1
|
Liu K, Zhao C, Zhang K, Yang X, Feng R, Zong Y, He Z, Zhao Y, Du R. Pilose Antler Protein Relieves UVB-Induced HaCaT Cells and Skin Damage. Molecules 2024; 29:4060. [PMID: 39274908 PMCID: PMC11397021 DOI: 10.3390/molecules29174060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Extended exposure to UVB (280-315 nm) radiation results in oxidative damage and inflammation of the skin. Previous research has demonstrated that pilose antler extracts have strong anti-inflammatory properties and possess antioxidant effects. This study aimed to elucidate the mechanism of pilose antler protein in repairing photodamage caused by UVB radiation in HaCaT cells and ICR mice. Pilose antler protein (PAP) was found to increase the expression of type I collagen and hyaluronic acid in HaCaT cells under UVB irradiation while also inhibiting reactive oxygen species (ROS) production and oxidative stress in vitro. In vivo, the topical application of pilose antler protein effectively attenuated UVB-induced skin damage in ICR mice by reducing interleukin-1β (IL-β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and inhibiting skin inflammation while alleviating UVB-induced oxidative stress. It was shown that pilose antler protein repaired UVB-induced photodamage through the MAPK and TGF-β/Smad pathways.
Collapse
Affiliation(s)
- Kaiyue Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chenxu Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ke Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyue Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ruyi Feng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Peng B, Hao Y, Chen Y, Yu S, Qu L. Chemical constituents and bioactivities of fermented rose (from Yunnan) extract. Nat Prod Res 2024:1-8. [PMID: 38967008 DOI: 10.1080/14786419.2024.2371995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Natural plant extracts have gained significant attention in research due to their low toxicity, and potent antioxidant, and anti-aging properties. The present study investigated the phytochemical composition of a fermented rose extract (FRE), and evaluated its antioxidant, skin whitening, and anti-aging activities in vitro. The results showed that the FRE was rich in polyphenols and flavonoids. A total of 13 major compounds were identified by Liquid Chromatography-Mass Spectrometry (LC-MS), with astragalin as the primary component. In vitro, analysis of antioxidant activity showed that FRE effectively eliminated 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and dose-dependent reduced intracellular reactive oxygen species (ROS) levels. The FRE dose-dependent inhibited tyrosinase, collagenase, and hyaluronidase activity, reduced intracellular melanin synthesis, up-regulated the expression of collagen type I alpha 1 (COL1A1) and collagen type III alpha 1 (COL3A1), and down-regulated matrix metalloproteinases (MMPs) expression. Additionally, treatment with FRE significantly downregulated the expression of mitogen-activated protein kinase 1 (MAPK1), suggesting that FRE may modulate MAPK signaling pathways for skin anti-aging.
Collapse
Affiliation(s)
- Bo Peng
- Yunnan Botanee Bio-technology Group Co., Ltd, Kunming, China
| | - Yining Hao
- Yunnan Botanee Bio-technology Group Co., Ltd, Kunming, China
| | - Yueyue Chen
- Yunnan Botanee Bio-technology Group Co., Ltd, Kunming, China
| | - Shishuai Yu
- Yunnan Botanee Bio-technology Group Co., Ltd, Kunming, China
| | - Liping Qu
- Yunnan Botanee Bio-technology Group Co., Ltd, Kunming, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd, Kunming, China
| |
Collapse
|
3
|
Liu D, Ren Y, Zhong S, Xu B. New Insight into Utilization of Fish By-Product Proteins and Their Skin Health Promoting Effects. Mar Drugs 2024; 22:215. [PMID: 38786606 PMCID: PMC11122902 DOI: 10.3390/md22050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
In regions reliant on fisheries for livelihoods, a significant number of fish by-products are generated annually due to processing. These discarded parts contain valuable biological resources, such as proteins, fish oils, and trace elements, thus holding enormous potential for reutilization. In recent years, fish by-product proteins have been widely utilized in skincare products due to their rich collagen content, biosafety, and biocompatibility. This review summarizes the research into and applications of fish by-product proteins in skin health, including alleviating oxidative stress and skin inflammation, reducing DNA damage, mitigating melanin production, improving skin hydration, slowing skin matrix degradation, and promoting synthesis. Additionally, the possibility of improving skin health by improving the abundance of gut microbiota is also discussed. This review underscores the importance of fish by-product proteins in the fisheries, food processing, cosmetics, and biomedical industries.
Collapse
Affiliation(s)
- Dongcheng Liu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (D.L.); (Y.R.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxin Ren
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (D.L.); (Y.R.)
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (D.L.); (Y.R.)
| |
Collapse
|
4
|
Baek J, Kim JH, Park J, Kim DH, Sa S, Han JS, Kim W. 1-Kestose Blocks UVB-Induced Skin Inflammation and Promotes Type I Procollagen Synthesis via Regulating MAPK/AP-1, NF-κB and TGF-β/Smad Pathway. J Microbiol Biotechnol 2024; 34:911-919. [PMID: 38379292 DOI: 10.4014/jmb.2311.11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024]
Abstract
Solar UVB irradiation cause skin photoaging by inducing the high expression of matrix metalloproteinase (MMPs) to inhibit the expression of Type1 procollagen synthesis. 1-Kestose, a natural trisaccharide, has been indicated to show a cytoprotective role in UVB radiation-induced-HaCaT cells. However, few studies have confirmed the anti-aging effects. In the present study, we evaluated the anti-photoaging and pathological mechanism of 1-kestose using Human keratinocytes (HaCaT) cells. The results found that 1-kestose pretreatment remarkably reduced UVB-generated reactive oxygen species (ROS) accumulation in HaCaT cells. 1-Kestose suppressed UVB radiation-induced MMPs expressions by blocking MAPK/AP-1 and NF-κB p65 translocation. 1-Kestose pretreatment increased Type 1 procollagen gene expression levels by activating TGF-β/Smad signaling pathway. Taken together, our results demonstrate that 1-kestose may serve as a potent natural trisaccharide for inflammation and photoaging prevention.
