1
|
Zhang Y, Gong Y, Hu J, Zhang L, Benito MJ, Usmanov D, Nishanbaev SZ, Song X, Zou L, Wu Y. Quercetin and kaempferol from saffron petals alleviated hydrogen peroxide-induced oxidative damage in B16 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:967-973. [PMID: 39287449 DOI: 10.1002/jsfa.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Saffron petals are usually considered as waste after saffron harvest. However, saffron petals contain many important phytochemical components (e.g. quercetin and kaempferol), which may alleviate oxidative damage in human cells. RESULTS The contents of flavonoids and crocin in different parts of saffron were analyzed. The protective effects of flavonoids from saffron on oxidative damage of B16 cells were investigated. Saffron stigma contained high contents of crocin and picrocrocin, whereas flavonoid content (quercetin, 4.03 ± 0.33 mg g-1 DW; kaempferol, 47.80 ± 0.60 mg g-1 DW) was higher in saffron petals than in other parts. Incubation of B16 cells with quercetin (10-30 μmol L-1) and kaempferol (20-30 μmol L-1) obtained from saffron extracts could significantly increase the total antioxidant capacity (T-AOC) and the activity of NADPH:dehydrogenase quinone-1 (NQO1) to alleviate H2O2-induced oxidative damage. Quercetin was better than kaempferol in increasing NQO1 activity and T-AOC. Quercetin extracted from saffron petals could induce NQO1 expression through regulating kelch-like ECH-associated protein-1/nuclear factor erythroid 2-related factor-2 signaling pathway to protect B16 cells from oxidative damage. CONCLUSION The content of kaempferol-3-O-sophoroside and quercetin-3-O-sophoroside was higher in saffron petals than in other parts of saffron. The kaempferol and quercetin obtained from saffron petals could enhance the activity of antioxidant enzyme NQO1 and T-AOC in B16 cells. This indicated that saffron petals, as a potential functional food, may prevent diseases caused by oxidative stress. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yao Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Yucui Gong
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Jiayun Hu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Le Zhang
- Hangzhou Academy of Agricultural Sciences, Zhejiang, China
| | - María José Benito
- School of Agricultural Engineering, University of Extremadura, Badajoz, Spain
| | - Durbek Usmanov
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Sabir Z Nishanbaev
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Zhejiang, China
| | - Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| |
Collapse
|
2
|
Obeme-Nmom JI, Abioye RO, Reyes Flores SS, Udenigwe CC. Regulation of redox enzymes by nutraceuticals: a review of the roles of antioxidant polyphenols and peptides. Food Funct 2024; 15:10956-10980. [PMID: 39465304 DOI: 10.1039/d4fo03549f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Redox enzymes are essential components of the cellular defence system against oxidative stress, which is a common factor in various diseases. Therefore, understanding the role of bioactive nutraceuticals in modulating the activity of these enzymes holds immense therapeutic potential. This paper provides a comprehensive review of the regulation of redox enzymes in cell and animal models by food-derived bioactive nutraceuticals, focusing on polyphenols and peptides. Specifically, this paper discusses the regulation of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), NAPDH oxidase, xanthine oxidase (XO), myeloperoxidase (MPO), and haem oxygenase (HO) in cell and animal models. Polyphenols, which are abundant in fruits, vegetables, and beverages, have diverse antioxidant properties, including direct scavenging of reactive oxygen species and regulation of transcription factors such as nuclear factor erythroid 2-related factor 2, which leads to the increased expression of the redoxenzymes SOD, HO, and GPx. Similarly, bioactive peptides from various food proteins can enhance antioxidative enzyme activity by regulating gene expression and directly activating the enzyme CAT. In other cases, an antioxidative response requires the downregulation or inhibition of the redox enzymes XO, MPO, and NAPDH oxidase. This paper highlights the potential of bioactive nutraceuticals in mitigating oxidative stress-related diseases and their mechanisms in modulating the redox enzyme expression or activity. Furthermore, the review highlights the need for further research to uncover new therapeutic strategies using nutraceuticals for enhancing cellular antioxidant defence mechanisms and improving health outcomes.
