1
|
Feng J, Peng J, Hsiao YC, Liu CW, Yang Y, Zhao H, Teitelbaum T, Wang X, Lu K. Non/Low-Caloric Artificial Sweeteners and Gut Microbiome: From Perturbed Species to Mechanisms. Metabolites 2024; 14:544. [PMID: 39452925 PMCID: PMC11509705 DOI: 10.3390/metabo14100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Non/low-caloric artificial sweeteners (NAS) are recognized as chemical additives substituting sugars to avoid caloric intake and subsequent sugar-derived diseases such as diabetes and hyperglycemia. Six NAS have been claimed safe and are authorized by the US Food and Drug Administration (FDA) for public use, with acceptable daily intake information available: aspartame, acesulfame-K, saccharin, sucralose, neotame, and advantame. However, the impacts of NAS on the gut microbiome have raised potential concerns, since sporadic research revealed NAS-induced microbial changes in the gastrointestinal tracts and alterations in the microbiome-host interactive metabolism. METHODS Given the fact that the gut microbiome influences kaleidoscopic physiological functions in host health, this review aimed to decipher the impacts of NAS on the gut microbiome by implementing a comprehensive two-stage literature analysis based on each NAS. RESULTS This review documented disturbed microbiomes due to NAS exposure to a maximal resolution of species level using taxonomic clustering analysis, and recorded metabolism alterations involved in gut microbiome-host interactions. CONCLUSIONS The results elucidated that specific NAS exhibited discrepant impacts on the gut microbiome, even though overlapping on the genera and species were identified. Some NAS caused glucose tolerance impairment in the host, but the key metabolites and their underlying mechanisms were different. Furthermore, this review embodied the challenges and future directions of current NAS-gut microbiome research to inspire advanced examination of the NAS exposure-gut microbiome-host metabolism axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Lee Q, Xue Z, Luo Y, Lin Y, Lai M, Xu H, Liu B, Zheng M, Lv F, Zeng F. Low molecular weight polysaccharide of Tremella fuciformis exhibits stronger antioxidant and immunomodulatory activities than high molecular weight polysaccharide. Int J Biol Macromol 2024; 281:136097. [PMID: 39353518 DOI: 10.1016/j.ijbiomac.2024.136097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Low molecular weight polysaccharides had higher bio-activity and bioavailability compared to ultra-high molecular weight polysaccharides, this study aimed to obtain low molecular weight polysaccharides from Tremella fuciformis (TFLP) by using high-temperature and high-pressure assisted hydrochloric acid method to degrade Tremella fuciformis polysaccharides (TFP), and the structural characteristics, in vivo antioxidant and immune enhancing activities of TFP and TFLP was explored through Caenorhabditis elegans (C. elegans) and mice model. It was found that TFP and TFLP were acidic polysaccharides with molecular weights of 2238 kDa and 3 kDa, respectively. The glycosidic bonding of TFP and TFLP was mainly composed of different configurations of mannopyranose. TFP and TFLP had excellent in vivo antioxidant activity and stress resistance by regulating the mRNA transcription level and metabolites in C. elegans. Results also showed that TFP and TFLP could enhance the antioxidant capacity and immunity of serum, spleen and small intestine tissues in normal mice and cyclophosphamide-induced immunosuppressive mice through regulating the relative transcription and expression levels of anti-inflammatory related signaling factors, and it has found that TFLP showed better immune enhancement and antioxidant activity than TFP. In addition, Akkermansia, Bacteroides and Alloprevotella were characteristic bacteria at the genus level in immunosuppressed mice intervened with TFLP, with a significant increase in relative abundance. The content of SCFAs significantly increased in immunosuppressed mice by TFLP. These results indicated that TFP and TFLP had potential in vivo antioxidant and immune enhancing activities.