Collapse
Affiliation(s)
- Jihye Baek
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jiwon Park
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Do Hyun Kim
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Soonok Sa
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Jung-Sook Han
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Stoykova ID, Koycheva IK, Binev BK, Mihaylova LV, Benina MY, Alipieva KI, Georgiev MI. Myconoside and Calceolarioside E Restrain UV-Induced Skin Photoaging by Activating NRF2-Mediated Defense Mechanisms. Int J Mol Sci 2024; 25:2441. [PMID: 38397118 PMCID: PMC10888667 DOI: 10.3390/ijms25042441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic and excessive ultraviolet (UVA/UVB) irradiation exposure is known as a major contributor to premature skin aging, which leads to excessive reactive oxygen species generation, disturbed extracellular matrix homeostasis, DNA damage, and chronic inflammation. Sunscreen products are the major preventive option against UVR-induced photodamage, mostly counteracting the acute skin effects and only mildly counteracting accelerated aging. Therefore, novel anti-photoaging and photopreventive compounds are a subject of increased scientific interest. Our previous investigations revealed that the endemic plant Haberlea rhodopensis Friv. (HRE) activates the antioxidant defense through an NRF2-mediated mechanism in neutrophiles. In the present study, we aimed to investigate the photoprotective potential of HRE and two of its specialized compounds-the phenylethanoid glycosides myconoside (MYC) and calceolarioside E (CAL)-in UVA/UVB-stimulated human keratinocytes in an in vitro model of photoaging. The obtained data demonstrated that the application of HRE, MYC, and CAL significantly reduced intracellular ROS formation in UVR-exposed HaCaT cells. The NRF2/PGC-1α and TGF-1β/Smad/Wnt signaling pathways were pointed out as having a critical role in the observed CAL- and MYC-induced photoprotective effect. Collectively, CAL is worth further evaluation as a potent natural NRF2 activator and a promising photoprotective agent that leads to the prevention of UVA/UVB-induced premature skin aging.
Collapse
Affiliation(s)
- Iva D. Stoykova
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria (L.V.M.)
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Ivanka K. Koycheva
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Biser K. Binev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Liliya V. Mihaylova
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria (L.V.M.)
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Maria Y. Benina
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria (L.V.M.)
| | - Kalina I. Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milen I. Georgiev
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria (L.V.M.)
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Zhang X, Zhuang H, Wu S, Mao C, Dai Y, Yan H. Marine Bioactive Peptides: Anti-Photoaging Mechanisms and Potential Skin Protective Effects. Curr Issues Mol Biol 2024; 46:990-1009. [PMID: 38392181 PMCID: PMC10887644 DOI: 10.3390/cimb46020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/24/2024] Open
Abstract
Skin photoaging, resulting from prolonged exposure to ultraviolet radiation, is a form of exogenous aging that not only impacts the aesthetic aspect of the skin but also exhibits a strong correlation with the onset of skin cancer. Nonetheless, the safety profile of non-natural anti-photoaging medications and the underlying physiological alterations during the process of photoaging remain inadequately elucidated. Consequently, there exists a pressing necessity to devise more secure interventions involving anti-photoaging drugs. Multiple studies have demonstrated the noteworthy significance of marine biomolecules in addressing safety concerns related to anti-photoaging and safeguarding the skin. Notably, bioactive peptides have gained considerable attention in anti-photoaging research due to their capacity to mitigate the physiological alterations associated with photoaging, including oxidative stress; inflammatory response; the abnormal expression of matrix metalloproteinase, hyaluronidase, and elastase; and excessive melanin synthesis. This review provides a systematic description of the research progress on the anti-photoaging and skin protection mechanism of marine bioactive peptides. The focus is on the utilization of marine bioactive peptides as anti-photoaging agents, aiming to offer theoretical references for the development of novel anti-photoaging drugs and methodologies. Additionally, the future prospects of anti-aging drugs are discussed, providing an initial reference for further research in this field.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chen Mao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yaxi Dai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
7
|
Kim TY, Park NJ, Jo BG, Lee BS, Keem MJ, Kwon TH, Kim KH, Kim SN, Yang MH. Anti-Wrinkling Effect of 3,4,5-tri- O-caffeoylquinic Acid from the Roots of Nymphoides peltata through MAPK/AP-1, NF-κB, and Nrf2 Signaling in UVB-Irradiated HaCaT Cells. Antioxidants (Basel) 2023; 12:1899. [PMID: 37891978 PMCID: PMC10604296 DOI: 10.3390/antiox12101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Nymphoides peltata has been widely used pharmacologically in traditional Chinese medicine to treat heat strangury and polyuria. The aim of this study was to isolate the bioactive components from N. peltata and evaluate their potential use as antioxidant and anti-wrinkle agents. Phytochemical investigation of the methanolic extract of N. peltata roots led to the isolation of 15 compounds (1-15), which were structurally determined as α-spinasterol (1), 3-O-β-D-glucopyranosyl-oleanolic acid 28-O-β-D-glucuronopyranoside (2), 4-hydroxybenzoic acid (3), protocatechuic acid (4), vanillic acid (5), p-coumaric acid (6), caffeic acid (7), ferulic acid (8), neochlorogenic acid (neo-CQA) (9), chlorogenic acid (CQA) (10), cryptochlorogenic acid (crypto-CQA) (11), isochlorogenic acid B (3,4-DCQA) (12), isochlorogenic acid A (3,5-DCQA) (13), isochlorogenic acid C (4,5-DCQA) (14), and 3,4,5-tri-O-caffeoylquinic acid (TCQA) (15). Of these 15 compounds, compound 2 was a new oleanane saponin, the chemical structure of which was characterized by 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data and high-resolution electrospray ionization mass spectrometry (HRESIMS), as well as chemical reaction. Biological evaluation of the isolated compounds revealed that 3,4,5-tri-O-caffeoylquinic acid (TCQA) significantly improved Nrf2 levels in an Nrf2-ARE reporter HaCaT cell screening assay. TCQA was found to potently inhibit the Nrf2/HO-1 pathway and to possess strong anti-wrinkle activity by modulating the MAPK/NF-κB/AP-1 signaling pathway and thus inhibiting MMP-1 synthesis in HaCaT cells exposed to UVB. Our results suggest that TCQA isolated from N. peltata might be useful for developing effective antioxidant and anti-wrinkle agents.
