1
|
Volkova Y, Scherbakov A, Dzichenka Y, Komkov A, Bogdanov F, Salnikova D, Dmitrenok A, Sachanka A, Sorokin D, Zavarzin I. Design and synthesis of phosphoryl-substituted steroidal pyridazines (Pho-STPYRs) as potent estrogen receptor alpha inhibitors: targeted treatment of hormone-dependent breast cancer cells. RSC Med Chem 2024; 15:2380-2399. [PMID: 39026643 PMCID: PMC11253874 DOI: 10.1039/d4md00153b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
Estrogen receptor alpha (ERα) is an important target for the discovery of new therapeutic drugs against hormone-dependent breast cancer. A series of phosphoryl-substituted steroidal pyridazines (Pho-STPYRs) were synthesized and biologically evaluated as potent ERα inhibitors. Pho-STPYRs showed cytotoxicity against breast cancer cells with IC50 values of 5.9 μM and higher. Pho-STPYRs 33 and 34 [IC50 (MCF7) = 6.5 and 5.9 μM, respectively] were found to block the expression of ERα, the main driver of breast cancer growth, and modulate the ERK, cyclin D1, and CDK4 pathways. Compound 34 showed selectivity, anti-estrogenic potency and high antiproliferative efficacy in combination with the AKT inhibitor. Molecular docking was used to more accurately define the binding mode of lead compounds 33 and 34 to ERα. The selectivity analysis showed that lead compounds 33 and 34 produce no effects on cytochromes P450, including CYP7A1, CYP7B1, CYP17A1, CYP19A1, and CYP21A2. In a word, Pho-STPYRs 33 and 34 are promising ERα inhibitors for the treatment of hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Yulia Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Alexander Scherbakov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
- Gause Institute of New Antibiotics 11 Bol'shaya Pirogovskaya ulitsa 119021 Moscow Russia
| | - Yaraslau Dzichenka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5/2 Kuprevich Str 220141 Minsk Belarus
| | - Alexander Komkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Fedor Bogdanov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
- Faculty of Medicine, Moscow State University 27-1 Lomonosovsky prosp 119192 Moscow Russia
| | - Diana Salnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
| | - Andrey Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| | - Antos Sachanka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5/2 Kuprevich Str 220141 Minsk Belarus
| | - Danila Sorokin
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology 24 Kashirskoe shosse 115522 Moscow Russia
| | - Igor Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp 119991 Moscow Russia
| |
Collapse
|
2
|
Albani M, Fassi EMA, Moretti RM, Garofalo M, Montagnani Marelli M, Roda G, Sgrignani J, Cavalli A, Grazioso G. Computational Design of Novel Cyclic Peptides Endowed with Autophagy-Inhibiting Activity on Cancer Cell Lines. Int J Mol Sci 2024; 25:4622. [PMID: 38731842 PMCID: PMC11083565 DOI: 10.3390/ijms25094622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Autophagy plays a significant role in development and cell proliferation. This process is mainly accomplished by the LC3 protein, which, after maturation, builds the nascent autophagosomes. The inhibition of LC3 maturation results in the interference of autophagy activation. (2) In this study, starting from the structure of a known LC3B binder (LIR2-RavZ peptide), we identified new LC3B ligands by applying an in silico drug design strategy. The most promising peptides were synthesized, biophysically assayed, and biologically evaluated to ascertain their potential antiproliferative activity on five humans cell lines. (3) A cyclic peptide (named Pep6), endowed with high conformational stability (due to the presence of a disulfide bridge), displayed a Kd value on LC3B in the nanomolar range. Assays accomplished on PC3, MCF-7, and A549 cancer cell lines proved that Pep6 exhibited cytotoxic effects comparable to those of the peptide LIR2-RavZ, a reference LC3B ligand. Furthermore, it was ineffective on both normal prostatic epithelium PNT2 and autophagy-defective prostate cancer DU145 cells. (4) Pep6 can be considered a new autophagy inhibitor that can be employed as a pharmacological tool or even as a template for the rational design of new small molecules endowed with autophagy inhibitory activity.
Collapse
Affiliation(s)
- Marco Albani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.A.); (G.R.)
| | - Enrico Mario Alessandro Fassi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.A.); (G.R.)
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (R.M.M.); (M.M.M.)
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, Università di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (R.M.M.); (M.M.M.)
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.A.); (G.R.)
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine (IRB), Via Chiesa 5, 6500 Bellinzona, Switzerland; (J.S.); (A.C.)
| | - Andrea Cavalli
- Institute for Research in Biomedicine (IRB), Via Chiesa 5, 6500 Bellinzona, Switzerland; (J.S.); (A.C.)