Collapse
Affiliation(s)
- Quancen Lee
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhixiang Xue
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yijuan Luo
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanpeng Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiying Lai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanyi Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingfeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Xie Y, Zhang K, Zhu J, Ma L, Zou L, Liu W. Shell-Core Microbeads Loaded with Probiotics: Influence of Lipid Melting Point on Probiotic Activity. Foods 2024; 13:2259. [PMID: 39063342 PMCID: PMC11275290 DOI: 10.3390/foods13142259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Probiotics have many beneficial physiological activities, but the poor stability during storage and gastrointestinal digestion limits their application. Therefore, in this study, a novel type of shell-core microbead for loading probiotics was prepared through high-precision concentric drop formation technology using gelatin as the shell material and lipids as the core material. The microbeads have a regular spherical structure, uniform size, low moisture content (<4%) and high probiotic activity (>9.0 log CFU/g). Textural testing showed that the hardness of the medium-chain triglyceride microbeads (MCTBs), cocoa butter replacer microbeads (CBRBs) and hydrogenated palm oil microbeads (HPOBs) increased gradually (319.65, 623.54, 711.41 g), but their springiness decreased (67.7, 43.3, 34.0%). Importantly, lipids with higher melting points contributed to the enhanced stability of probiotics during simulated digestion and storage. The viable probiotic counts of the HCTBs, CBRBs and HPOBs after being stored at 25 °C for 12 months were 8.01, 8.44, and 8.51 log CFU/g, respectively. In the simulated in vitro digestion process, the HPOBs resisted the destructive effects of digestive enzymes and gastric acid on probiotics, with a reduction in the probiotic viability of less than 1.5 log CFU/g. This study can provide new ideas for the preparation of intestinal delivery probiotic foods.
Collapse
Affiliation(s)
- Youfa Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.X.); (K.Z.); (J.Z.); (L.M.); (L.Z.)
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330041, China
| | - Kui Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.X.); (K.Z.); (J.Z.); (L.M.); (L.Z.)
| | - Jingyao Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.X.); (K.Z.); (J.Z.); (L.M.); (L.Z.)
| | - Li Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.X.); (K.Z.); (J.Z.); (L.M.); (L.Z.)
| | - Liqiang Zou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.X.); (K.Z.); (J.Z.); (L.M.); (L.Z.)
- International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.X.); (K.Z.); (J.Z.); (L.M.); (L.Z.)
- International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
4
|
Lan Z, Yang R, Wang H, Xue X, Sun Y, Wang S, Zhang Y, Meng J. Rapid identifying of COX-2 inhibitors from turmeric (Curcuma longa) by bioaffinity ultrafiltration coupled with UPLC-Q Exactive-Orbitrap-MS and zebrafish-based in vivo validation. Bioorg Chem 2024; 147:107357. [PMID: 38604020 DOI: 10.1016/j.bioorg.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Turmeric (Curcuma longa), a typical source with recognized anti-inflammatory activity, is one such medicine-food homology source, yet its anti-inflammatory mechanisms and specific component combinations remain unclear. In this study, a net fishing method combining bio-affinity ultrafiltration and ultra-high performance liquid chromatography-mass spectrometry (AUF-LC/MS) was employed and 13 potential COX-2 inhibitors were screened out from C. longa. 5 of them (C1, 17, 20, 22, 25) were accurately isolated and identified. Initially, their IC50 values were measured (IC50 of C1, 17, 20, 22 and 25 is 55.08, 48.26, 29.13, 111.28 and 150.48 μM, respectively), and their downregulation of COX-2 under safe concentrations (400, 40, 120, 50 and 400 μM for C1, 17, 20, 22 and 25, respectively) was confirmed on RAW 264.7 cells. Further, in transgenic zebrafish (Danio rerio), significant anti-inflammatory activity at safe concentrations (15, 3, 1.5, 1.5 and 3 μg/mL for C1, 17, 20, 22 and 25, respectively) were observed in a dose-dependent manner. More importantly, molecular docking analysis further revealed the mode of interaction between them and the key active site residues of COX-2. This study screened out and verified unreported COX-2 ligands, potentially accelerating the discovery of new bioactive compounds in other functional foods.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China; School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rui Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Hu Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Xingyang Xue
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510000, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China.
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, China.
