point), concentration ≥ 50 ppm (2 points) and availability of analytical standards (1 point). Finally, the compounds were scored for the availability of an analytical method (1 point). The compounds were scored from 0 to 8, where 8 indicated the most suitable chemical marker. RESULTS The selected markers were as follows: aromadendrine, α-terpineol, globulol, and 1,8-cineol (in Eucalyptus globulus Labill. ); aloin, aloe emodin, acemannan (in Aloe barbadensis (L.) Burm.f. ), lupeol, lupenone, betulinic acid, betulin, and catechin (in Albizia coriaria Oliv.); mangiferin, catechin, quercetin, and gallic acid (in Mangifera indica L.); polygodial (in Warburgia ugandensis Sprague); azadirachtin, nimbin, nimbidin (in Azadirachta indica A. Juss. ); and 6,8,10-gingerols, and 6-shogaol (in Zingiber officinalis Roscoe). CONCLUSIONS Herb MaRS can be efficiently applied to select marker compounds for quality control of herbal materials. However, for herbs whose phytochemicals have not been sufficiently researched, it is difficult to establish evidence of activity, and there are no analytical standards and/or methods; this is the case for plants exclusively used in Africa. The markers identified should be incorporated into chromatographic fingerprints, their quantitative methods developed, and evaluated for applicability at the various stages of the production chain of herbal medicines; then, they can be included in future local plant monographs. There is also a need to build local capacity to isolate marker compounds, particularly those that are not sold by current vendors.
Collapse
Affiliation(s)
- Bruhan Kaggwa
- Mbarara University of Science and Technology, Pharm-Bio Technology and Traditional Medicine Center (PHARMBIOTRAC), PO Box 1410, Mbarara, Uganda.
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda.
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Edson Ireeta Munanura
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| | - Raphael Wangalwa
- Department of Biology, Faculty of Science, Mbarara University of Science and Technology, P. O BOX 1410, Mbarara, Uganda
| | - Henry Kyeyune
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| | - Hedmon Okella
- Mbarara University of Science and Technology, Pharm-Bio Technology and Traditional Medicine Center (PHARMBIOTRAC), PO Box 1410, Mbarara, Uganda
| | - Fadhiru Pakoyo Kamba
- Department of Pharmacy, Makerere University, College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| | - Ogwang Patrick Engeu
- Mbarara University of Science and Technology, Pharm-Bio Technology and Traditional Medicine Center (PHARMBIOTRAC), PO Box 1410, Mbarara, Uganda
| |
Collapse
|
7
|
Hirama Y, Onishi S, Shibata R, Ishida H, Mori T, Ota N. Antiviral Effect of Propylene Glycol against Envelope Viruses in Spray and Volatilized Forms. Viruses 2023; 15:1421. [PMID: 37515109 PMCID: PMC10385749 DOI: 10.3390/v15071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious and continues to spread worldwide. To avoid the spread of infection, it is important to control its transmission routes. However, as methods to prevent airborne infections are lacking, people are forced to take measures such as keeping distance from others or wearing masks. Here, we evaluate the antiviral activity of propylene glycol (PG), which is safe, odorless, and volatile. PG showed pronounced antiviral activity against the influenza virus (IAV) at concentrations above 55% in the liquid phase. Given its IAV inactivation mechanism, which involves increasing the fluidity of the viral membrane, PG is expected to have a broad effect on enveloped viruses. PG showed antiviral activity against SARS-CoV-2. We also developed a system to evaluate the antiviral effect of PG in spray and volatilized forms. PG was found to be effective against aerosol IAV in both forms; the effective PG concentration against IAV in the vapor phase was 87 ppmv (0.27 mg/L). These results demonstrate that PG is an effective means for viral inactivation in various situations for infection control. This technology is expected to control the spread of current and future infectious diseases capable of causing outbreaks and pandemics.