- Swiss Institute of Bioinformatics (SIB), University of Lausanne, Quartier UNIL-Sorge, Bâtiment Amphipôle, 1015 Lausanne, Switzerland
| | - Giovanni Grazioso
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.A.); (G.R.)
| |
Collapse
|
3
|
Zhang K, Jiang L, Xue L, Wang Y, Sun Y, Fan M, Qian H, Wang L, Li Y. 5-Heptadecylresorcinol Improves Aging-Associated Hepatic Fatty Acid Oxidation Dysfunction via Regulating Adipose Sirtuin 3. Nutrients 2024; 16:978. [PMID: 38613012 PMCID: PMC11013747 DOI: 10.3390/nu16070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Aging-associated hepatic fatty acid (FA) oxidation dysfunction contributes to impaired adaptive thermogenesis. 5-Heptadecylresorcinol (AR-C17) is a prominent functional component of whole wheat and rye, and has been demonstrated to improve the thermogenic capacity of aged mice via the regulation of Sirt3. However, the effect of AR-C17 on aging-associated hepatic FA oxidation dysfunction remains unclear. Here, 18-month-old C57BL/6J mice were orally administered with AR-C17 at a dose of 150 mg/kg/day for 8 weeks. Systemic glucose and lipid metabolism, hepatic FA oxidation, and the lipolysis of white adipose tissues (WAT) were measured. The results showed that AR-C17 improved the hepatic FA oxidation, and especially acylcarnitine metabolism, of aged mice during cold stimulation, with the enhancement of systemic glucose and lipid metabolism. Meanwhile, AR-C17 improved the WAT lipolysis of aged mice, promoting hepatic acylcarnitine production. Furthermore, the adipose-specific Sirt3 knockout mice were used to investigate and verify the regulation mechanism of AR-C17 on aging-associated hepatic FA oxidation dysfunction. The results showed that AR-C17 failed to improve the WAT lipolysis and hepatic FA oxidation of aged mice in the absence of adipose Sirt3, indicating that AR-C17 might indirectly influence hepatic FA oxidation via regulating WAT Sirt3. Our findings suggest that AR-C17 might improve aging-associated hepatic FA oxidation dysfunction via regulating adipose Sirt3.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (K.Z.); (L.J.); (L.X.); (Y.W.); (Y.S.); (M.F.); (H.Q.)
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (K.Z.); (L.J.); (L.X.); (Y.W.); (Y.S.); (M.F.); (H.Q.)
| |
Collapse
|
4
|
Zhang K, Jiang L, Xue L, Wang Y, Sun Y, Fan M, Qian H, Wang L, Li Y. The Enhancement of Acylcarnitine Metabolism by 5-Heptadecylresorcinol in Brown Adipose Tissue Contributes to Improving Glucose and Lipid Levels in Aging Male Mice. Nutrients 2023; 15:4597. [PMID: 37960251 PMCID: PMC10649465 DOI: 10.3390/nu15214597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
5-Heptadecylresorcinol (AR-C17), a primary biomarker of whole grain (WG) consumption, has been demonstrated to improve the thermogenic activity of aging mice. However, the intricate regulatory mechanism is not fully understood. This study conducted metabolomics analysis on young and aging mice with or without AR-C17 administration after cold exposure. The results showed that the aging mice displayed lower levels of acylcarnitine (ACar) in their plasma compared with the young mice during cold exposure, and 150 mg/kg/day of AR-C17 administration for 8 weeks could increase the plasma ACar levels of aging mice. ACar has been reported to be an essential metabolic fuel for the thermogenesis of brown adipose tissue (BAT). AR-C17 had similar effects on the ACar levels in the BAT as on the plasma of the aging mice during cold exposure. Furthermore, the aging mice had reduced ACar metabolism in the BAT, and AR-C17 could improve the ACar metabolism in the BAT of aging mice, thereby promoting the metabolic utilization of ACar by BAT. Moreover, the glucose and lipid levels of aging mice could be improved by AR-C17. This study revealed a deeper metabolic mechanism involved in the AR-C17-mediated thermogenic regulation of BAT, providing a new theoretical basis for the nutrition and health benefits of WG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Zhang K, Li T, Li Q, Nie C, Sun Y, Xue L, Wang Y, Fan M, Qian H, Li Y, Wang L. 5-Heptadecylresorcinol Regulates the Metabolism of Thermogenic Fat and Improves the Thermogenic Capacity of Aging Mice via a Sirtuin 3-Adenosine Monophosphate-Activated Protein Kinase Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:557-568. [PMID: 36535764 DOI: 10.1021/acs.jafc.2c07073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
5-Heptadecylresorcinol (AR-C17), a well-known biomarker for whole grain rye consumption, is a primary homolog of alkylresorcinols. In this study, the effects of AR-C17 on the thermogenesis of brown adipocytes and 3T3-L1 adipocytes were investigated. The results showed that AR-C17 increased sirtuin 3 (Sirt3) expression, and the expressions of specific thermogenic genes in adipocytes were increased. Furthermore, AR-C17 increased the mitochondrial functions during the thermogenic activation of adipocytes. In in vivo study, AR-C17 increased the cold tolerance and thermogenic capacity of adipose tissues in aging mice. In addition, Sirt3 activity was required for AR-C17-induced thermogenesis. Meanwhile, AR-C17 increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and AMPK was involved in the regulation of AR-C17 on thermogenic adipocytes. Mechanically, AR-C17 upregulated a Sirt3-AMPK positive-feedback loop in adipocytes and further increased the expression of uncoupling protein 1 to activate thermogenesis. This study indicated that AR-C17 could be a promising thermogenic activator of adipocytes to alleviate obesity and aging-associated metabolic diseases.