Collapse
Affiliation(s)
- Joy I Obeme-Nmom
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Raliat O Abioye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Samanta S Reyes Flores
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemical, Food and Environmental Engineering, University of the Americas Puebla, San Andrés Cholula 72810, Puebla, Mexico
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- University Research Chair in Food Properties and Nutrient Bioavailability, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
3
|
Li G, Shi R, Zhan J, Wu Y, Wan Y, Yao Q, Hu Y, Wu C, Yang W, Wan W. Ca 2+-nano starch-lutein endowed 3D printed surimi with antioxidation and mutual reinforcing transmembrane transport mechanisms via hepg2 and caco-2 cells model. Food Res Int 2024; 191:114691. [PMID: 39059947 DOI: 10.1016/j.foodres.2024.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
To better enhance printing effects meanwhile casting functionality, antioxidation and absorption of bioactive component in printed Ca2+-nano starch (NS)-lutein (L)-surimi were investigated. Results shown that Ca2+-NS-L promoted surimi printability due to enhanced gel strength and denser structure. Mixing Ca2+-NS-L endowed printed surimi with antioxidation (DPPH, ABTS, hydroxyl radical, Fe2+ reduction were 42 %, 79 %, 65 %, 0.104 mg·mL-1, respectively) due to the ability of lutein with more -OH groups and conjugate bonds to capture free radicals. It also manifested in cellular antioxidation that Ca2+-NS-L-surimi regulated the level of Nrf2 to protect gene expression of antioxidases (SOD, CAT, GSH-Px increased by 30-180 %, compared to damaged cells) through keap1-Nrf2-ARE pathway. Additionally, lutein absorption and transportation of Ca2+-NS-L-surimi increased by 20 %, compared to NS-L. Possibly, combination of samples and membrane was facilitated by surface hydrophobic, promoting endocytosis. Meanwhile, digestive surimi (peptides) with acidic-alkaline amino acids and negative charges made samples be attracted and moved in bypass parts under electrostatic traction and repulsion (electrostatic domain) to promote transport process. Also, Ca2+ facilitated CaM expression in membrane and formed Ca2+ channel by combining with CaM to accelerate entry of samples into cells. Conclusively, Ca2+-NS-L both strengthened printability of surimi and antioxidation, promoting application of printed functional surimi.
Collapse
Affiliation(s)
- Gaoshang Li
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China
| | - Rong Shi
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China
| | - Junqi Zhan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310000, Zhejiang, China
| | - Yiduo Wu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Yue Wan
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Wenge Yang
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China.
| | - Wubo Wan
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| |
Collapse
|
4
|
Li G, Yu X, Zhan J, Wu C, Wu Y, Wan Y, Wan W, Hu Y, Yang W. A review: Interactions between protein from blue foods and functional components in delivery systems: Function exertion and transmembrane transport by in vitro digestion/cells model. Int J Biol Macromol 2024; 276:133839. [PMID: 39004248 DOI: 10.1016/j.ijbiomac.2024.133839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Functional compounds (FCs) had some functions, which are affected easily by digestion and transmembrane transport leading to low absorption rates, such as lutein, quercetin, xylo-oligosaccharide. Protein from blue foods is a potential bioactive compound, which had higher bioavailability, especially for bioactive peptides (BBPs). The BBPs has great limitations, especially the variability under pepsin digestion. However, the limitation of single FCs and BBPs in bioavailability might can be complemented by mixture of different bioactive compounds. Therefore, this review provides an in-depth study on the function and mechanism of different FCs/BBPs and their mixtures. Specifically, digestion effect of mixtures on function and transmembrane transport mechanisms of different bioactive compounds were exhibited to elaborate interactions between BBPs and FCs in delivery systems (function and bioavailability). Combination of FCs/BBPs could enhance bioactive compounds function by mutual complement of function mechanisms, as well as improving the function after digestion by regulating digestion process. Moreover, transmembrane absorption and transport of FCs/BBPs also could be facilitated by mixtures due to complement of transmembrane mechanism (endocytosis, protein channels, cell bypass way). This manuscript lays a foundation for the development of active ingredient bioavailability in functional food processing.