Collapse
Affiliation(s)
- Tae-Young Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Beom-Geun Jo
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Min-Ji Keem
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Taek-Hwan Kwon
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| |
Collapse
|
8
|
Ding C, Peng X, Yang J, Chen K, Liu X, Zhao Y, Zhang S, Sun S, Zhang J, Ding Q, Liu S, Liu W. Rg3-loaded P407/CS/HA hydrogel inhibits UVB-induced oxidative stress, inflammation and apoptosis in HaCaT cells. Biomed Pharmacother 2023; 165:115177. [PMID: 37467650 DOI: 10.1016/j.biopha.2023.115177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
UVB radiation can damage human skin, whereas Ginsenoside Rg3, the active ingredient in red ginseng that is processed from ginseng (Panax ginseng C.A. Meyer), could inhibit UVB induced cell damage through anti-oxidation. Meanwhile, P407/CS/HA hydrogel has significant biomedical applications as carriers of drugs. However, the beneficial effects of Rg3-loaded hydrogel (Rg3-Gel) on human HaCaT keratinocytes induced by UVB have rarely been reported. In our study, Rg3 was loaded into hydrogel and the effect of Rg3-Gel against UVB‑induced Hacat cells damages was determined by measuring its ability to alleviate UVB‑induced elevation of oxidative stress, pro-inflammatory and apoptotic response. We found that the treatment with Rg3-Gel inhibited the generation of intracellular ROS and MDA and upregulated the expression of antioxidant enzymes SOD and GSH-Px which were inhibited by UVB exposure. Increased levels of pro-inflammatory cytokines TNF‑α, COX‑2, iNOS and IL‑1β following UVB irradiation were suppressed by the introduction of Rg3-Gel. Additionally, the level of Bcl-2 was decreased and the expression of Bax and Caspase3 were enhanced by Rg3-Gel treatment. In conclusion, Rg3-Gel equipped with the synergistic effect of Rg3 and hydrogel has an effective inhibitory effect on UVB-induced oxidative stress, inflammatory and apoptosis.
Collapse
Affiliation(s)
- Chuanbo Ding
- Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiaojuan Peng
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jiali Yang
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Kecheng Chen
- Starsky Medical Research Center, Siping, Jilin 136001, China
| | - Xinglong Liu
- Jilin Agricultural Science and Technology College, Jilin, China
| | - Yingchun Zhao
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shuai Zhang
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shuwen Sun
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jinping Zhang
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Qiteng Ding
- Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shuang Liu
- Goldenwell Biotech, Inc, 50 West Liberty Street, Suite 880, Reno, NV 89501, USA.
| | - Wencong Liu
- Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
9
|
Wang X, Zhang Y, Wang D, Su N, Yang L, Fu H, Zhang J, Li M, Wang C. Protective effects of Aureobasidium pullulans lysate on UV-damaged human skin fibroblasts and HaCaT cells. BIORESOUR BIOPROCESS 2023; 10:55. [PMID: 38647892 PMCID: PMC10992526 DOI: 10.1186/s40643-023-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/16/2023] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Aureobasidium pullulans (A. pullulans) has a wide range of applications. Ultraviolet (UV) rays from the sun can cause skin photoaging. In order to explore the protective effect and application potential of A. pullulans lysate on UV-damaged human skin fibroblasts (HSF) and HaCaT Cells, this study investigates the anti-aging and anti-inflammatory effects of A. pullulans lysate as well as the mechanism of anti-oxidative stress at the cellular and molecular levels through cytotoxicity experiments, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT-qPCR). RESULTS The experimental results have shown that the A. pullulans lysate can effectively reduce the loss of extracellular matrix components (EMC), such as collagen and hyaluronic acid (HA). It is also capable of scavenging excess reactive oxygen species (ROS) from the body, thereby increasing the activity of catalase, decreasing the overexpression of intracellular matrix metalloproteinases (MMPs), enhancing the gene expression of metalloproteinase inhibitors (TIMPs), and decreasing the level of inflammatory factors, reducing UV-induced apoptosis of HaCaT cells. Meanwhile, oxidative stress homeostasis is also regulated through the Nrf2/Keap1 and MAPK signaling pathways. CONCLUSIONS This study shows that the A. pullulans lysate has the potential to resist photoaging.
Collapse
Affiliation(s)
- Xin Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yongtao Zhang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Dongdong Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Ning Su
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Li Yang
- Beijing Sino-German Union Cosmetic Institute Co., Ltd, Beijing, People's Republic of China
| | - Hao Fu
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Jiachan Zhang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Meng Li
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China.