Collapse
Affiliation(s)
- Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Li
- China National Institute of Standardization, Beijing 100015, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Wei Y, Yu N, Wang Z, Hao Y, Wang Z, Yang Z, Liu J, Wang J. Analysis of the multi-physiological and functional mechanism of wheat alkylresorcinols based on reverse molecular docking and network pharmacology. Food Funct 2022; 13:9091-9107. [PMID: 35943408 DOI: 10.1039/d2fo01438f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Alkylresorcinols (ARs) are phenolic lipids present in the bran part of whole grain wheat and rye, which possess antioxidant, anti-inflammatory, anti-cancer and anti-tumor properties. The physiological activities of ARs have been proven to be diverse; however, the specific molecular mechanisms are still unclear. In this study, reverse virtual screening and network pharmacology were used to explore the potential molecular mechanisms of the physiological function of ARs and their endogenous metabolites. The Metascape database was used for GO enrichment and KEGG pathway analysis. Furthermore, molecular docking was used to investigate the interactions between active compounds and potential targets. The results showed that the bioavailability of most ARs and their endogenous metabolites was 0.55 and 0.56, while the bioavailability of certain endogenous metabolites was only 0.11. Multiplex analysis was used to screen 73 important targets and 4 core targets (namely, HSP90AA1, EP300, HSP90AB1 and ERBB2) out of the 163 initial targets. The important targets involved in the key KEGG pathway were pathways in cancer (hsa05200), lipid and atherosclerosis (hsa05417), Th17 cell differentiation (hsa04659), chemical carcinogenesis-receptor activation (hsa05207), and prostate cancer (hsa05215). The compounds involved in the core targets were AR-C21, AR-C19, AR-C17, 3,5-DHPHTA-S, 3,5-DHPHTA-G, 3,5-DHPPTA, 3,5-DHPPTA-S, 3,5-DHPPTA-G, 3,5-DHPPTA-Gly and 3,5-DHPPA-G. The interaction force between them was mainly related to hydrogen bonds and van der Waals. Overall, the physiological activities of ARs are not only related to their multiple targets, but may also be related to the synergistic effect of their endogenous metabolites.
