1
|
Edo GI, Mafe AN, Ali ABM, Akpoghelie PO, Yousif E, Apameio JI, Isoje EF, Igbuku UA, Garba Y, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Chitosan and its derivatives: A novel approach to gut microbiota modulation and immune system enhancement. Int J Biol Macromol 2024; 289:138633. [PMID: 39675606 DOI: 10.1016/j.ijbiomac.2024.138633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a biopolymer derived from the deacetylation of chitin found in crustacean shells and certain fungi, has attracted considerable attention for its promising health benefits, particularly in gut microbiota maintenance and immune system modulation. This review critically examines chitosan's multifaceted role in supporting gut health and enhancing immunity, beginning with a comprehensive overview of its sources, chemical structure, and its dual function as a dietary supplement and biomaterial. Chitosan's prebiotic effects are highlighted, with a focus on its ability to selectively stimulate beneficial gut bacteria, such as Bifidobacteria and Lactobacillus, while enhancing gut barrier integrity and inhibiting the growth of pathogenic microorganisms. The review delves deeply into chitosan's immunomodulatory mechanisms, including its impact on antigen-presenting cells, cytokine profiles, and systemic immune responses. A detailed comparative analysis assesses chitosan's efficacy relative to other prebiotics and immunomodulatory agents, examining challenges related to bioavailability and metabolic activity. Beyond its role in gut health, this review explores chitosan's potential as a dual-action agent that not only supports gut microbiota but also fortifies immune resilience. It introduces emerging research on novel chitosan derivatives, such as chitooligosaccharides, and evaluates their enhanced bioactivity for functional food applications. Special attention is given to sustainability, with an exploration of alternative, plant-based sources of chitosan and their implications for both health and environmental stewardship. Also, the review identifies new research avenues, such as the growing interest in chitosan's role in the gut-brain axis and its potential mental health benefits through microbial interactions. By addressing these innovative areas, the review aims to shift the focus from basic health effects to chitosan's broader impact on public health. The findings encourage further exploration, particularly through human trials, and emphasize chitosan's untapped potential in revolutionizing health and disease management.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria; Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, Iraq
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Jesse Innocent Apameio
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Yasal Garba
- Department of Information Engineering, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus; Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
2
|
Carneiro KO, Campos GZ, Scafuro Lima JM, Rocha RDS, Vaz-Velho M, Todorov SD. The Role of Lactic Acid Bacteria in Meat Products, Not Just as Starter Cultures. Foods 2024; 13:3170. [PMID: 39410205 PMCID: PMC11475535 DOI: 10.3390/foods13193170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Lactic acid bacteria (LABs) are microorganisms of significant scientific and industrial importance and have great potential for application in meat and meat products. This comprehensive review addresses the main characteristics of LABs, their nutritional, functional, and technological benefits, and especially their importance not only as starter cultures. LABs produce several metabolites during their fermentation process, which include bioactive compounds, such as peptides with antimicrobial, antidiabetic, antihypertensive, and immunomodulatory properties. These metabolites present several benefits as health promoters but are also important from a technological point of view. For example, bacteriocins, organic acids, and other compounds are of great importance, whether from a sensory or product quality or a safety point of view. With the production of GABA, exopolysaccharides, antioxidants, and vitamins are beneficial metabolites that influence safety, technological processes, and even health-promoting consumer benefits. Despite the benefits, this review also highlights that some LABs may present virulence properties, requiring critical evaluation for using specific strains in food formulations. Overall, this review hopes to contribute to the scientific literature by increasing knowledge of the various benefits of LABs in meat and meat products.