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Vottonen L, Koskela A, Felszeghy S, Wylegala A, Kryszan K, Gurubaran IS, Kaarniranta K, Wylegala E. Oxidative Stress and Cellular Protein Accumulation Are Present in Keratoconus, Macular Corneal Dystrophy, and Fuchs Endothelial Corneal Dystrophy. J Clin Med 2023; 12:4332. [PMID: 37445366 DOI: 10.3390/jcm12134332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to investigate oxidative stress as well as cellular protein accumulation in corneal diseases including keratoconus (KC), macular corneal dystrophy (MCD), and Fuchs endothelial corneal dystrophy (FECD) at their primary affecting sites. Corneal buttons from KC, MCD, and FECD patients, as well as healthy controls, were analyzed immunohistochemically to evaluate the presence of oxidative stress and the function of the proteostasis network. 4-Fydroxynonenal (4-HNE) was used as a marker of oxidative stress, whereas the levels of catalase and heat-shock protein 70 (HSP70) were analyzed to evaluate the response of the antioxidant defense system and molecular chaperones, respectively. Sequestosome 1 (SQSTM1) levels were determined to assess protein aggregation and the functionality of autophagic degradation. Basal epithelial cells of the KC samples showed increased levels of oxidative stress marker 4-HNE and antioxidant enzyme catalase together with elevated levels of HSP70 and accumulation of SQSTM1. Corneal stromal cells and endothelial cells from MCD and FECD samples, respectively, showed similarly increased levels of these markers. All corneal diseases showed the presence of oxidative stress and activation of the molecular chaperone response to sustain protein homeostasis. However, the accumulation of protein aggregates suggests insufficient function of the protective mechanisms to limit the oxidative damage and removal of protein aggregates via autophagy. These results suggest that oxidative stress has a role in KC, MCD, and FECD at the cellular level as a secondary outcome. Thus, antioxidant- and autophagy-targeted therapies could be included as supporting care when treating KC or corneal dystrophies.
Collapse
Affiliation(s)
- Linda Vottonen
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Adam Wylegala
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
- Ophthalmology Department, Railway Hospital, 40-760 Katowice, Poland
| | | | | | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Edward Wylegala
- Ophthalmology Department, Railway Hospital, 40-760 Katowice, Poland
- Clinical Department of Ophthalmology, II School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland
| |
Collapse
|
11
|
Mechanisms of Antitumor Invasion and Metastasis of the Marine Fungal Derivative Epi-Aszonalenin A in HT1080 Cells. Mar Drugs 2023; 21:md21030156. [PMID: 36976205 PMCID: PMC10056024 DOI: 10.3390/md21030156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Epi-aszonalenin A (EAA) is an alkaloid that is isolated and purified from the secondary metabolites of coral symbiotic fungi and has been shown to have good atherosclerotic intervention activity and anti-angiogenic activity in our previous studies. In the present study, antiangiogenic activity was used as a basis of an intensive study of its mechanism of action against tumor metastasis and invasion. Invasive metastatic pairs are a hallmark of malignancy, and the dissemination of tumor cells is the most dangerous process in the development of tumors. The results of cell wound healing and the Transwell chamber assay showed that EAA interfered well with PMA-induced migration and invasion of HT1080 cells. Western blot and the ELISA assay showed that EAA decreased MMPs and vascular endothelial growth factor (VEGF) activity and inhibited the expression of N-cadherin and hypoxia-inducible factor-1α (HIF-1α) by regulating the phosphorylation of downstream mitogen-activated protein kinase (MAPK), PI3K/AKT, and NF-κB pathways. Simultaneous molecular docking results revealed that the mimic coupling between the EAA and MMP-2/-9 molecules formed a stable interaction. The results of this study provide a research basis for the inhibition of tumor metastasis by EAA, and together with previous studies, confirm the potential pharmacology and drug potential for this class of compound for application in angiogenesis-related diseases and further improve the availability of coral symbiotic fungi.
Collapse
|
12
|
Bioactive Peptides from Skipjack Tuna Cardiac Arterial Bulbs (II): Protective Function on UVB-Irradiated HaCaT Cells through Antioxidant and Anti-Apoptotic Mechanisms. Mar Drugs 2023; 21:md21020105. [PMID: 36827146 PMCID: PMC9962892 DOI: 10.3390/md21020105] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to investigate the protective function and mechanism of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from skipjack tuna cardiac arterial bulbs on skin photoaging using UVB-irradiated HaCaT cell model. The present results indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) had significant cytoprotective effect on UVB-irradiated HaCaT cells (p < 0.001). Hoechst 33342 staining showed that apoptosis of UV-irradiated HaCaT cells could be significantly reduced by the treatment of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM); JC-1 staining showed that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could protect HaCaT cells from apoptosis by restoring mitochondrial membrane potential (MMP); Furthermore, TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could significantly down-regulate the ratio of Bax/Bcl-2 and reduce the expression level of the apoptosis-executing protein Caspase-3 by decreasing the expression of protein Caspase-8 and Caspase-9 (p < 0.05). The action mechanism indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could up-regulate the expression levels of Nrf2, NQO1 and HO-1 (p < 0.05), which further increased the activity of downstream proteases (SOD, CAT and GSH-Px), and scavenged reactive oxygen species (ROS) and decreased the intracellular levels of malondialdehyde (MDA). In addition, molecular docking indicated that TCP3 (PKK) and TCP6 (YEGGD) could competitively inhibit the Nrf2 binding site because they can occupy the connection site of Nrf2 by binding to the Kelch domain of Keap1 protein. TCP9 (GPGLM) was inferred to be non-competitive inhibition because it could not bind to the active site of the Kelch domain of Keap1 protein. In summary, the antioxidant peptides TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from cardiac arterial bulbs of skipjack tuna can effectively protect HaCaT cells from UVB-irradiated damage and can be used in the development of healthy and cosmetic products to treat diseases caused by UV radiation.