Collapse
Affiliation(s)
- Yulong Wei
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Zongwei Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Zihui Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
7
|
Wang Z, Li Q, Hao Y, Wang Z, Yang H, Liu J, Wang J. Protective effect of 5-heptadecylresorcinol against obesity-associated skeletal muscle dysfunction by modulating mitochondrial biogenesis via the activation of SIRT3/PGC-1α signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
8
|
Nie C, Li T, Fan M, Wang Y, Sun Y, He R, Zhang X, Qian H, Ying H, Wang L, Li Y. Polyphenols in Highland barley tea inhibit the production of Advanced glycosylation end-products and alleviate the skeletal muscle damage. Mol Nutr Food Res 2022; 66:e2200225. [PMID: 35894228 DOI: 10.1002/mnfr.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/23/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Highland barley tea is a kind of caffeine-free cereal tea. Previous studies have shown that it was rich in polyphenol flavonoids. Here, the effect of Highland barley tea polyphenols (HBP) on the production of advanced glycosylation end-products and alleviate the skeletal muscle damage is systematically investigated. METHODS and results: HBP effectively inhibited the formation of AGEs in vitro, and 12 phenolic compounds were identified. In addition, D-galactose was used to construct a mouse senescence model and intervened with different doses of HBP. It was found that high doses of HBP effectively inhibited AGEs in serum and flounder muscle species and increased muscle mass in flounder muscle; also, high doses of HBP increased the expression of the mitochondrial functional protein SIRT3 and decreased the expression of myasthenia-related proteins. Furthermore, cellular experiments showed that AGEs could significantly increase oxidative stress in skeletal muscle. CONCLUSION These data indicate that the relationship between the biological activity and HBP properties is relevant since Highland barley could be a potential functional food to prevent AGEs-mediated skeletal muscle damage. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineer, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, 510663, China
| | - Xuguang Zhang
- BYHEALTH Institute of Nutrition & Health, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, 510663, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Abdelnaby RM, Rateb HS, Ali O, Saad AS, Nadeem RI, Abou-Seri SM, Amin KM, Younis NS, Abdelhady R. Dual PI3K/Akt Inhibitors Bearing Coumarin-Thiazolidine Pharmacophores as Potential Apoptosis Inducers in MCF-7 Cells. Pharmaceuticals (Basel) 2022; 15:ph15040428. [PMID: 35455425 PMCID: PMC9027131 DOI: 10.3390/ph15040428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/05/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most common malignancy worldwide; therefore, the development of new anticancer agents is essential for improved tumor control. By adopting the pharmacophore hybridization approach, two series of 7-hydroxyl-4-methylcoumarin hybridized with thiosemicarbazone (V–VI) and thiazolidin-4-one moieties (VII–VIII) were prepared. The in vitro anticancer activity was assessed against MCF-7 cells adopting the MTT assay. Nine compounds showed significant cytotoxicity. The most promising compound, VIIb, induced remarkable cytotoxicity (IC50 of 1.03 + 0.05 µM). Further investigations were conducted to explore its pro-apoptotic activity demonstrating S-phase cell cycle arrest. Apoptosis rates following VIIb treatment revealed a 5-fold and 100-fold increase in early and late apoptotic cells, correspondingly. Moreover, our results showed caspase-9 dependent apoptosis induction as manifested by an 8-fold increase in caspase-9 level following VIIb treatment. Mechanistically, VIIb was found to target the PI3K-α/Akt-1 axis, as evidenced by enzyme inhibition assay results reporting significant inhibition of examined enzymes. These findings were confirmed by Western blot results indicating the ability of VIIb to repress levels of Cyclin D1, p-PI3K, and p-Akt. Furthermore, docking studies showed that VIIb has a binding affinity with the PI3K binding site higher than the original ligands X6K. Our results suggest that VIIb has pharmacological potential as a promising anti-cancer compound by the inhibition of the PI3K/Akt axis.
Collapse
Affiliation(s)
- Rana M. Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Correspondence: ; Tel.: +20-1270551779
| | - Heba S. Rateb
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12585, Egypt;
| | - Omaima Ali
- Egyptian Drug Authority, Cairo 12618, Egypt;
| | - Ahmed S. Saad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt;
| | - Rania I. Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt;
| | - Sahar M. Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.M.A.-S.); (K.M.A.)
| | - Kamilia M. Amin
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.M.A.-S.); (K.M.A.)
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, Faculty of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Al-Ahsa, Saudi Arabia;
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
10
|
Wang Z, Yang Z, Liu J, Hao Y, Sun B, Wang J. Potential Health Benefits of Whole Grains: Modulation of Mitochondrial Biogenesis and Energy Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14065-14074. [PMID: 34775748 DOI: 10.1021/acs.jafc.1c05527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mitochondria play an essential role in maintaining cellular metabolic homeostasis. However, its dysfunction will cause different pathophysiological consequences. A specific mechanism of action has been developed by cells to adapt to changes in physiological conditions or in response to different stimuli, by meditating mitochondrial number, structure, and energy metabolism. Whole grains are considered healthier than refined grains for their higher amounts of bioactive components, with proven multiple health benefits. The modulation of an appropriate mitochondrial function contributes to the bioactive-component-based health improvements. Thus, this review aims to represent current studies that identify the impact of natural bioactive components in whole grains against metabolic disorders by modulating mitochondrial biogenesis and energy metabolism. It seems most attractive to aim nutritional intervention at the prevention or treatment of metabolic abnormalities and hence to target dietary management at improvement of mitochondrial function.
Collapse
Affiliation(s)
- Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Zihui Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| |
Collapse
|