1
|
Echemendía R, Montgomery CA, Cuzzucoli F, Burtoloso ACB, Murphy GK. Direct trifluoroethylation of carbonyl sulfoxonium ylides using hypervalent iodine compounds. Beilstein J Org Chem 2024; 20:3182-3190. [PMID: 39669446 PMCID: PMC11635294 DOI: 10.3762/bjoc.20.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
A novel study on the hypervalent iodine-mediated polyfluoroalkylation of sulfoxonium ylides was developed. Sulfoxonium ylides, known for their versatility and stability, are promising substrates for numerous transformations in synthetic chemistry. This report demonstrates the successful derivatization of sulfoxonium ylides with trifluoroethyl or tetrafluoropropyl groups, and provides valuable insights into the scope and limitations of this approach. Nineteen examples have been prepared (45-92% yields), with structural diversity modified at two key sites on the sulfoxonium ylide reactants. Finally, DFT calculations provided insights about the mechanism of this transformation, which strongly suggest that an SN2 reaction is operative.
Collapse
Affiliation(s)
- Radell Echemendía
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970, São Carlos, SP, Brazil
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| | - Carlee A Montgomery
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| | - Fabio Cuzzucoli
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| | - Antonio C B Burtoloso
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970, São Carlos, SP, Brazil
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Béke F, Csenki JT, Novák Z. Fluoroalkylations and Fluoroalkenylations with Iodonium Salts. CHEM REC 2023; 23:e202300083. [PMID: 37129578 DOI: 10.1002/tcr.202300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Synthesis and applications of fluoroalkyl and fluoroalkenyliodonium salts are summarized in this account article, focusing preferably to the reagents designed in our laboratory in the last decade. Among these reagents trifluoroethyl(aryl)iodonium salts have been used most frequently to build carbon-carbon and carbon-heteroatom bonds in simple nucleophilic substitutions and through transition metal catalyzed coupling reactions. Iodonium salts equipped with unsaturated fluorinated function showed diverse reactivity due to their electron deficient character, and these molecular motifs enable cycloadditions and nucleophilic additions to prepare fluorinated carbo- and heterocyclic molecules. Beyond the overview of existing transformations, with the presented collection, we aim to inspire future developments of iodonium reagents and their application in organic synthesis.
Collapse
Affiliation(s)
- Ferenc Béke
- Catalysis and Organic Synthesis Research Group, Institute of Chemistry., Eötvös Loránd University, Pázmány Péter stny. 1/a, Budapest, 1117, Hungary
| | - János T Csenki
- Catalysis and Organic Synthesis Research Group, Institute of Chemistry., Eötvös Loránd University, Pázmány Péter stny. 1/a, Budapest, 1117, Hungary
| | - Zoltán Novák
- Catalysis and Organic Synthesis Research Group, Institute of Chemistry., Eötvös Loránd University, Pázmány Péter stny. 1/a, Budapest, 1117, Hungary
| |
Collapse
|
3
|
Zeng YF, Zhou MX, Li YN, Wu X, Guo Y, Wang Z. Switchable Reductive N-Trifluoroethylation and N-Trifluoroacetylation of Indoles with Trifluoroacetic Acid and Trimethylamine Borane. Org Lett 2022; 24:7440-7445. [PMID: 36173131 DOI: 10.1021/acs.orglett.2c03011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metal-free reductive N-trifluoroethylation and N-trifluoroacetylation of indoles have been developed. Bench stable and inexpensive trimethylamine borane and trifluoroacetic acid (TFA) were utilized as the reductive and fluorinating reagents, respectively. These transformations were switchable on the basis of altering the loading of trimethylamine borane and TFA. Preliminary experiments indicated indoline was the common intermediate in these two transformations.