Collapse
Affiliation(s)
- Yui Hirama
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tokyo 321-3497, Japan
| | - Shintaro Onishi
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tokyo 321-3497, Japan
| | - Ryunosuke Shibata
- Sensory Science Research, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Hirohiko Ishida
- Sensory Science Research, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Takuya Mori
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tokyo 321-3497, Japan
| | - Noriyasu Ota
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tokyo 321-3497, Japan
| |
Collapse
|
8
|
Wang Y, Ren Z, Li M, Lu C, Deng WW, Zhang Z, Ning J. From lab to factory: A calibration transfer strategy from HSI to online NIR optimized for quality control of green tea fixation. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Zhang Z, Hao M, Zhang X, He Y, Chen X, Taylor EW, Zhang J. Potential of green tea EGCG in neutralizing SARS-CoV-2 Omicron variant with greater tropism toward the upper respiratory tract. Trends Food Sci Technol 2023; 132:40-53. [PMID: 36594074 PMCID: PMC9796359 DOI: 10.1016/j.tifs.2022.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Background COVID-19 due to SARS-CoV-2 infection has had an enormous adverse impact on global public health. As the COVID-19 pandemic evolves, the WHO declared several variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and Omicron. Compared with earlier variants, Omicron, now a dominant lineage, exhibits characteristics of enhanced transmissibility, tropism shift toward the upper respiratory tract, and attenuated disease severity. The robust transmission of Omicron despite attenuated disease severity still poses a great challenge for pandemic control. Under this circumstance, its tropism shift may be utilized for discovering effective preventive approaches. Scope and approach This review aims to estimate the potential of green tea epigallocatechin gallate (EGCG), the most potent antiviral catechin, in neutralizing SARS-CoV-2 Omicron variant, based on current knowledge concerning EGCG distribution in tissues and Omicron tropism. Key findings and conclusions EGCG has a low bioavailability. Plasma EGCG levels are in the range of submicromolar concentrations following green tea drinking, or reach at most low μM concentrations after pharmacological intervention. Nonetheless, its levels in the upper respiratory tract could reach concentrations as high as tens or even hundreds of μM following green tea consumption or pharmacological intervention. An approach for delivering sufficiently high concentrations of EGCG in the pharynx has been developed. Convincing data have demonstrated that EGCG at tens to hundreds of μM can dramatically neutralize SARS-CoV-2 and effectively eliminate SARS-CoV-2-induced cytopathic effects and plaque formation. Thus, EGCG, which exhibits hyperaccumulation in the upper respiratory tract, deserves closer investigation as an antiviral in the current global battle against COVID-19, given Omicron's greater tropism toward the upper respiratory tract.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- COVID-19
- EGCG
- EGCG, epigallocatechin-3-gallate
- GRP78, glucose-regulated protein 78
- HO-1, hemeoxygenase 1
- IFN-β, interferon-β
- Mpro, main protease
- MxA, MxGTPases
- Nrf2, nuclear factor erythroid 2 p45-related factor 2
- Nsp15, nonstructural protein 15
- Omicron variant
- SARS-CoV-2
- TMPRSS2, transmembrane serine protease 2
- The upper respiratory tract
- Tropism
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meng Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xiongsheng Chen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
10
|
Jasial S, Hu J, Miyao T, Hirama Y, Onishi S, Matsui R, Osaki K, Funatsu K. Screening and Validation of Odorants against Influenza A Virus Using Interpretable Regression Models. ACS Pharmacol Transl Sci 2023; 6:139-150. [PMID: 36654744 PMCID: PMC9841774 DOI: 10.1021/acsptsci.2c00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 12/23/2022]
Abstract
Influenza is a respiratory infection caused by the influenza virus that is prevalent worldwide. One of the most contagious variants of influenza is influenza A virus (IAV), which usually spreads in closed spaces through aerosols. Preventive measures such as novel compounds are needed that can act on viral membranes and provide a safe environment against IAV infection. In this study, we screened compounds with common fragrances that are generally used to mask unpleasant odors but can also exhibit antiviral activity against a strain of IAV. Initially, a set of 188 structurally diverse odorants were collected, and their antiviral activity was measured in vapor phase against the IAV solution. Regression models were built for the prediction of antiviral activity using this set of odorants by taking into account their structural features along with vapor pressure and partition coefficient (n-octanol/water). The models were interpreted using a feature weighting approach and Shapley Additive exPlanations to rationalize the predictions as an additional validation for virtual screening. This model was used to screen odorants from an in-house odorant data set consisting of 2020 odorants, which were later evaluated using in vitro experiments. Out of 11 odorants proposed using the final model, 8 odorants were found to exhibit antiviral activity. The feature interpretation of screened odorants suggested that they contained hydrophilic substructures, such as hydroxyl group, which might contribute to denaturation of proteins on the surface of the virus. These odorants should be explored as a preventive measure in closed spaces to decrease the risk of infections of IAV.