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China.
| |
Collapse
|
5
|
Li Y, Lei Z, Guo Y, Liu Y, Guo X, Wang X, Che J, Yuan J, Wang C, Li M. Fermentation of Ganoderma lucidum and Raphani Semen with a probiotic mixture attenuates cyclophosphamide-induced immunosuppression through microbiota-dependent or -independent regulation of intestinal mucosal barrier and immune responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155082. [PMID: 37722243 DOI: 10.1016/j.phymed.2023.155082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Probiotic fermentation is a promising strategy for improving the nutritional and functional properties of traditional Chinese medicines (TCMs). Ganoderma lucidum and Raphani Semen are famous TCMs that have been shown to help alleviate immune system disorders. However, few studies have experimentally investigated the effects of probiotic-fermented G.lucidum and Raphani Semen on the immune system. PURPOSE We established the in vitro fermentation of G. lucidum and Raphani Semen with a probiotic mixture (Bifidobacterium longum, Lactobacillus acidophilus, and l. fermentum) (GRFB), investigated its ameliorating effect against cyclophosphamide (CTX)-induced immunosuppression, and explored its possible mechanisms. METHODS First, the different components in GRFB were identified by high-performance liquid chromatography. Second, its immune-stimulatory activities were evaluated in CTX-treated mice. Lastly, its possible in vitro and in vivo mechanisms were studied. RESULTS Probiotic fermentation of G. lucidum and Raphani Semen altered some of its chemical constituents, potentially helping improve the ability of GRFB to alleviate immunosuppression. As expected, GRFB effectively ameliorated CTX-induced immunosuppression by increasing the number of splenic lymphocytes and regulating the secretion of serum and ileum cytokines. GRFB supplementation also effectively improved intestinal integrity in CTX-treated mice by upregulating tight junction proteins. It also protects against CTX-induced intestinal dysbiosis by increasing the abundance of beneficial bacteria and reducing the abundance of harmful bacteria. GRFB could directly promote intestinal immunity but not systemic immunity in vitro, suggesting a microbiota-dependent regulation of GRFB. Interestingly, cohousing CTX-induced immunosuppressed mice with GRFB-treated mice promoted their symptoms recovery. Enhanced CTX-induced immunosuppression by GRFB in vitro depended on the gut microbiota. Remarkably, a Kyoto Encyclopedia of Genes and Genomes analysis showed that the GRFB-reprogrammed microbiota was significantly enriched in DNA damage repair pathways, which contribute to repairing the intestinal mucosal barrier. CONCLUSION This is the first study to suggest that compare with unfermented G. lucidum and Raphani Semen, GRFB can more effectively promote intestinal immunity and manipulate the gut microbiota to promote immunostimulatory activity and repair immunosuppression-induced intestinal barrier damage by biotransforming G.lucidum and Raphani Semen components.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Zengjie Lei
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yuling Guo
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yujia Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiujie Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jian Che
- Aim Honesty Biopharmaceutical Co., Ltd, Dalian, China
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
6
|
Lee Q, Han X, Zheng M, Lv F, Liu B, Zeng F. Preparation of low molecular weight polysaccharides from Tremella fuciformis by ultrasonic-assisted H 2O 2-Vc method: Structural characteristics, in vivo antioxidant activity and stress resistance. ULTRASONICS SONOCHEMISTRY 2023; 99:106555. [PMID: 37582309 PMCID: PMC10448212 DOI: 10.1016/j.ultsonch.2023.106555] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023]
Abstract
Different methods were used to degrade Tremella fuciformis polysaccharides (TFP) and prepare low molecular weight polysaccharides of Tremella fuciformis (TFLP) to improve their bioavailability. It was found that the TFLP prepared by ultrasonic-assisted H2O2-Vc method showed the highest level of antioxidant activity and stress resistance in C. elegans. The structural characteristics, in vivo antioxidant and stress resistance of TFLP-1 were evaluated after isolation and purification of TFLP, it was found that TFLP-1 was an acid polysaccharide with a molecular weight of 75770 Da, which mainly composed of mannose. Meanwhile, it could regulate the antioxidant activity and stress resistance in C. elegans by upregulating the transcription of fat-5, fat-7, acs-2, glp-1, hsf-1, hsp-1, mtl-1, nhr-49, skn-1 and sod-3 mRNA. The improvement effects were closely related to the significant regulation of galactose metabolism, alpha linolenic acid metabolism, and pantothenate and CoA biosynthesis metabolic pathways. These results provided insights into the high value application of Tremella fuciformis in the food industry and the development of antioxidant related functional foods.