Collapse
|
13
|
Photoaging induced by long-term exposure to UV irradiation and amelioration by Skipjack tuna skin hydrolysates: Targeting inhibition of MAPK and NF-κB signaling hyperactivation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Cetin Aluc C, Gok B, Kecel-Gunduz S, Budama-Kilinc Y. Glycyrrhizic acid Poly(D,L-lactide-co-glycolide) nanoparticles: anti-aging cosmeceutical formulation for topical applications. PeerJ 2022. [DOI: 10.7717/peerj.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycyrrhizic acid (GA) is one of the components of licorice roots (Glycyrrhiza glabra L.). GA is a triterpenoid saponin can be used as a medicinal plant with its antiallergic, antiviral, anti-inflammatory, anti-ulcer, hepatoprotective, anticancer, anti-oxidation activities and several other therapeutic properties. The aim of this study is to develop an anti-aging formulation for topical application containing GA. In this context, GA-loaded Poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were prepared using the double emulsion method, and were characterized by various spectroscopic methods. The efficacy of GA-PLGA NPs was evaluated with in vitro and in silico methods. The encapsulation efficiency and loading capacity were calculated. The in vitro release study was conducted, and the GA release profile was determined. The genotoxic activity of GA and GA-PLGA NPs was evaluated by the Ames test using TA98 and TA100 mutant strains of Salmonella typhimurium. The cytotoxic potential of GA-PLGA NPs was evaluated on the HaCaT cell line using the MTT assay. According to the genotoxicity and cytotoxicity results, it was found that the GA-PLGA NP formulation did not exhibit genotoxic and cytotoxic effects. Moreover, the efficacy of GA in preventing UVB-induced photo-aging in HaCaT cells and the clarification of the molecular mechanism of GA binding to MMPs were revealed by molecular docking analysis. In addition, through molecular dynamics (MD) analysis, the binding interaction of GA with MMPs in a dynamic system, and protein-ligand stability were predicted as a result of 50 ns MD simulation studies considering various analysis parameters. Finally, it was evaluated that GA-PLGA nanoformulation might be used as an alternative anti-aging skin care product candidate via topical application.
Collapse
Affiliation(s)
- Cigdem Cetin Aluc
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Türkiye
- Abdi Ibrahim Pharmaceuticals, Abdi Ibrahim Production Facilities, Istanbul, Türkiye
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Türkiye
| | | | | |
Collapse
|
15
|
Protective Effects of Orange Sweet Pepper Juices Prepared by High-Speed Blender and Low-Speed Masticating Juicer against UVB-induced Skin Damage in SKH-1 Hairless Mice. Molecules 2022; 27:molecules27196394. [PMID: 36234931 PMCID: PMC9572457 DOI: 10.3390/molecules27196394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Sweet pepper fruits (Capsicum annuum L.) contain various nutrients and phytochemicals that enhance human health and prevent the pathogenesis of certain diseases. Here, we report that oral administration of orange sweet pepper juices prepared by a high-speed blender and low-speed masticating juicer reduces UVB-induced skin damage in SKH-1 hairless mice. Sweet pepper juices reduced UVB-induced skin photoaging by the regulation of genes involved in dermal matrix production and maintenance such as collagen type I α 1 and matrix metalloproteinase-2, 3, 9. Administration of sweet pepper juices also restored total collagen levels in UVB-exposed mice. In addition, sweet pepper juices downregulated the expression of pro-inflammatory proteins such as cyclooxygenase-2, interleukin (IL)-1β, IL-17, and IL-23, which was likely via inhibiting the NF-κB pathway. Moreover, primary antioxidant enzymes in the skin were enhanced by oral supplementation of sweet pepper juices, as evidenced by increased expression of catalase, glutathione peroxidase, and superoxide dismutase-2. Immunohistochemical staining showed that sweet pepper juices reduced UVB-induced DNA damage by preventing 8-OHdG formation. These results suggest that sweet pepper juices may offer a protective effect against photoaging by inhibiting the breakdown of dermal matrix, inflammatory response, and DNA damage as well as enhancing antioxidant defense, which leads to an overall reduction in skin damage.
Collapse
|
16
|
Hu J, Yao W, Chang S, You L, Zhao M, Chi-Keung Cheung P, Hileuskaya K. Structural characterization and anti-photoaging activity of a polysaccharide from Sargassum fusiforme. Food Res Int 2022; 157:111267. [PMID: 35761578 DOI: 10.1016/j.foodres.2022.111267] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/11/2022]
Abstract
In this study, a purified algal polysaccharide (P1) was isolated from Sargassum fusiforme and its structural characteristics and anti-photoaging activity were studied. Results showed that P1 had a molecular weight of 289 kDa and was mainly composed of mannuronic acid, guluronic acid and fucose with molar ratio of 7.67:2.35:1.00. The backbone of P1 was →4)-β-ManA-(1→4)-α-GulA-(1→4)-β-ManA-(1→4)-β-ManA-(1→4)-α-GulA-(1→4)-β-ManA-(1→3,4)-β-ManA-(1→ with a terminal group of α-Fucp-(1→ linked to O-3 position of →3,4)-β-ManA-(1→. In addition, P1 could inhibit the expressions of MMPs (MMP-1, MMP-3 and MMP-9) in the UVB-irradiated HaCaT cells, indicating that P1 could reduce collagen loss caused by UVB irradiation. It also reduced the contents of ROS and inflammatory factors (TNF-α, IL-6 and IL-1β), indicating that P1 could reduce the oxidative stress and inflammation response. Thus, Sargassum fusiforme polysaccharide P1 could be used as a potential functional food to relieve skin photoaging.
Collapse
Affiliation(s)
- Jinhong Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Shiyuan Chang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Peter Chi-Keung Cheung
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Skaryna str., Minsk 220141, Belarus
| |
Collapse
|
17
|
Xu D, Zhao M, Lin H, Li C. Theragra chalcogramma Hydrolysates, Rich in Gly-Leu-Pro-Ser-Tyr-Thr, Exerts Anti-Photoaging Potential via Targeting MAPK and NF-κB Pathways in SD Rats. Mar Drugs 2022; 20:286. [PMID: 35621937 PMCID: PMC9144478 DOI: 10.3390/md20050286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies have revealed that excessive exposure to UV irradiation is the main cause of skin photoaging and the signaling pathways of MAPK and NF-κB are involved in this progression. The present study aims to investigate the anti-photoaging effects of low molecular weight hydrolysates from Theragra chalcogramma (TCH) and to clarify the underlying mechanism. The degradation of mechanical barrier functions in photoaged skin was substantially ameliorated after TCH administration; meanwhile, TCH significantly elevated the antioxidant capacity and suppressed the over-production of inflammatory cytokine IL-1β. Moreover, the histopathological deteriorations such as epidermal hyperplasia and dermal loss were significantly alleviated, along with the increase in procollagen type I content and decrease in MMP-1 activity (p < 0.05). Furthermore, TCH effectively blocked the MAPK and NF-κB signaling pathways through inhibition of the phosphorylation of p38, JNK, ERK, iκB, and p65 proteins. Collectively, these data indicate that TCH has potential as a novel ingredient for the development of anti-photoaging foods.