Collapse
Affiliation(s)
- Kayque Ordonho Carneiro
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - Gabriela Zampieri Campos
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - João Marcos Scafuro Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - Ramon da Silva Rocha
- Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Manuela Vaz-Velho
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4960-320 Viana do Castelo, Portugal;
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4960-320 Viana do Castelo, Portugal;
| |
Collapse
|
3
|
Lubis AR, Linh NV, Srinual O, Fontana CM, Tayyamath K, Wannavijit S, Ninyamasiri P, Uttarotai T, Tapingkae W, Phimolsiripol Y, Van Doan HV. Effects of passion fruit peel (Passiflora edulis) pectin and red yeast (Sporodiobolus pararoseus) cells on growth, immunity, intestinal morphology, gene expression, and gut microbiota in Nile tilapia (Oreochromis niloticus). Sci Rep 2024; 14:22704. [PMID: 39349558 PMCID: PMC11442623 DOI: 10.1038/s41598-024-73194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
This study explores the effects of dietary supplementation with passion fruit peel pectin (Passiflora edulis) and red yeast cell walls (Sporidiobolus pararoseus) on growth performance, immunity, intestinal morphology, gene expression, and gut microbiota of Nile tilapia (Oreochromis niloticus). Nile tilapia with an initial body weight of approximately 15 ± 0.06 g were fed four isonitrogenous (29.09-29.94%), isolipidic (3.01-4.28%), and isoenergetic (4119-4214 Cal/g) diets containing 0 g kg-1 pectin or red yeast cell walls (T1 - Control), 10 g kg-1 pectin (T2), 10 g kg-1 red yeast (T3), and a combination of 10 g kg-1 pectin and 10 g kg-1 red yeast (T4) for 8 weeks. Growth rates and immune responses were assessed at 4 and 8 weeks, while histology, relative immune and antioxidant gene expression, and gut microbiota analysis were conducted after 8 weeks of feeding. The results showed that the combined supplementation (T4) significantly enhanced growth performance metrics, including final weight, weight gain, specific growth rate, and feed conversion ratio, particularly by week 8, compared to T1, T2, and T3 (P < 0.05). Immunological assessments revealed increased lysozyme and peroxidase activities in both skin mucus and serum, with the T4 group showing the most pronounced improvements. Additionally, antioxidant and immune-related gene expression, including glutathione peroxidase (GPX), glutathione reductase (GSR), and interleukin-1 (IL1), were upregulated in the gut, while intestinal morphology exhibited improved villus height and width. Gut microbiota analysis indicated increased alpha and beta diversity, with a notable rise in beneficial phyla such as Actinobacteriota and Firmicutes in the supplemented groups. These findings suggest that the combined use of pectin and red yeast cell walls as prebiotics in aquaculture can enhance the health and growth of Nile tilapia, offering a promising alternative to traditional practices. Further research is needed to determine optimal dosages for maximizing these benefits.
Collapse
Affiliation(s)
- Anisa Rilla Lubis
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Functional Feed Innovation Centre (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Orranee Srinual
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Camilla Maria Fontana
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Khambou Tayyamath
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supreya Wannavijit
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Punika Ninyamasiri
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Toungporn Uttarotai
- Department of Highland Agriculture and Natural Resources, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Hien V Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Feed Innovation Centre (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Xu Z, Wu N, Chan SW. How Do Socio-Demographic Factors, Health Status, and Knowledge Influence the Acceptability of Probiotics Products in Hong Kong? Foods 2024; 13:2971. [PMID: 39335899 PMCID: PMC11431766 DOI: 10.3390/foods13182971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, due to growing interest in gut health, the potential benefits of probiotics on the gut have received much attention. Probiotics, now readily available in both dietary supplements and a variety of foods, have become a focal point of consumer health choices. This study aims to explore the impact of consumer-related factors, including socio-demographic profiles, health status, and probiotics knowledge, on the acceptance of probiotics products in Hong Kong. A total of 385 participants engaged in a survey, providing data for an in-depth analysis of how these factors influence attitudes toward probiotics. Findings revealed a general confidence in the safety of probiotics products among respondents; however, there was a noticeable gap in probiotics understanding. The study highlighted a correlation between probiotics knowledge and specific socio-demographic attributes, with higher educational attainment positively linked to greater probiotics awareness. Furthermore, the research indicated that women exhibit higher health consciousness and a greater propensity for probiotics consumption compared to men. Consequently, promoting enhanced probiotics education and fostering increased health awareness are crucial steps to prevent the misuse of probiotics and optimize health outcomes.
Collapse
Affiliation(s)
- Zilin Xu
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Nan Wu
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Shun Wan Chan
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| |
Collapse
|