Collapse
Affiliation(s)
- Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ming-Xi Zhou
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Na Li
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xin Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu Guo
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
4
|
Abu-Hashem AA, El-Gazzar ABA, Abdelgawad AAM, Gouda MA. Synthesis and chemical reactions of thieno[3,2- c]quinolines from arylamine derivatives, part (V): a review. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2012176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ameen A. Abu-Hashem
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza, Egypt
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - A. B. A. El-Gazzar
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza, Egypt
| | - Ahmed A. M. Abdelgawad
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt
| | - Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Taibah University, Ulla, Medina, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Deng Z, Qiu LY, Pan W, Qian B, Chen J, Zhang H, Chen QY, Cao W, Tang XJ. TFA-Promoted Intermolecular Friedel-Crafts Alkylation of Arenes with 2,2,2-Trifluoroethylaryl Sulfoxides. Chem Asian J 2022; 17:e202200190. [PMID: 35644874 DOI: 10.1002/asia.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/14/2022] [Indexed: 11/08/2022]
Abstract
The classical Pummerer rearrangement of 2,2,2-trifluoroethylaryl sulfoxide with trifluoracetic anhydride (TFAA) affords the S , O -acetal efficiently. In the presence of trifluoracetic acid (TFA) as the co-solvent, the S , O -acetal can regenerate reactive thionium intermediate of Pummerer rearrangement. When employing arenes as nucleophiles, this strategy produces corresponding 1-thiyl-2,2,2-trifluoroethyl arenes with excellent yields under metal-free conditions.
Collapse
Affiliation(s)
- Zhen Deng
- Shanghai University, Department of Chemistry, CHINA
| | - Liu-Yan Qiu
- Shanghai University, Department of Chemistry, CHINA
| | - Wenjie Pan
- Shanghai University, Department of Chemistry, CHINA
| | - Baiyu Qian
- Shanghai University, Department of Chemistry, CHINA
| | - Jie Chen
- Shanghai University, Department of Chemistry, CHINA
| | - Hui Zhang
- Shanghai University, Department of Chemistry, CHINA
| | - Qing-Yun Chen
- Shanghai Institute of Organic Chemistry, Key Laboratory of Organofluorine Chemistry, CHINA
| | - Weiguo Cao
- Shanghai University, Department of Chemistry, CHINA
| | - Xiao-Jun Tang
- Shanghai University, Department of chemistry, 99th Shang-Da Road, 200444, Shanghai, CHINA
| |
Collapse
|
6
|
Yang L, Zhang CP. Revisiting the Balz-Schiemann Reaction of Aryldiazonium Tetrafluoroborate in Different Solvents under Catalyst- and Additive-Free Conditions. ACS OMEGA 2021; 6:21595-21603. [PMID: 34471763 PMCID: PMC8388107 DOI: 10.1021/acsomega.1c02825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/04/2021] [Indexed: 05/04/2023]
Abstract
The thermal and photochemical Balz-Schiemann reaction in commonly used solvents was revisited under catalyst- and additive-free conditions. The study showed that using low- or non-polar solvents could improve the pyrolysis and photolysis of aryldiazonium tetrafluoroborates, enabling effective fluorination at a low temperature or under visible-light irradiation. PhCl and hexane were exemplified as cheap and reliable solvents for both reactions, providing good to excellent yields of aryl fluorides from the corresponding diazonium tetrafluoroborates. The combination of slight heating with visible-light irradiation was beneficial for the transformation of stable aryldiazonium tetrafluoroborates. Nevertheless, the electronic and steric nature of aryldiazonium tetrafluoroborates still had a pivotal effect on both fluorinations even in these solvents.
Collapse
Affiliation(s)
- Lian Yang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University
of Technology, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University
of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Han ZZ, Zhang CP. Phenyl(trifluoroethyl)iodonium-triflate-initiated ring-opening polymerization of tetrahydrofuran. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Nagode SB, Kant R, Rastogi N. Hantzsch Ester-Mediated Synthesis of Phenanthridines under Visible-Light Irradiation. Chem Asian J 2020; 15:3513-3518. [PMID: 32935472 DOI: 10.1002/asia.202000888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/09/2020] [Indexed: 01/08/2023]
Abstract
An efficient photocatalytic synthesis of phenanthridines mediated by an organo-photoredox initiator Hantzsch ester has been developed via denitrogenative intramolecular annulation of benzotriazolyl chalcones. The highly reducing photoactivated Hantzsch ester facilitates the transformation of benzotriazolyl chalcones into phenanthridinyl chalcones through photoinduced electron transfer (PET) and hydrogen atom transfer (HAT) processes. The mild reaction conditions utilizing inexpensive Hantzsch ester as photosensitizer, wide reaction scope and excellent functional group tolerance are notable attributes of the methodology.
Collapse
Affiliation(s)
- Savita B Nagode
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchir Kant
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|