Collapse
Affiliation(s)
- Defeng Xu
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Haisheng Lin
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Caihong Li
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
18
|
Xu D, Li C, Zhao M. Theragra chalcogramma Hydrolysate, Rich in Gly-Leu-Pro-Ser-Tyr-Thr, Alleviates Photoaging via Modulating Deposition of Collagen Fibers and Restoration of Extracellular Components Matrix in SD Rats. Mar Drugs 2022; 20:md20040252. [PMID: 35447925 PMCID: PMC9028377 DOI: 10.3390/md20040252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/17/2023] Open
Abstract
Excessive exposure of the skin to ultraviolet irradiation induces skin photoaging, which seriously deteriorates the barrier functions of skin tissue, and even causes skin damages and diseases. Recently, dietary supplements from marine sources have been found to be useful in modulating skin functions and can be used to alleviate photoaging. Herein, the low-molecular-weight hydrolysates with a photoaging-protection effect were prepared by enzymatic hydrolysis from Theragra chalcogramma (TCH), and the potential mechanism were subsequently explored. The results revealed that TCH desirably improved the barrier functions of photoaged skin and stimulated the deposition of ECM components Col I, Hyp, and HA in the dermal layer. Histologically, TCH reduced the epidermal hyperplasia and restored the impaired architectures in a dose-dependent manner. Meanwhile, the activity of matrix metalloproteinase-1 (MMP-1) in photoaging skin was inhibited, and the expression levels of elastin and fibrillin-1 were elevated accordingly after TCH administration, and the significant improvements were observed at high-dose level (p < 0.05). Taken together, the efficacy of TCH against skin photoaging is highly associated with the regulation on ECM metabolism and the repairing of damaged mechanical structure.
Collapse
Affiliation(s)
- Defeng Xu
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (D.X.); (M.Z.); Tel.: +86-(138)-2719-8525 (D.X.)
| | - Caihong Li
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China;
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Correspondence: (D.X.); (M.Z.); Tel.: +86-(138)-2719-8525 (D.X.)
| |
Collapse
|
19
|
Xiao Z, Yang S, Liu Y, Zhou C, Hong P, Sun S, Qian ZJ. A novel glyceroglycolipid from brown algae Ishige okamurae improve photoaging and counteract inflammation in UVB-induced HaCaT cells. Chem Biol Interact 2022; 351:109737. [PMID: 34740599 DOI: 10.1016/j.cbi.2021.109737] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive exposure to Ultraviolet (UV) rays can cause premature skin aging. Ishigoside (IGS) is a new glyceroglycolipid compound isolated from brown algal Ishige okamurae, However, whether it can protect the skin from (Ultraviolet-B) UVB damage has not been illuminated. METHODS The in vitro anti-photoaging effect of IGS was conducted in UVB-induced HaCaT. The HaCaT cells were divided into the following five groups: (1) cells didn't suffer from UVB irradiation or IGS treatment. (2-5) Cells were treated with various concentrations of IGS (0, 10, 50, and 100 μM) and irradiated by 40 mJ/cm2 UVB. The Matrix metalloproteinase (MMP) of photoaging process was determined by ELISA kits and the latent interaction between IGS and MMP was further performed by molecular docking. The crucial signaling pathway proteins involved in the collagen synthesis and degradation were subsequently evaluated by Western blotting, immunofluorescence and EMSA. RESULTS IGS effectively suppresses the high expressions and secretions of matrix metalloproteinases (MMPs) and photo-inflammation by blocking MAPKs, AP-1 and NF-κB. Meanwhile, increasing antioxidant enzyme expression. Molecular docking results suggest that inhibition of IGS on MMPs may be attributed to its hydrogen supply and hydrophobic capacity. In addition, IGS enhanced procollagen production by upregulating the TGF-β/Smad pathways. CONCLUSIONS IGS exhibited anti-photoaging activity in UVB-damage HaCaT. These effects might be a contribution by its suppression of MMPs expression via MAPKs, AP-1 and NF-κB pathway and have anti-oxidative and anti-inflammatory effects. Therefore, IGS has the great potential to become skin-care products or functional foods for preventing skin photoaging.