Collapse
Affiliation(s)
- Quancen Lee
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianjing Han
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingfeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Lu H, Sun L, Tong S, Jiang F, Chen L, Wang Y. Latilactobacillus curvatus FFZZH5L isolated from pickled cowpea enhanced antioxidant activity in Caenorhabditis elegans by upregulating the level of glutathione S-transferase. Food Funct 2023; 14:8646-8660. [PMID: 37672003 DOI: 10.1039/d3fo03093h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Latilactobacillus curvatus is a potential probiotic that possesses beneficial health properties and fermentation traits; however, the extent of understanding of the antioxidant activities of L. curvatus is limited. This study investigates the antioxidant activities of a new L. curvatus FFZZH5L strain. The strain exhibits broad tolerance to acids, bases and salts and demonstrated good adaption to the gastrointestinal environment, with a survival rate of 45% after 24 h of treatment in artificial gastrointestinal juice. Moreover, L. curvatus FFZZH5L exhibits inhibitory effects on Staphylococcus aureus, with a self-aggregation rate of 34.8% and a co-aggregation rate of 82.2%. In vitro, the DPPH radical scavenging ability and GSH-px enzyme activity of L. curvatus FFZZH5L reach 64.27% and 15.95 U mL-1, respectively. Treatment of C. elegans with L. curvatus FFZZH5L in vivo significantly extended the organism's lifespan. Furthermore, the activity of SOD, GSH-px and T-AOC was increased by 33.6%, 43.4% and 58.3%, respectively. Feeding C. elegans with L. curvatus FFZZH5L decreased the MDA, lipofuscin and ROS levels by 9%-36.4%. L. curvatus FFZZH5L effectively protected C. elegans against juglone-induced oxidative stress damage and led to a significant increase in the organism's survival under heat stress. The RT-qPCR analysis suggests that feeding C. elegans with L. curvatus FFZZH5L upregulates the expression levels of antioxidant-related genes including glutathione S-transferase 4 (gst-4), gst-1, gst-10, sod-3, sod-5, and sod-10 in C. elegans. Our investigation confirms the probiotic and antioxidant properties of L. curvatus, indicating its potential application in functional foods and the pharmaceutical industry.
Collapse
Affiliation(s)
- Hengqian Lu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Liangyin Sun
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Sijia Tong
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Fei Jiang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Liping Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| |
Collapse
|
8
|
Rahman MS, Emon DD, Toma MA, Nupur AH, Karmoker P, Iqbal A, Aziz MG, Alim MA. Recent advances in probiotication of fruit and vegetable juices. J Adv Vet Anim Res 2023; 10:522-537. [PMID: 37969792 PMCID: PMC10636081 DOI: 10.5455/javar.2023.j706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 11/17/2023] Open
Abstract
Probiotics are live bacteria beneficial to health when consumed adequately. Health professionals now recommend probiotics on regular diets due to their positive effects on human health. The probiotics that are usually consumed from the market through food products are mostly dairy-based. Fruit and vegetables are gaining popularity as preferred matrices for probiotic carriers to the human body, owing to their high cholesterol content and the lactose intolerance of dairy products. On the other hand, fruits and vegetable juices are rich in nutrient content such as vitamins, minerals, and antioxidants and do not contain a starter culture that can compete with the nutrients. The probiotication of fruit and vegetable juices (apple, carrot, citrus fruit, pome-granate, watermelon, tomato, and pineapple) are performing as efficient probiotic bacteria carriers. This review covers the previous works that highlighted the variety of probiotic fruit and vegetable juices as well as the viability of each probiotic in various products after proper fermentation and storage. In addition, physicochemical and sensory changes that occurred during the processing and storage period have been discussed. Furthermore, strategies (microencapsulation, adding prebiotics, antioxidant addition, maintaining optimum pH, temperature, adaptation with resistance, and good packaging) to improve the stability of probiotic bacteria are outlined, as it is difficult to maintain the stability of probiotic bacteria during storage. Finally, the manuscript discusses the effect of probiotic fruit and vegetable juices on human health.