Collapse
Affiliation(s)
- Gaoshang Li
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China
| | - Xuemei Yu
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China
| | - Junqi Zhan
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310000, Zhejiang, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yiduo Wu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Yue Wan
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Wubo Wan
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China.
| | - Wenge Yang
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China.
| |
Collapse
|
5
|
Jingyun W, Zehao M, Hongyan Y, Xingyu L, Doudou C, Shiling L. Novel antioxidant peptides from sheep plasma protein hydrolysates: Purification, identification and cytoprotective effects against H 2O 2-induced oxidative stress. J Food Sci 2024; 89:1944-1959. [PMID: 38411027 DOI: 10.1111/1750-3841.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
This study sought to purify and identify antioxidant peptides from sheep (Ovis aries) plasma protein hydrolysates and assess their protective impacts on H2O2-induced Caco-2 cells. The purification process involved reversed high-performance liquid chromatography, anion-exchange chromatography, and Sephadex G-25. Three peptides, namely Trp-Glu-Glu-Pro-Ala-Met (WEEPAM), Ser-Leu-His-Phe-Met-Glu (SLHFME), and His-Cys-Thr-Thr-Phe-Met-Ile, with molecular weights of 761.84, 762.87, and 852.03 Da, respectively, were identified by liquid chromatography with tandem mass spectrometry. Among the three antioxidant peptides, superoxide radical (O2 -) radical scavenging capacity of WEEPAM and SLHFME was not significantly different from glutathione (GSH) (p > 0.05), while their 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity was greater than GSH (p < 0.05). WEEPAM revealed increased antioxidant activity after pepsin and trypsin hydrolysis under an in vitro digestion model. In addition, WEEPAM inhibited oxidative damage in Caco-2 cells by significantly reducing reactive oxygen species accumulation, early apoptosis, malondialdehyde formation, and increasing intracellular superoxide dismutase, glutathione peroxidase, and catalase activities.
Collapse
Affiliation(s)
- Wang Jingyun
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
- Xinjiang Cerim Modern Agriculture Co., Xinjiang Autonomous Region, Shuanghe, China
| | - Ma Zehao
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
| | - Yu Hongyan
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
| | - Liu Xingyu
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
| | - Cao Doudou
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
| | - Lu Shiling
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
| |
Collapse
|
6
|
Wang S, Mao X, Zhang R, Gao Y, Liu D. Purification, characterization, and in vitro digestion of novel antioxidant peptides from chicken blood hemoglobin. J Food Sci 2024; 89:1567-1581. [PMID: 38343291 DOI: 10.1111/1750-3841.16958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024]
Abstract
The study aimed to purify and characterize antioxidant peptides from chicken blood hemoglobin hydrolysate. The fraction M2 (< 3 KDa) with the strongest antioxidant activity was isolated by ultrafiltration, and its DPPH (1,1-diphenyl-2-picryl-hydrazyl radical) free radical scavenging rate, ABTS [2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate)] free radical scavenging rate, and iron ion chelation activity were 82.91%, 77.49%, and 80.99%, respectively. After in vitro digestion, the antioxidant capacity of chicken blood hydrolysate was significantly higher than that before digestion (p < 0.05). M2 exhibited the strongest antioxidant activity after stomach digestion, with a DPPH radical scavenging rate and iron ion chelating power of 82.91% and 79.61%, respectively. Component A was purified from M2 by Sephadex G-25 gel chromatography. The peptide sequences were identified by LC-MS/MS from fraction A, and four peptides, AEDKKLIQ (944.54 Da), APAPAAK (625.36 Da), LSDLHAHKL (1033.57 Da), and LSNLHAYNL (1044.54 Da) were synthesized using the solid-phase peptide method, among which APAPAAK was a novel antioxidant peptide. Molecular docking was used to simulate the binding of these four peptides to the key active site of Keap1 via hydrogen bonding. This study suggests that chicken blood may provide a new natural source of antioxidant peptides.