Collapse
Affiliation(s)
- Zhenbang Xiao
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shengtao Yang
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yi Liu
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunxia Zhou
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Pengzhi Hong
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Shengli Sun
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| |
Collapse
|
20
|
PARK JH, SHIN JY, CHO BO, HAO S, WANG F, LIM YT, SHIN DJ, JANG SI. Pectinase halophyte complex extract protects hairless mice skin damaged by UV-irradiation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.72121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Feng WANG
- Jeonju University, Republic of Korea
| | - Yi Teak LIM
- Jinandang Agricultural Corp., Republic of Korea
| | - Da Jeong SHIN
- Research Institute, Ato Q&A Co., LTD, Republic of Korea
| | - Seon Il JANG
- Jeonju University, Republic of Korea; Jeonju University, Republic of Korea
| |
Collapse
|
21
|
Pei Y, Yang S, Xiao Z, Zhou C, Hong P, Qian ZJ. Structural Characterization of Sulfated Polysaccharide Isolated From Red Algae ( Gelidium crinale) and Antioxidant and Anti-Inflammatory Effects in Macrophage Cells. Front Bioeng Biotechnol 2021; 9:794818. [PMID: 34869300 PMCID: PMC8637441 DOI: 10.3389/fbioe.2021.794818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Gelidium crinale, the red algae belonging to Geliaceae Gelidium, is a traditional edible and industrial alga in China. A sulfated polysaccharide (GNP) is successfully separated from Gelidium crinale by acid extraction and two-step column chromatography. Chemical analysis showed that the molecular weight of GNP was 25.8 kDa and the monosaccharide composition had the highest galactose content and confirmed the presence and content (16.5%) of sulfate by Fourier transform infrared spectroscopy (FT-IR) spectrometry as well as barium chloride-gelatin methods. In addition, the effect of GNP on lipopolysaccharide (LPS)-induced oxidative stress and inflammation in macrophages was also evaluated. The research results showed that GNP had fairly strong scavenging activities on 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical, hydroxyl radical, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and had Fe2+-chelating ability in a dose-dependent manner. At the same time, it significantly inhibits the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and the production of pro-inflammatory cytokines in RAW 264.7 cells induced by LPS through blocking the mitogen-activated protein kinase (MAPK)/nuclear factor kappa beta (NF-κB) signaling pathway. These results indicate that GNP may be a latent component anti-inflammation in pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Yu Pei
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Shengtao Yang
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhenbang Xiao
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Chunxia Zhou
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Pengzhi Hong
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| |
Collapse
|
22
|
Heptapeptide Isolated from Isochrysis zhanjiangensis Exhibited Anti-Photoaging Potential via MAPK/AP-1/MMP Pathway and Anti-Apoptosis in UVB-Irradiated HaCaT Cells. Mar Drugs 2021; 19:md19110626. [PMID: 34822497 PMCID: PMC8625372 DOI: 10.3390/md19110626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 01/14/2023] Open
Abstract
Marine microalgae can be used as sustainable protein sources in many fields with positive effects on human and animal health. DAPTMGY is a heptapeptide isolated from Isochrysis zhanjiangensis which is a microalga. In this study, we evaluated its anti-photoaging properties and mechanism of action in human immortalized keratinocytes cells (HaCaT). The results showed that DAPTMGY scavenged reactive oxygen species (ROS) and increase the level of endogenous antioxidants. In addition, through the exploration of its mechanism, it was determined that DAPIMGY exerted anti-photoaging effects. Specifically, the heptapeptide inhibits UVB-induced apoptosis through down-regulation of p53, caspase-8, caspase-3 and Bax and up-regulation of Bcl-2. Thus, DAPTMGY, isolated from I. zhanjiangensis, exhibits protective effects against UVB-induced damage.
Collapse
|
23
|
Wan S, Liu Y, Shi J, Fan D, Li B. Anti-Photoaging and Anti-Inflammatory Effects of Ginsenoside Rk3 During Exposure to UV Irradiation. Front Pharmacol 2021; 12:716248. [PMID: 34671254 PMCID: PMC8521102 DOI: 10.3389/fphar.2021.716248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Ginseng is a widely cultivated perennial plant in China and Korea. Ginsenoside Rk3 is one of the major active components of ginseng and is a promising candidate to regulate skin pigments and exert anti-photoaging effects on skin physiology. Ginsenoside Rk3 was mixed with a cream (G-Rk3 cream) and smeared on the skin of mice. Then, the mice were exposed to ultraviolet (UV) A (340 nm and 40 W) and UVB (313 nm and 40 W) radiation. Special attention was given to the anti-photoaging and anti-inflammatory effects of ginsenoside Rk3 on the mouse skin. Macroscopic evaluation indicated that the mouse dorsal skin looked smooth and plump even under UV irradiation for 12 weeks. Pathological analysis indicated that there was no obvious photoaging or inflammation in the mouse skin that was treated with the G-Rk3 cream. More healthy, intact, and neat collagen fibers were observed in mice treated with the G-Rk3 cream than in untreated mice. Further analysis proved that ginsenoside Rk3 could inhibit the decrease in water and hydroxyproline levels in skin tissues and the loss of superoxide dismutase and glutathione peroxidase activities in the blood. Moreover, ginsenoside Rk3 slowed or halted increases in malondialdehyde, matrix metalloproteinase (MMP)-1, and MMP-3 levels in the blood and levels of interleukin 1, interleukin 6, and tumor necrosis factor α in skin tissues. In conclusion, ginsenoside Rk3 plays a significant role in inhibiting photoaging and inflammation to protect skin health.
Collapse
Affiliation(s)
- Shichao Wan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China.,Biotech and Biomed Research Institute, Northwest University, Xi'an, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China.,Biotech and Biomed Research Institute, Northwest University, Xi'an, China
| | - Jingjing Shi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China.,Biotech and Biomed Research Institute, Northwest University, Xi'an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, China.,Shaanxi R and D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, China.,Biotech and Biomed Research Institute, Northwest University, Xi'an, China
| | - Binglin Li
- College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
24
|
R-Phycoerythrin from Colaconema formosanum (Rhodophyta), an Anti-Allergic and Collagen Promoting Material for Cosmeceuticals. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
R-phycoerythrin (R-PE), a pigment complex found in red algae, was extracted and purified from a newly identified red alga, Colaconema formosanum, and its bioactivities were examined. It was revealed that R-PE treatment resulted in high cell viability (>70%) to the mammalian cell lines NIH-3T3, RBL-2H3, RAW264.7, and Hs68, and had no effect on cell morphology in NIH-3T3 cells. Its suppression effect was insignificant on the production of IL-6 and TNF-α in lipopolysaccharides-stimulated RAW264.7 cells. However, calcium ionophore A23187-induced β-hexosaminidase release was effectively inhibited in a dose-dependent manner in RBL-2H3 cells. Additionally, it was revealed to be non-irritating to bionic epidermal tissues. Notably, procollagen production was promoted in Hs68 cells. Overall, the data revealed that R-PE purified from C. formosanum exhibits anti-allergic and anti-aging bioactivities with no observed consequential toxicity on multiple mammalian cell lines as well as epidermal tissues, suggesting that this macromolecule is a novel material for potential cosmetic use.