Collapse
Affiliation(s)
- Md Saydar Rahman
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Dwip Das Emon
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Maria Afroz Toma
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Asmaul Husna Nupur
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Poly Karmoker
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abdullah Iqbal
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Gulzarul Aziz
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Abdul Alim
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
9
|
Zeng F, Lai M, Li Q, Zhang H, Chen Z, Gong S, Liu X, Liu B. Anti-oxidative and anti-aging effects of mannoprotein-rich yeast cell wall enzymatic hydrolysate by modulating gut microbiota and metabolites in Caenorhabditis elegans. Food Res Int 2023; 170:112753. [PMID: 37316035 DOI: 10.1016/j.foodres.2023.112753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/16/2023]
Abstract
In this study, antioxidant and anti-aging studies were carried out by mannoprotein-rich yeast cell wall enzymatic hydrolysate (MYH) obtained by enzymatic hydrolysis of yeast cell wall through the Caenorhabditis elegans (C. elegans) model. It was found that MYH could improve the lifespan and anti-stress ability of C. elegans by increasing the activity of antioxidant enzymes such as T-SOD, GSH-PX and CAT, and reducing the levels of MDA, ROS and apoptosis. At the same time, through the verification expression of corresponding mRNA, it was found that MYH exerted antioxidant and anti-aging activities by up-regulating the translation of MTL-1, DAF-16, SKN-1 and SOD-3 mRNA, and down-regulating the translation of AGE-1 and DAF-2 mRNA. In addition, it was found that MYH could improve the composition and distribution of the gut microbiota of C. elegans, and significantly improve the level of metabolites through the sequencing of gut microbiota and untargeted metabolomic studies. It has contributed to studying the antioxidant and anti-aging activities of microorganisms such as yeast through the level of gut microbiota and metabolites and the development of related functional foods.
Collapse
Affiliation(s)
- Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiying Lai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Quancen Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haibo Zhang
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China; School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhixian Chen
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China
| | - Shiyu Gong
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Choi SH, Kim SY, Kim KM, Mony TJ, Bae HJ, Kim MS, Lee CH, Choi SE, Lee SH, Park SJ. Fermented Sprouts of Codonopsis lanceolata Suppress LPS-Induced Inflammatory Responses by Inhibiting NF-κB Signaling Pathway in RAW 264.7 Macrophages and CD1 Mice. Pharmaceutics 2023; 15:1793. [PMID: 37513980 PMCID: PMC10384864 DOI: 10.3390/pharmaceutics15071793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The interest in bioconversion through fermentation of sprouts produced in smart farms is increasing due to their potential health benefits. Codonopsis lanceolata (CL) is reported to alleviate inflammatory conditions, but much research is still needed to determine which types and parts of CL are most effective. This study investigated the anti-inflammatory effects of a fermented extract of CL sprouts' aerial part (F-CSA) against LPS-stimulated RAW 264.7 macrophages and mice. In the screening test, F-CSA showed the most substantial anti-inflammatory effect among several samples, containing the highest total flavonoids, tannins, and polyphenols. UPLC-ESI-Q/TOF-MS and HPLC analysis revealed that F-CSA had the highest amount of luteolin among all the CL samples analyzed. F-CSA reduced the release of inflammatory cytokines and mediators such as NO and PGE2 by inhibiting the expression levels of iNOS and COX-2 in LPS-stimulated macrophages. Further, we found that the anti-inflammatory effects of F-CSA were mediated by inhibiting the JNK/NF-κB signaling pathway. Moreover, F-CSA improved survival rates and reduced plasma levels of NO and IL-6 in CD1 mice stimulated with LPS. These findings suggest that F-CSA, which contains luteolin, can alleviate inflammation in LPS-induced RAW 264.7 cells and a CD1 mouse model by inhibiting the JNK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Seung-Hyuk Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeong-Min Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tamanna Jahan Mony