Collapse
Affiliation(s)
- Suye Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Xiaoyi Mao
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Rui Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Yurong Gao
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Dunhua Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
7
|
Tang Y, Liang F, Yan Y, Zeng Y, Li Y, Zhou R. Purification and Identification of Peptides from Hydrilla verticillata (Linn. f.) Royle with Cytoprotective and Antioxidative Effect against H 2O 2-Treated HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4170-4183. [PMID: 38358942 DOI: 10.1021/acs.jafc.3c09917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Antioxidant peptides were purified from Hydrilla verticillata (Linn. f.) Royle (HVR) protein hydrolysate by ultrafiltration, gel filtration chromatography, and semipreparative reversed-phase HPLC and identified by UPLC-ESI-MS/MS. Therein, TCLGPK and TCLGER were selected to be synthesized, and they displayed desirable radical-scavenging activity to ABTS (99.20 ± 0.56-99.20 ± 0.43%), DPPH (97.32 ± 0.59-97.56 ± 0.97%), hydroxyl radical (54.32 ± 1.27-70.42 ± 2.01%), and superoxide anion (42.93 ± 1.46-52.62 ± 1.11%) at a concentration of 0.96 μmol/mL. They possessed a cytoprotective effect against H2O2-induced oxidative stress in HepG2 cells in a dose-dependent manner. 1.6 μmol/mL of the two peptides could perfectly protect HepG2 cells from H2O2-induced injury. The TCLGPK exhibited higher antioxidant activity and cytoprotective effect than TCLGER. Western blot and molecular docking results indicated that the two peptides achieved antioxidant ability and cytoprotective effect by combining with Kelch-like ECH-associated protein 1 (Keap1) to activate the Keap1-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elements signaling pathway, leading to the activity and expression of the related antioxidases in the pathway significantly up-regulating and the intracellular reactive oxygen species level, lipid peroxidation, and cell apoptosis rate significantly down-regulating.
Collapse
Affiliation(s)
- Yufang Tang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Fan Liang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yue Yan
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yanlin Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yuqin Li
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Rong Zhou
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
8
|
Su P, Qiu H, Liang L, Weng L, Liu Y, Liu J, Wu L, Meng F. The antioxidant activity of polysaccharides from Armillaria gallica. Front Nutr 2024; 11:1277877. [PMID: 38419855 PMCID: PMC10899455 DOI: 10.3389/fnut.2024.1277877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
The purpose of this study was to investigate the antioxidant activity of Armillaria gallica polysaccharides. It explored whether Armillaria gallica polysaccharides (AgP) could prevent HepG2 cells from H2O2-induced oxidative damage. The results demonstrated that HepG2 cells were significantly protected by AgP, and efficiently suppressed the production of reactive oxygen species (ROS) in HepG2 cells. Additionally, AgP significantly decreased the abnormal leakage of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) caused by H2O2, protecting cell membrane integrity. It was discovered that AgP was also found to regulate the activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), while reducing malondialdehyde (MDA), thus protecting cells from oxidative damage. According to the flow cytometry analysis and measurement of caspase-3, caspase-8, and caspase-9 activities, AgP could modulate apoptosis-related proteins and attenuate ROS-mediated cell apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fanxin Meng
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| |
Collapse
|
9
|
Xu Z, Hu Q, Xie M, Liu J, Su A, Xu H, Yang W. Protective effects of peptide KSPLY derived from Hericium erinaceus on H2O2-induced oxidative damage in HepG2 cells. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
10
|