Collapse
Affiliation(s)
- Swarit Jasial
- Data
Science Center and Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara630-0192, Japan
| | - Jieying Hu
- Material
Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama640-8580, Japan
| | - Tomoyuki Miyao
- Data
Science Center and Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara630-0192, Japan
| | - Yui Hirama
- Biological
Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi321-3426, Japan
| | - Shintaro Onishi
- Biological
Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi321-3426, Japan
| | - Ryoichi Matsui
- Material
Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama640-8580, Japan
| | - Koji Osaki
- Material
Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama640-8580, Japan
| | - Kimito Funatsu
- Data
Science Center and Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara630-0192, Japan
| |
Collapse
|
11
|
Kim JM, Heo HJ. The roles of catechins in regulation of systemic inflammation. Food Sci Biotechnol 2022; 31:957-970. [PMID: 35345441 PMCID: PMC8943496 DOI: 10.1007/s10068-022-01069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Catechins are a phytochemical present in plants such as tea leaves, beans, black grapes, cherries, and cacao, and have various physiological activities. It is reported that catechins have a health improvement effect and ameliorating effect against various diseases. In addition, antioxidant activity, liver damage prevention, cholesterol lowering effect, and anti-obesity activity were confirmed through in vivo animal and clinical studies. Although most diseases are reported as ones mediating various inflammations, the mechanism for improving inflammation remains unclear. Therefore, the current review article evaluates the physiological activity and various pharmacological actions of catechins and conclude by confirming an improvement effect on the inflammatory response.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| |
Collapse
|
12
|
Silva LR, da Silva-Júnior EF. Multi-Target Approaches of Epigallocatechin-3-O-gallate (EGCG) and its Derivatives Against Influenza Viruses. Curr Top Med Chem 2022; 22:1485-1500. [PMID: 35086449 DOI: 10.2174/1568026622666220127112056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Influenza viruses (INFV), Orthomyxoviridae family, are mainly transmitted among humans, via aerosols or droplets from the respiratory secretions. However, fomites could be a potential transmission pathway. Annually, seasonal INFV infections account for 290-650 thousand deaths worldwide. Currently, there are two classes of approved drugs to treat INFV infections, being neuraminidase (NA) inhibitors and blockers of matrix-2 (M2) ion channel. However, cases of resistance have been observed for both chemical classes, reducing the efficacy of treatment. The emergence of influenza outbreaks and pandemics calls for new antiviral molecules more effective and that could overcome the current resistance to anti-influenza drugs. In this context, polyphenolic compounds are found in various plants and these have displayed different multi-target approaches against diverse pathogens. Among these, green tea (Camellia sinensis) catechins, in special epigallocatechin-3-O-gallate (EGCG), have demonstrated significant activities against the two most relevant human INFV, subtypes A and lineages B. In this sense, EGCG has been found a promising multi-target agent against INFV since can act inhibiting NA, hemagglutination (HA), RNA-dependent RNA polymerase (RdRp), and viral entry/adsorption. In general, the lack of knowledge about potential multi-target natural products prevents an adequate exploration of them, increasing the time for developing multi-target drugs. Then, this review aimed to compile to most relevant studies showing the anti-INFV effects of EGCG and its derivatives, which could become antiviral drug prototypes in the future.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Melo Mota Avenue, 57072-970, AC Simões campus, Maceió, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Melo Mota Avenue, 57072-970, AC Simões campus, Maceió, Brazil
| |
Collapse
|
13
|
Rafiqul Islam A, Ferdousi J, Shahinozzaman M. Previously published ethno-pharmacological reports reveal the potentiality of plants and plant-derived products used as traditional home remedies by Bangladeshi COVID-19 patients to combat SARS-CoV-2. Saudi J Biol Sci 2021; 28:6653-6673. [PMID: 34305428 PMCID: PMC8285211 DOI: 10.1016/j.sjbs.2021.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 01/08/2023] Open
Abstract