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Min Seok Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan Ho Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
11
|
Xu HY, Li QC, Zhou WJ, Zhang HB, Chen ZX, Peng N, Gong SY, Liu B, Zeng F. Anti-Oxidative and Anti-Aging Effects of Probiotic Fermented Ginseng by Modulating Gut Microbiota and Metabolites in Caenorhabditis elegans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01055-9. [PMID: 36947370 DOI: 10.1007/s11130-023-01055-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Antioxidative and antiaging abilities of probiotic fermented ginseng (PG) were evaluated in Caenorhabditis elegans (C. elegans). Lifespan and effect on heat stress and acute oxidative stress in C. elegans were significantly enhanced by PG. Antioxidative enzymes such as T-SOD, GSH-PX, CAT were significantly up-regulated, and MDA, ROS and apoptosis levels were significantly down-regulated. At the same time, PG exerted antioxidant and anti-aging activities by reducing the expression of DAF-2 mRNA and increasing the expression of SKN-1 and SOD-3 mRNA in C. elegans. In addition, the mechanism of antioxidative and antiaging activities of PG was explored through gut microbiota sequencing and untargeted metabolomics. The results of gut microbiota indicated that PG could significantly improve the composition and structure of microbes in the gut of C. elegans, and the relative abundance of beneficial bacteria was up-regulated. Untargeted metabolomic results elucidated that PG modulated antioxidant and antiaging activities through neuroactive ligand-receptor interaction, Citrate cycle (TCA cycle), pyruvate metabolism, ascorbate and aldarate metabolism and D-Arginine and D-ornithine metabolism of C. elegans. These results indicated that PG had excellent antioxidant and anti-aging activities, providing research value for the development of functional foods and improvement of aging-related diseases.
Collapse
Affiliation(s)
- Huan-Yi Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Quan-Cen Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wen-Jie Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hai-Bo Zhang
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhi-Xian Chen
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
| | - Ning Peng
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
| | - Shi-Yu Gong
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
12
|
Wang W, Li X, Li D, Pan F, Fang X, Peng W, Tian W. Effects of Major Royal Jelly Proteins on the Immune Response and Gut Microbiota Composition in Cyclophosphamide-Treated Mice. Nutrients 2023; 15:nu15040974. [PMID: 36839331 PMCID: PMC9967945 DOI: 10.3390/nu15040974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Increasing evidence suggests that royal jelly (RJ) has exceptional biological properties, and that major royal jelly proteins (MRJPs) are the key active factors in RJ. The objective of this study was to compare the difference in the protein content between RJ and MRJPs using non-labeled, quantitative proteomics technology, and to investigate the adjustment features and mechanisms of MRJPs on murine immune functions and the composition of intestinal flora in cyclophosphamide-treated mice. Results showed that, during the process of extracting MRJPs, the ratio of the protein types in the main protein and other proteins decreased significantly, except for MRJP1 and MRJP7, which demonstrated that an enriching effect of MRJP1 and MRJP7 was present during the extraction process. Cyclophosphamide-induced mice were orally administered MRJPs. Results showed that the middle-dose group, which received 0.25 g/(kg·bw) of royal jelly main protein, demonstrated a clear impact on the development of the spleen and liver, the quantity of peripheral blood leukocytes, immunoglobulin content, immune factor level, and the proliferation ability of spleen lymphocytes. A 16S rRNA high-throughput sequencing technology analysis showed that MRJPs could improve the component and richness of intestinal flora and raise the immunity of mice. The above-mentioned results indicated that the application of MRJPs is very likely to have an advantage effect on murine immune functions.
