1
|
Ejiofor EU, Ishebe JE, Benjamin I, Okon GA, Gber TE, Louis H. Exploring the potential of single-metals (Cu, Ni, Zn) decorated Al 12N 12 nanostructures as sensors for flutamide anticancer drug. Heliyon 2023; 9:e20682. [PMID: 37867907 PMCID: PMC10589786 DOI: 10.1016/j.heliyon.2023.e20682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
In recent years, scientists have been actively exploring and expanding biosensor technologies and materials to meet the growing societal demands in healthcare and other fields. This study aims to revolutionize biosensors by using density functional theory (DFT) at the cutting-edge B3LYP-GD3BJ/def2tzsvp level to investigate the sensing capabilities of (Cu, Ni, and Zn) doped on Aluminum nitride (Al12N12) nanostructures. Specifically, we focus on their potential to detect, analyze, and sense the drug flutamide (FLU) efficiently. Through advanced computational techniques, we explore molecular interactions to pave the way for highly effective and versatile biosensors. The adsorption energy values of -38.76 kcal/mol, -39.39 kcal/mol, and -39.37 kcal/mol for FLU@Cu-Al12N12, FLU@Ni-Al12N12, and FLU@Zn-Al12N12, respectively, indicate that FLU chemically adsorbs on the studied nanostructures. The reactivity and conductivity of the system follow a decreasing pattern: FLU@Cu-Al12N12 > FLU@Ni-Al12N12 > FLU@Zn-Al12N12, with a band gap of 0.267 eV, 2.197 eV, and 2.932 eV, respectively. These results suggest that FLU preferably adsorbs on the Al12N12@Cu surface. Natural bond orbital analysis reveals significant transitions in the studied system. Quantum theory of atom in molecule (QTAIM) and Non-covalent interaction (NCI) analysis confirm the nature and strength of interactions. Overall, our findings indicate that the doped surfaces show promise as electronic and biosensor materials for detection of FLU in real-world applications. We encourage experimental researchers to explore the use of (Cu, Ni, and Zn) doped on Aluminum nitride (Al12N12), particularly Al12N12@Cu, for biosensor applications.
Collapse
Affiliation(s)
- Emmanuel U. Ejiofor
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University, Owerrinta, Nigeria
| | | | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Gideon A. Okon
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Terkumbur E. Gber
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University, Owerrinta, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
2
|
Arman C, Balci K, Akkaya Y, Akyuz S, Reaves-Mckee T, Frankamp AH, Coates JT, Collier WB, Ritzhaupt G, Klehm CE, Desman P. The effects of conformation and intermolecular hydrogen bonding on the structure and IR spectra of flutamide; a study based on the matrix isolation technique, ab initio and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122417. [PMID: 36731304 DOI: 10.1016/j.saa.2023.122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In this study, stable conformers of flutamide referred to as an anticancer drug were searched through a relaxed potential energy surface scan carried out at the B3LYP/6-31G(d) level of theory. This was followed by geometry optimization and thermochemistry calculations performed with the HF-SCF, MP2, B3LYP methods and the 6-31G(d), 6-311++G(d,p), aug-cc-pvTZ basis sets for each of the determined minimum energy conformers. The results revealed that flutamide has at least five stable conformers and two of them provide the major contribution to the observed matrix isolation infrared (IR) spectra of the molecule. The effects of conformational variety and intermolecular hydrogen bonding interactions on the observed IR spectra of flutamide were interpreted in the light of the vibrational spectral data obtained for the most stable monomer and dimer forms of the molecule at the same levels of theory. Pulay's "Scaled Quantum Mechanical-Force Field (SQM-FF)" method was used in the refinement of the calculated harmonic wavenumbers, IR intensities and potential energy distributions. This scaling method which proved its superiority to both anharmonic frequency calculations and other scaling methods helped us to correctly interpret the remarkable differences between the matrix IR spectra of flutamide in argon and the condensed phase IR spectra of the molecule in solvents such as KBr, H2O, D2O, ethanol and methanol.
Collapse
Affiliation(s)
- C Arman
- Istanbul University, Faculty of Science, Department of Physics, Vezneciler, 34134 Istanbul, Turkey
| | - K Balci
- Istanbul University, Faculty of Science, Department of Physics, Vezneciler, 34134 Istanbul, Turkey.
| | - Y Akkaya
- Istanbul University, Faculty of Science, Department of Physics, Vezneciler, 34134 Istanbul, Turkey
| | - S Akyuz
- Istanbul Kultur University, Science and Letters Faculty, Department of Physics, Atakoy Yerleskesi, 34156, Bakirkoy, Istanbul, Turkey
| | - T Reaves-Mckee
- Oral Roberts University, Department of Biology and Chemistry, 7777 S. Lewis Ave, Tulsa, Oklahoma, 74171, USA
| | - A H Frankamp
- Unity Health, White County Medical Center, 3214 E Race St., Searcy, Arkansas 72143, USA
| | - J T Coates
- Arkema-Road Science, 6502 S Yale Ave Suite 100, Tulsa, Oklahoma 74136, USA
| | - W B Collier
- Oral Roberts University, Department of Biology and Chemistry, 7777 S. Lewis Ave, Tulsa, Oklahoma, 74171, USA
| | - G Ritzhaupt
- Oral Roberts University, Department of Biology and Chemistry, 7777 S. Lewis Ave, Tulsa, Oklahoma, 74171, USA
| | - C E Klehm
- Oral Roberts University, Department of Biology and Chemistry, 7777 S. Lewis Ave, Tulsa, Oklahoma, 74171, USA
| | - P Desman
- Oral Roberts University, Department of Biology and Chemistry, 7777 S. Lewis Ave, Tulsa, Oklahoma, 74171, USA
| |
Collapse
|
3
|
Khaligh NG, Abbo H, Titinchi SJ, Johan MR. An Overview of Recent Advances in Biological and Pharmaceutical Developments of Fluoro-containing Drugs. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666191213123930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
:
This review article provides a brief assessment of the biological and pharmaceutical
developments of fluorinated drugs. It also discusses possible impacts on the further
development of new fluoro-containing pharmaceuticals. Structural aspects of new
drug-candidates currently under development and their biological properties, therapeutic
potential and syntheses are critically evaluated
Collapse
Affiliation(s)
- Nader G. Khaligh
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hanna Abbo
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
| | - Salam J.J. Titinchi
- Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| | - Mohd R. Johan
- Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Dolzhenko AV, Tan BJ, Chiu GNC, Chui WK, Dolzhenko AV. Synthesis and biological activity of fluorinated 7-benzylamino-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amines. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Wu L, Xie C, Zhou J, Mei H, Soloshonok VA, Han J, Pan Y. General asymmetric synthesis of 2,2,2-trifluoro-1-(1H-indol-3- and -2-yl)ethanamines. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|