Several plants have traditionally been used since antiquity to treat various gastroenteritis and respiratory symptoms similar to COVID-19 outcomes. The common symptoms of COVID-19 include fever or chills, cold, cough, flu, headache, diarrhoea, tiredness/fatigue, sore throat, loss of taste or smell, asthma, shortness of breath, or difficulty breathing, etc. This study aims to find out the plants and plant-derived products which are being used by the COVID-19 infected patients in Bangladesh and how those plants are being used for the management of COVID-19 symptoms. In this study, online and partially in-person survey interviews were carried out among Bangladeshi respondents. We selected Bangladeshi COVID-19 patients who were detected Coronavirus positive (+) by RT-PCR nucleic acid test and later recovered. Furthermore, identified plant species from the surveys were thoroughly investigated for safety and efficacy based on the previous ethnomedicinal usage reports. Based on the published data, they were also reviewed for their significant potentialities as antiviral, anti-inflammatory, and immunomodulatory agents. We explored comprehensive information about a total of 26 plant species, belonging to 23 genera and 17 different botanical families, used in COVID-19 treatment as home remedies by the respondents. Most of the plants and plant-derived products were collected directly from the local marketplace. According to our survey results, greatly top 5 cited plant species measured as per the highest RFC value are Camellia sinensis (1.0) > Allium sativum (0.984) > Azadirachta indica (0.966) > Zingiber officinale (0.966) > Syzygium aromaticum (0.943). Previously published ethnomedicinal usage reports, antiviral, anti-inflammatory, and immunomodulatory activity of the concerned plant species also support our results. Thus, the survey and review analysis simultaneously reveals that these reported plants and plant-derived products might be promising candidates for the treatment of COVID-19. Moreover, this study clarifies the reported plants for their safety during COVID-19 management and thereby supporting them to include in any future pre-clinical and clinical investigation for developing herbal COVID-19 therapeutics.
Collapse
Key Words
- BAL, Bronchoalveolar lavage
- BALF, Bronchoalveolar lavage fluid
- Bangladesh
- CHO-K1, Wild-type Chinese hamster ovary CHO-K1 cells
- CIK, Ctenopharyngodon idellus kidney Cell line
- COPD, Chronic obstructive pulmonary disease
- COVID-19
- CRD, Complex chronic respiratory disease
- CRFK, Crandell-Reese feline kidney cells
- EGCG, Epigallocatechin-3-gallate
- EPO, Eosinophil peroxidase
- Ethnobotany
- FRhk-4cells, Fetal rhesus monkey kidney cells
- H1N1, Hemagglutinin Type 1 and Neuraminidase Type 1
- HEK293T, Human embryonic kidney cells
- HEp-2 cells, Epithelial cells of human larynx carcinoma
- HLAC, Human lymphoid aggregate cultures
- HeLa, Human epithelial cervical carcinoma cell lines
- Huh-7, Human hepatocyte-derived carcinoma cell line
- IBD, Inflammatory bowel disease
- ICU, Intensive care unit
- IFN‐γ, Interferon‐gamma
- IL, Interleukin
- IgE, Immunoglobulin E
- MARC-145 cells, African green monkey kidney cell line
- MCP-1, Monocyte chemoattractant protein-1
- MDCK, Madin-Darby Canine Kidney cell lines
- MEF, Mouse embryonic fibroblast cells
- Medicinal plants
- NF-κB, Nuclear factor-kappaB
- PBMCs, Peripheral Blood Mononuclear Cells
- RT-PCR, Reverse transcription polymerase chain reaction
- SARS, Severe acute respiratory syndrome, MERS, Middle East respiratory syndrome
- TNF-β, Tumor necrosis factor‐beta
- TNF‐α, Tumor necrosis factor‐alpha
- Th, T-helper
- Traditional home remedies
- VERO cell lines, African green monkey kidney cell lines
Collapse
Affiliation(s)
- A.T.M. Rafiqul Islam
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal 8200, Bangladesh
| | - Jannatul Ferdousi
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal 8200, Bangladesh
| | - Md Shahinozzaman
- Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
14
|
Nishioka Y, Nagano K, Koga Y, Okada Y, Mori I, Hayase A, Mori T, Manabe K. Lactic acid as a major contributor to hand surface infection barrier and its association with morbidity to infectious disease. Sci Rep 2021; 11:18608. [PMID: 34545150 PMCID: PMC8452697 DOI: 10.1038/s41598-021-98042-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Although the surface of the human hands contains high antimicrobial activity, studies investigating the precise components involved and the relationship between natural antimicrobial activity and morbidity in infectious diseases are limited. In this study, we developed a method to quantitatively measure the antimicrobial activity of hand surface components. Using a clinical survey, we validated the feasibility of our method and identified antimicrobial factors on the surface of the human hand. In a retrospective observational study, we compared the medical histories of the participants to assess infectious diseases. We found that the antimicrobial activity on the surface of the hands was significantly lower in the high morbidity group (N = 55) than in the low morbidity group (N = 54), indicating a positive association with the history of infection in individuals. A comprehensive analysis of the hand surface components indicated that organic acids, especially lactic acid and antimicrobial peptides, are highly correlated with antimicrobial activity. Moreover, the application of lactic acid using the amount present on the surface of the hand significantly improved the antimicrobial activity. These findings suggest that hand hygiene must be improved to enhance natural antimicrobial activity on the surface of the hands.