Ren LK, Fan J, Yang Y, Liu XF, Wang B, Bian X, Wang DF, Xu Y, Liu BX, Zhu PY, Zhang N. Identification, in silico selection, and mechanism study of novel antioxidant peptides derived from the rice bran protein hydrolysates. Food Chem 2023; 408:135230. [PMID: 36549163 DOI: 10.1016/j.foodchem.2022.135230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The work aimed to assess the antioxidant ability and obtain a new antioxidant peptide from rice bran protein. Rice bran protein was hydrolyzed by Alcalase, Neutral, Pepsin, Chymotrypsin, and Trypsin, separately. Trypsin hydrolysate (T-RBPH) showed high Fe2+ chelating activity (IC50, 2.271 ± 0.007 mg/mL), DPPH and hydroxyl radical scavenging ability (IC50, 0.191 ± 0.006 and 1.038 ± 0.034 mg/mL). Moreover, T-RBPH could alleviate the H2O2-induced oxidative damage in Caco-2. The T-RBPH was purified and identified by UF, GF, FPLC, and LC-MS/MS. Finally, 9-amino acid peptide-AFDEGPWPK with low molecular weight (1045.48 Da), high antioxidant activity, good safety, and solubility was screened by in silico method and chemical oxidation determination, and its interaction with Keap1 was also demonstrated. The ORAC and DPPH radical scavenging ability of AFDEGPWPK were 44.16 ± 0.79 and 28.38 ± 0.14 μmol TE/mM. Moreover, the Molecular docking and Western blot (WB) results showed that AFDEGPWPK could enter the binding pocket in the Kelch domain and activate Keap1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Li-Kun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Jing Fan
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Yang Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xiao-Fei Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Bing Wang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xin Bian
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Dang-Feng Wang
- College of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yue Xu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Bao-Xiang Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Peng-Yu Zhu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
11
|
Zhao H, Kim Y, Avena-Bustillos RJ, Nitin N, Wang SC. Characterization of California olive pomace fractions and their in vitro antioxidant and antimicrobial activities. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Oh Y, Jung WK, Je JY. Protective effect of multifunctional peptides PIISVYWK and FSVVPSPK on oxidative stress-mediated HUVEC injury through antioxidant and anti-apoptotic action. Process Biochem 2023. [DOI: 10.1016/j.procbio.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Liu H, Su Y, Fan Y, Zuo D, Xu J, Liu Y, Mei X, Huang H, Yang M, Zhu S. Exogenous leucine alleviates heat stress and improves saponin synthesis in Panax notoginseng by improving antioxidant capacity and maintaining metabolic homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1175878. [PMID: 37152124 PMCID: PMC10154563 DOI: 10.3389/fpls.2023.1175878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Panax notoginseng saponins (PNSs) are used as industrial raw materials to produce many drugs to treat cardio-cerebrovascular diseases. However, it is a heat-sensitive plant, and its large-scale artificial cultivation is impeded by high temperature stress, leading to decreases in productivity and PNSs yield. Here, we examined exogenous foliar leucine to alleviate heat stress and explored the underlying mechanism using metabolomics. The results indicated that 3 and 5 mM exogenous foliar leucine significantly alleviated heat stress in one-year- and two-year-old P. notoginseng in pots and field trials. Exogenous foliar leucine enhanced the antioxidant capacity by increasing the activities of antioxidant enzymes (POD, SOD) and the contents of antioxidant metabolites (amino acids). Moreover, exogenous foliar leucine enhanced carbohydrate metabolism, including sugars (sucrose, maltose) and TCA cycle metabolites (citric acid, aconitic acid, succinic acid and fumaric acid), in P. notoginseng leaves, stems, and fibrous roots to improve the energy supply of plants and further alleviate heat stress. Field experiments further verified that exogenous foliar leucine increased the productivity and PNSs accumulation in P. notoginseng. These results suggest that leucine application is beneficial for improving the growth and quality of P. notoginseng under heat stress. It is therefore possible to develop plant growth regulators based on leucine to improve the heat resistance of P. notoginseng and other crops.