Collapse
|
13
|
Mallet JF, Shahbazi R, Alsadi N, Saleem A, Sobiesiak A, Arnason JT, Matar C. Role of a Mixture of Polyphenol Compounds Released after Blueberry Fermentation in Chemoprevention of Mammary Carcinoma: In Vivo Involvement of miR-145. Int J Mol Sci 2023; 24:ijms24043677. [PMID: 36835085 PMCID: PMC9966222 DOI: 10.3390/ijms24043677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Epigenetic mechanisms such as microRNA (miRNA) deregulation seem to exert a central role in breast cancer initiation and progression. Therefore, targeting epigenetics deregulation may be an effective strategy for preventing and halting carcinogenesis. Studies have revealed the significant role of naturally occurring polyphenolic compounds derived from fermented blueberry fruits in cancer chemoprevention by modulation of cancer stem cell development through the epigenetic mechanism and regulation of cellular signaling pathways. In this study, we first investigated the phytochemical changes during the blueberry fermentation process. Fermentation favored the release of oligomers and bioactive compounds such as protocatechuic acid (PCA), gallic acid, and catechol. Next, we investigated the chemopreventive potentials of a polyphenolic mixture containing PCA, gallic acid, and catechin found in fermented blueberry juice in a breast cancer model by measuring miRNA expression and the signaling pathways involved in breast cancer stemness and invasion. To this end, 4T1 and MDA-MB-231 cell lines were treated with different doses of the polyphenolic mixture for 24 h. Additionally, female Balb/c mice were fed with this mixture for five weeks; two weeks before and three weeks after receiving 4T1 cells. Mammosphere formation was assayed in both cell lines and the single-cell suspension obtained from the tumor. Lung metastases were counted by isolating 6-thioguanine-resistant cells present in the lungs. In addition, we conducted RT-qPCR and Western blot analysis to validate the expression of targeted miRNAs and proteins, respectively. We found a significant reduction in mammosphere formation in both cell lines treated with the mixture and in tumoral primary cells isolated from mice treated with the polyphenolic compound. The number of colony-forming units of 4T1 cells in the lungs was significantly lower in the treatment group compared to the control group. miR-145 expression significantly increased in the tumor samples of mice treated with the polyphenolic mixture compared to the control group. Furthermore, a significant increase in FOXO1 levels was noted in both cell lines treated with the mixture. Overall, our results show that phenolic compounds found in fermented blueberry delay the formation of tumor-initiating cells in vitro and in vivo and reduce the spread of metastatic cells. The protective mechanisms seem to be related, at least partly, to the epigenetic modulation of mir-145 and its signaling pathways.
Collapse
Affiliation(s)
- Jean-François Mallet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Roghayeh Shahbazi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Ammar Saleem
- Laboratory for the Analysis of Natural and Synthetic Environmental Toxins, Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON K1N 6N5, Canada
| | - Agnes Sobiesiak
- Laboratory for the Analysis of Natural and Synthetic Environmental Toxins, Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON K1N 6N5, Canada
| | - John Thor Arnason
- Laboratory for the Analysis of Natural and Synthetic Environmental Toxins, Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON K1N 6N5, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +613-562-5800 (ext. 8322)
| |
Collapse
|
14
|
Li Q, Xiao M, Li N, Cai W, Zhao C, Liu B, Zeng F. Application of
Caenorhabditis elegans
in the evaluation of food nutrition: A review. EFOOD 2023. [DOI: 10.1002/efd2.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Affiliation(s)
- Quancen Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Meifang Xiao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Na Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Wenwen Cai
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
| | - Bin Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
- National Engineering Research Center of JUNCAO Technology Fujian Agriculture and Forestry University Fuzhou China
| | - Feng Zeng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
15
|
Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023; 12:cells12010184. [PMID: 36611977 PMCID: PMC9818925 DOI: 10.3390/cells12010184] [Citation(s) in RCA: 119] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.T.); (J.C.R.); Tel.: +39-053-2455-557 (E.T.); +39-053-245-5536 (J.C.R.)
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Correspondence: (E.T.); (J.C.R.); Tel.: +39-053-2455-557 (E.T.); +39-053-245-5536 (J.C.R.)
| |
Collapse
|