Collapse
Affiliation(s)
- Yuki Nishioka
- Personal Health Care Products Research, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Kenichi Nagano
- Analytical Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Yoshitaka Koga
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Yasuhiro Okada
- Personal Health Care Products Research, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Ichiro Mori
- Personal Health Care Products Research, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Atsuko Hayase
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Takuya Mori
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan
| | - Kenji Manabe
- Personal Health Care Products Research, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo, 131-8501, Japan.
| |
Collapse
|
15
|
Liu J, Bodnar BH, Meng F, Khan AI, Wang X, Saribas S, Wang T, Lohani SC, Wang P, Wei Z, Luo J, Zhou L, Wu J, Luo G, Li Q, Hu W, Ho W. Epigallocatechin gallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor. Cell Biosci 2021; 11:168. [PMID: 34461999 PMCID: PMC8404181 DOI: 10.1186/s13578-021-00680-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND As the COVID-19 pandemic rages on, the new SARS-CoV-2 variants have emerged in the different regions of the world. These newly emerged variants have mutations in their spike (S) protein that may confer resistance to vaccine-elicited immunity and existing neutralizing antibody therapeutics. Therefore, there is still an urgent need of safe, effective, and affordable agents for prevention/treatment of SARS-CoV-2 and its variant infection. RESULTS We demonstrated that green tea beverage (GTB) or its major ingredient, epigallocatechin gallate (EGCG), were highly effective in inhibiting infection of live SARS-CoV-2 and human coronavirus (HCoV OC43). In addition, infection of the pseudoviruses with spikes of the new variants (UK-B.1.1.7, SA-B.1.351, and CA-B.1.429) was efficiently blocked by GTB or EGCG. Among the 4 active green tea catechins at noncytotoxic doses, EGCG was the most potent in the action against the viruses. The highest inhibitory activity was observed when the viruses or the cells were pre-incubated with EGCG prior to the infection. Mechanistic studies revealed that EGCG blocked infection at the entry step through interfering with the engagement of the receptor binding domain (RBD) of the viral spikes to angiotensin-converting enzyme 2 (ACE2) receptor of the host cells. CONCLUSIONS These data support further clinical evaluation and development of EGCG as a novel, safe, and cost-effective natural product for prevention/treatment of SARS-CoV-2 transmission and infection.
Collapse
Affiliation(s)
- Jinbiao Liu
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Brittany H Bodnar
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Fengzhen Meng
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Adil I Khan
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Sami Saribas
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Tao Wang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Saroj Chandra Lohani
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA
| | - Peng Wang
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Zhengyu Wei
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Jinjun Luo
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Lina Zhou
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Jianguo Wu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Guangxiang Luo
- Department of Microbiology, University of Alabama At Birmingham School of Medicine, Birmingham, AL, 35294, USA.
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583-0900, USA.