Collapse
Affiliation(s)
- Haijiao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yingwei Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yunxia Fan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Denghong Zuo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jie Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Shusheng Zhu, ; Min Yang,
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Shusheng Zhu, ; Min Yang,
| |
Collapse
|
14
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
15
|
Peng B, Cai B, Pan J. Octopus-derived antioxidant peptide protects against hydrogen peroxide-induced oxidative stress in IEC-6 cells. Food Sci Nutr 2022; 10:4049-4058. [PMID: 36348803 PMCID: PMC9632189 DOI: 10.1002/fsn3.3000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 09/08/2024] Open
Abstract
This study aims to find antioxidant peptides from octopus protein hydrolyzates and verify the protective effects against H2O2-induced oxidative stress in IEC-6 cells. After the alcalase hydrolysate was ultrafiltrated, purified by Sephadex G-25 gel fractionation and semipreparative reversed-phase high-performance liquid chromatography (RP-HPLC), 16 peptides were identified, and chemically synthesized. In particular, the peptides AQNY, AMMLAW, FEGAW, GGAW, VDTVVCVW, and VVCLW showed better oxygen radical absorbance capacity (ORAC) and ABTS radical scavenging capacity. Among them, the smallest-molecular-weight peptide GGAW exhibited the best antioxidant activity. Furthermore, GGAW protected IEC-6 cells from H2O2-induced oxidative damage by significantly reducing the generation of reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase (LDH), and increasing the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), thereby improving cell viability. These results indicated that the peptide GGAW possessed the antioxidant capacity to prevent oxidative stress damage.
Collapse
Affiliation(s)
- Bo Peng
- Guangdong Eco‐Engineering PolytechnicGuangzhouChina
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources UtilizationGuangzhou Institute of Geochemistry, Chinese Academy of SciencesGuangzhouChina
- CAS Center for Excellence in Deep Earth ScienceGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bingna Cai
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE)Chinese Academy of SciencesGuangzhouChina
- Key Laboratory of Tropical Marine Bio‐Resources and Ecology/Guangdong Key Laboratory of Marine Materia MedicaSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Jianyu Pan
- Key Laboratory of Tropical Marine Bio‐Resources and Ecology/Guangdong Key Laboratory of Marine Materia MedicaSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| |
Collapse
|
16
|
Wang K, Wu S, Li P, Xiao N, Wen J, Lin J, Lu S, Cai X, Xu Y, Du B. Sacha Inchi Oil Press-Cake Protein Hydrolysates Exhibit Anti-Hyperuricemic Activity via Attenuating Renal Damage and Regulating Gut Microbiota. Foods 2022; 11:foods11162534. [PMID: 36010534 PMCID: PMC9407120 DOI: 10.3390/foods11162534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022] Open
Abstract
The incidence of hyperuricemia has increased globally due to changes in dietary habits. The sacha inchi oil press-cake is generally discarded, resulting in the waste of resources and adverse environmental impact. For the purpose of developing sacha inchi oil press-cake and identifying natural components with anti-hyperuricemic activities, we systemically investigated the underlying mechanisms of sacha inchi oil press-cake protein hydrolysates (SISH) in the hyperuricemic rat model. SISH was obtained from sacha inchi oil press-cake proteins after trypsin treatment, and 24 peptides with small molecular weight (<1000 Da) were identified. The results of animal experiments showed that SISH significantly decreased the serum uric acid (UA) level by inhibiting the xanthine oxidase (XOD) activity and regulating the gene expression related to UA production and catabolism in hyperuricemia rats, such as Xdh and Hsh. In addition, SISH attenuated the renal damage and reduced the gene expression related to inflammation (Tlr4, Map3k8, Pik3cg, Pik3ap1, Ikbke, and Nlrp3), especially Tlr4, which has been considered a receptor of UA. Notably, SISH reversed high purine-induced gut microbiota dysbiosis, particularly by enhancing the relative abundance of butyric acid-producing bacteria (unidentified_Ruminococcaceae, Oscillibacter, Ruminiclostridium, Intestinimonas). This research provided new insights into the treatment of hyperuricemia.