Collapse
|
25
|
Mu J, Ma H, Chen H, Zhang X, Ye M. Luteolin Prevents UVB-Induced Skin Photoaging Damage by Modulating SIRT3/ROS/MAPK Signaling: An in vitro and in vivo Studies. Front Pharmacol 2021; 12:728261. [PMID: 34526903 PMCID: PMC8436182 DOI: 10.3389/fphar.2021.728261] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate the role of luteolin in the mechanism of ultraviolet radiation B (UVB)-induced photoaging. An in vivo photoaging model was established using UVB irradiation of bare skin on the back of rats, and an in vitro photoaging model was established using UVB irradiation of human dermal fibroblasts (HDF). Skin damage was observed using hematoxylin-eosin (HE) and Masson staining, skin and cellular reactive oxygen species (ROS) levels were detected by DHE and DCF fluorescent probes, mitochondrial membrane potential was detected by JC-1 staining, and protein expressions were detected by immunofluorescence and Western Blot. Results from animal experiments showed that luteolin reduced UVB-induced erythema and wrinkle formation. Results from cellular assays showed that luteolin inhibited UVB-induced decrease in cell viability. In addition, in vitro and in vivo experiments showed that luteolin reduced oxidative stress levels, decreased activation of matrix metalloproteinases (MMPs) and increased collagen expression. Continued cellular experiments using 3-TYP, an inhibitor of Sirtuin 3 (SIRT3), revealed a loss of cellular protection by luteolin and a decrease in collagen, suggesting that luteolin acts by targeting and promoting SIRT3. luteolin is involved in the protection of skin cells against UVB radiation-induced ageing via the SIRT3/ROS/mitogen-activated protein kinases (MAPK) axis and it may be a promising therapeutic agent for the prevention of UVB photoaging.
Collapse
Affiliation(s)
- Jing Mu
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Huisheng Ma
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Hong Chen
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Zhang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Mengyi Ye
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
26
|
Li Y, Xia C, Yao G, Zhang X, Zhao J, Gao X, Yong J, Wang H. Protective effects of liquiritin on UVB-induced skin damage in SD rats. Int Immunopharmacol 2021; 97:107614. [PMID: 33892299 DOI: 10.1016/j.intimp.2021.107614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Overexposure to ultraviolet B (UVB) rays can cause damage to the skin. Liquiritin has a variety of pharmacological effects, such as anti-inflammatory and antioxidant. In the present study, the effect of liquiritin on UVB irradiated rat skin was investigated. Results showed that UVB irradiation caused erythema and wrinkles on the skin surface, as well as thickening and loss of elasticity of the epidermis and a significant increase in the level of ROS in the skin tissue. At the same time, western blot detected an increase in nuclear factor kappa-B (NF-κB) and matrix metalloproteinases (MMPs) and Elisa also detected an increase in pro-inflammatory factors. Therefore, we hypothesized that UVB irradiation-induced damage is associated with inflammation. Interestingly, application of liquiritin to exposed skin of rats reduced the increase in ROS, pro-inflammatory factors, and MMPs caused by UVB irradiation and increased the levels of Sirtuin3 (SIRT3) and Collagen α1. In addition, after intraperitoneal injection of the SIRT3 inhibitor 3-TYP in rats, the protective effect of liquiritin against UVB damage was found to be diminished. These results suggested that promotion of SIRT3 with liquiritin inhibits UVB-induced production of pro-inflammatory mediators, possibly acting through the SIRT3/ROS/NF-κB pathway. In conclusion, this study suggests that liquiritin is an effective drug candidate for the prevention of UVB damage.
Collapse
Affiliation(s)
- Yuanjie Li
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Changbo Xia
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Guangda Yao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Xiaojuan Gao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004 Ningxia, China; Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China; Key Laboratory of Hui Ethnic Medicine Modernisation, Ministry of Education, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
27
|
Lee JH, Lee YY, Lee J, Jang YJ, Jang HW. Chemical Composition, Antioxidant, and Anti-Inflammatory Activity of Essential Oil from Omija ( Schisandra chinensis (Turcz.) Baill.) Produced by Supercritical Fluid Extraction Using CO 2. Foods 2021; 10:foods10071619. [PMID: 34359489 PMCID: PMC8304754 DOI: 10.3390/foods10071619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Schisandra chinensis (Turcz.) Baill., which is known as omija in South Korea, is mainly cultivated in East Asia. The present study aimed to investigate the chemical composition of essential oil from the omija (OMEO) fruit obtained by supercritical fluid extraction using CO2 and to confirm the antioxidant and anti-inflammatory activity of OMEO using HaCaT human keratinocyte and RAW 264.7 murine macrophages. As a result of the chemical composition analysis of OMEO using gas chromatography-mass spectrometry, a total of 41 compounds were identified. The detailed analysis results are sesquiterpenoids (16), monoterpenoids (14), ketones (4), alcohols (3), aldehydes (2), acids (1), and aromatic hydrocarbons (1). OMEO significantly reduced the increased ROS levels in HaCaT keratinocytes induced by UV-B irradiation (p < 0.05). It was confirmed that 5 compounds (α-pinene, camphene, β-myrcene, 2-nonanone, and nerolidol) present in OMEO exhibited inhibitory activity on ROS production. Furthermore, OMEO showed excellent anti-inflammatory activity in RAW 264.7 macrophages induced by lipopolysaccharide. OMEO effectively inhibited NO production (p < 0.05) by suppressing the expression of the iNOS protein. Finally, OMEO was investigated for exhibition of anti-inflammatory activity by inhibiting the activation of NF-κB pathway. Taken together, OMEO could be used as a functional food ingredient with excellent antioxidant and anti-inflammatory activity.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea
| | - Yun-Yeol Lee
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea
| | - Jangho Lee
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea
| | - Young-Jin Jang
- Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Korea
| | - Hae-Won Jang
- Department of Food Science and Biotechnology, Sungshin Women's University, Seoul 01133, Korea
| |
Collapse
|