| | - Wenhui Hu
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| | - Wenzhe Ho
- Department of Pathology and Laboratory Medicine, Center for Metabolic Disease Research, and Department of Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
16
|
Investigation of the Oral Retention of Tea Catechins in Humans: An Exploratory Interventional Study. Nutrients 2021; 13:nu13093024. [PMID: 34578903 PMCID: PMC8471449 DOI: 10.3390/nu13093024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
Green tea catechin ingestion or gargling exhibit anti-viral activity against upper respiratory infection. We hypothesized that retention in the oral cavity could improve the anti-viral effects of catechins. The present study investigated the oral retention of catechins in humans and the effect of catechin beverage viscosity on oral retention. Two intervention studies with different test beverages, beverage-C (40 mL, containing 73.4 mg of catechins) and beverage-XT (40 mL, beverage-C containing 100 mg xanthan gum) were conducted in 20 healthy volunteers (mean age 38.7 years). Catechin concentrations were measured in buccal mucosa samples collected at 10 min, 40 min, and 60 min after ingesting test beverages, and the catechin variability of the tissue after intake was compared between test beverages. As a result, the mean (SEM) concentrations of EGCG were 99.9 (27.2), 58.2 (16.6), and 22.3 (5.7) ng/mg-mucosa at 10, 40, and 60 min, respectively, after ingestion of beverage-XT. Similarly, the catechin concentrations were 86.1 (20.3), 32.2 (5.3), and 27.8 (5.9) ng/mg-mucosa after ingestion of beverage-C. The total retention volume over 60 min tended to be slightly higher after ingestion of beverage-XT, though the difference was not statistically significant. Additional studies are needed to confirm the effect of xanthan gum on improving oral retention of catechins.
Collapse
|
17
|
Hong S, Seo SH, Woo SJ, Kwon Y, Song M, Ha NC. Epigallocatechin Gallate Inhibits the Uridylate-Specific Endoribonuclease Nsp15 and Efficiently Neutralizes the SARS-CoV-2 Strain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5948-5954. [PMID: 34015930 PMCID: PMC8146138 DOI: 10.1021/acs.jafc.1c02050] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/05/2023]
Abstract
SARS-CoV-2, the coronavirus strain that initiated the COVID-19 pandemic, and its subsequent variants present challenges to vaccine development and treatment. As the coronavirus evades the host innate immune response at the initial stage of infection, the disease can have a long nonsymptomatic period. The uridylate-specific endoribonuclease Nsp15 processes the viral genome for replication and cleaves the polyU sequence in the viral RNA to interfere with the host immune system. This study screened natural compounds in vitro to identify inhibitors against Nsp15 from SARS-CoV-2. Three natural compounds, epigallocatechin gallate (EGCG), baicalin, and quercetin, were identified as potential inhibitors. Potent antiviral activity of EGCG was confirmed in plaque reduction neutralization tests with a SARS-CoV-2 strain (PRNT50 = 0.20 μM). Because the compound has been used as a functional food ingredient due to its beneficial health effects, we theorize that this natural compound may help inhibit viral replication while minimizing safety issues.
Collapse
Affiliation(s)
- Seokho Hong
- Department
of Agricultural Biotechnology, Center for Food and Bioconvergence,
and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic
of Korea
| | - Sang Hwan Seo
- Science
Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Sun-Je Woo
- Science
Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Yonghoon Kwon
- Department
of Applied Biology and Chemistry, Seoul
National University, Seoul 08826, Republic of Korea
| | - Manki Song
- Science
Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Nam-Chul Ha
- Department
of Agricultural Biotechnology, Center for Food and Bioconvergence,
and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic
of Korea
| |
Collapse
|
18
|
Hinojosa-Nogueira D, Pérez-Burillo S, Pastoriza de la Cueva S, Rufián-Henares JÁ. Green and white teas as health-promoting foods. Food Funct 2021; 12:3799-3819. [PMID: 33977999 DOI: 10.1039/d1fo00261a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tea is one of the most consumed beverages around the world and as such, it is constantly the object of novel research. This review focuses on the research performed during the last five years to provide an updated view of the current position of tea regarding human health. According to most authors, tea health benefits can be traced back to its bioactive components, mostly phenolic compounds. Among them, catechins are the most abundant. Tea has an important antioxidant capacity and anti-inflammatory properties, which make this beverage (or its extracts) a potential aid in the fight against several chronic diseases. On the other hand, some studies report the possibility of toxic effects and it is advisable to reduce tea consumption, such as in the last trimester of pregnancy. Additionally, new technologies are increasing researchers' possibilities to study the effect of tea on human gut microbiota and even against SARS CoV-2. This beverage favours some beneficial gut microbes, which could have important repercussions due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Silvia Pastoriza de la Cueva
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain
| |
Collapse
|
19
|
Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Res Int 2021; 142:110186. [PMID: 33773663 DOI: 10.1016/j.foodres.2021.110186] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Green tea, the least processed tea product, is scientifically known for its rich antioxidant content originating from polyphenols, especially catechins. The most potent green tea catechin is epigallocatechin-3-gallate (EGCG), which is responsible for a wide range of health benefits including anticancer, antidiabetics, and anti-inflammatory properties. However, green tea catechins (GTCs) are very labile under both environmental and gastrointestinal conditions; their chemical stability and bioavailability primarily depend on the processing and formulation conditions. Nanocarriers can protect GTCs against such conditions, and consequently, can be applicable for designing nanodelivery systems suitable for GTCs. In this review, the latest findings about both opportunities and limitations for the nanodelivery of GTCs and their incorporation into various functional food products are discussed. The scientific findings so far confirm that nanodelivery of GTCs can be an efficient approach towards the enhancement of their health-promoting effects with a minimal dose, controlled and targeted release, lessening the dose-related toxicity, and the efficient incorporation into functional foods. However, further investigation is yet needed to fully explain the cellular mechanisms of action of GTCs on human health and to elucidate the effect of encapsulation on their bioefficacy using well-designed, systematic, long-term, and large-scale clinical interventions. There also exists a substantial concern regarding the safety of the manufactured nanoparticles, their absorption, and the associated release mechanisms.