Collapse
|
17
|
Sikder A, Vambhurkar G, Amulya E, Bagasariya D, Famta P, Shah S, Khatri DK, Singh SB, Sinha VR, Srivastava S. Advancements in redox-sensitive micelles as nanotheranostics: A new horizon in cancer management. J Control Release 2022; 349:1009-1030. [PMID: 35961470 DOI: 10.1016/j.jconrel.2022.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
World Health Organisation (WHO) delineated cancer as one of the foremost reasons for mortality with 10 million deaths in the year 2020. Early diagnosis and effective drug delivery are of utmost importance in cancer management. The entrapment of both bio-imaging dyes and drugs will open novel avenues in the area of tumor theranostics. Elevated levels of reactive oxygen species (ROS) and glutathione (GSH) are the characteristic features of the tumor microenvironment (TME). Researchers have taken advantage of these specific TME features in recent years to develop micelle-based theranostic nanosystems. This review focuses on the advantages of redox-sensitive micelles (RSMs) and supramolecular self-assemblies for tumor theranostics. Key chemical linkers employed for the tumor-specific release of the cargo have been discussed. In vitro characterisation techniques used for the characterization of RSMs have been deliberated. Potential bottlenecks that may present themselves in the bench-to-bedside translation of this technology and the regulatory considerations have been deliberated.
Collapse
Affiliation(s)
- Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - V R Sinha
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
18
|
Zhan J, Li G, Dang Y, Pan D. Identification of a novel hypotensive peptide from porcine plasma hydrolysate by in vitro digestion and rat model. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100101. [PMID: 35769399 PMCID: PMC9235047 DOI: 10.1016/j.fochms.2022.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 11/25/2022]
Abstract
Porcine plasma was enzymatically hydrolyzed with different times. The hydrolysate with high hydrolysis degree was isolated and purified by G-15 gel chromatography and HPLC. The ace inhibition rates of different purified compounds were determined. The sequence of the polypeptide with best ace inhibition (IFPPKPKDTL) was determined by Q exactive LC-MS / MS. The hypotensive function of synthetic peptide IFPPKPKDTL was also determined in spontaneously hypertensive rat.
We separated a novel functional peptide IFPPKPKDTL from porcine plasma hydrolysate by chromatography, HPLC, and identified by Q Exactive LC-MS/MS. Results showed that IFPPKPKDTL had a significant ability of ACE inhibition (76.6%) likely due to the presence of hydrophobic, aromatic, and acidic amino acids that can inactivate ACE by binding Zn2+, providing a hydrogen atom to maintain the link between ACE and the peptide. Furthermore, the ACE inhibition of synthetic IFPPKPKDTL was improved by 15.6% after in vitro digestion. Additionally, the systolic blood pressure and diastolic blood pressure of spontaneously hypertensive rats gavaged by the peptide (30 mg/kg). Thereby, ACE inhibitory peptide IFPPKPKDTL from porcine plasma was stable and has potential functional value.
Collapse
Affiliation(s)
- Junqi Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Gaoshang Li
- Institute of Food Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
19
|
Extraction, Purification and In Vitro Antioxidant Activity Evaluation of Phenolic Compounds in California Olive Pomace. Foods 2022; 11:foods11020174. [PMID: 35053909 PMCID: PMC8775219 DOI: 10.3390/foods11020174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/04/2023] Open
Abstract
Olive pomace (OP) is a valuable food byproduct that contains natural phenolic compounds with health benefits related to their antioxidant activities. Few investigations have been conducted on OP from the United States while many studies on European OP have been reported. OP of Arbequina, the most common cultivar from California, was collected and extracted by water, 70% methanol and 70% ethanol, followed by purification using macroporous absorbing resin. Results showed that the extractable total phenolic content (TPC) was 36–43 mg gallic acid equivalents (GAE)/g in pitted, drum-dried defatted olive pomace (DOP), with major contributions from hydroxytyrosol, oleuropein, rutin, verbascoside, 4-hydroxyphenyl acetic acid, hydroxytyrosol-glucoside and tyrosol-glucoside. Macroporous resin purification increased TPC by 4.6 times the ethanol crude extracts of DOP, while removing 37.33% total sugar. The antioxidant activities increased 3.7 times Trolox equivalents (TrE) by DPPH and 4.7 times TrE by ferric reducing antioxidant power (FRAP) in the resin purified extracts compared to the ethanol crude extracts. This study provided a new understanding of the extraction of the bioactive compounds from OP which could lead to practical applications as natural antioxidants, preservatives and antimicrobials in clean-label foods in the US.
Collapse
|