Collapse
|
20
|
Sheikhpour M. The Current Recommended Drugs and Strategies for the Treatment of Coronavirus Disease (COVID-19). Ther Clin Risk Manag 2020; 16:933-946. [PMID: 33116543 PMCID: PMC7548336 DOI: 10.2147/tcrm.s262936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The coronavirus 2019 (COVID-19) has been known as a pandemic disease by the World Health Organization (WHO) worldwide. The drugs currently used for treatment of COVID-19 are often selected and tested based on their effectiveness in other diseases such as influenza and AIDS and their major identified targets are viral protease, host cell produced protease, viral RNA polymerase, and the interaction site of viral protein with host cell receptors. Until now, there are no approved therapeutic drugs for definitive treatment of this dangerous disease. METHODS In this article, all of the documentary information, such as clinical trials, original research and reviews, government's database, and treatment guidelines, were reviewed critically and comprehensively. Moreover, it was attempted to present the most common and effective drugs and strategies, to suggest the possible treatment way of COVID19 by focusing on the body's defense mechanism against pathogens. RESULTS Antiviral drugs and immune-modulatory agents with the traditional medicines using the natural compound are usual accessible treatments. Accordingly, they have better beneficence due to the large existence studies, long time follow-ups, proximity to the natural system, and the normal physiological routine of the pathogen and host interactions. Besides, the serotonergic and dopaminergic pathways are considered as attractive targets to treat human immune, infectious, and cancerous diseases. Fluoxetine, as a host-targeted small molecule with immunomodulatory action, may be known as effective drug for treatment and prevention of COVID19 disease, in combination with antiviral drugs and natural compounds. CONCLUSION Co-administration of fluoxetine in the treatment of COVID19 could be considered due to the possibility of its interaction with ACE2 receptors, immune-modulatory function, and a proper immune response at the right time. Fluoxetine plays a beneficial role in reducing stress due to fear of infecting by COVID19 or worsening the disease and psychological support for the affected patients.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Shahrajabian MH, Sun W, Cheng Q. Traditional Herbal Medicine for the Prevention and Treatment of Cold and Flu in the Autumn of 2020, Overlapped With COVID-19. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20951431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many herbs and plants included in several traditional systems have promising bioactive compounds for modern drug therapy. The second round of COVID-19 cases will be accompanied by the spread of seasonal influenza in the fall. The combination of the influenza season and the second wave of COVID-19 may lead to more confusion and put more pressure on public health systems. A literature survey was accomplished using multiple databases including PubMed, Science Direct, ISI web of knowledge, and Google Scholar. The most important antiviral herbs for cold and flu are Thymus vulgaris, honeysuckle flowers, Andrographis, yarrow, peppermint leaf and oil, and Calendula. The most important expectorant herbs for flu and cold are tulsi, snake root, licorice root, clove, slippery elm root, marshmallow osha root, and sage leaf. Immunostimulant herbs for these 2 diseases are Echinacea root, Eucalyptus, garlic, ginseng, marshmallow, slippery elm, Isatisroot, Usnea lichen, myrrh resin, and ginger root. In this mini-review, we mention the key role of some of the most important herbal plants and prescriptions against influenza and cold on the basis of traditional Asian medicine.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei, China
| |
Collapse
|